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S1. Matching and Subclassification

Both matching and subclassification can be used to create groups of sim-
ilar individuals in Step 4 of LSPS.

S1.1 Matching

There are a few criteria that need to be pre-specified for matching. First,
the maximum allowed difference between matched individuals, often called
caliper. A caliper can be defined at three commonly used scales: propensity
score scale, standardized scale, and standardized logit scale. On the stan-
dardized scale, the caliper is defined as standard deviations of the propensity
score distribution. The standardized logit scale is similar, except that the
propensity score is transformed to the logit scale because the PS is more likely
to be normally distributed on that scale (Austin, 2011). The default caliper
is 0.2 on the standardized logit scale, as recommended by Austin (2011).

Second, the maximum number of persons in the control group to be
matched to each person in the treatment group. In its simplest form, 1:1
nearest neighbor matching selects one individual from the control group with
the smallest propensity score difference from a given individual in the treat-
ment group. Alternatively, 1:k matching and varied ratio matching can be
used. In this study, 1:1 matching is used.

S1.2 Subclassification

Alternative to matching, researchers can use the propensity model to
stratify the dataset (Rosenbaum and Rubin, 1984). Subclassification divides
individuals into subclasses within which the propensity scores are relatively
similar.

Researchers need to determine the number of subclasses and the bound-
aries of the subclasses. Current convention is to create 5-10 subclasses with
equal support (or equal sample size), though more subclasses may be feasi-
ble and appropriate if sample size is large. We use 10 subclasses with equal
support in this study. Each datapoint is then assigned to a subclass based
on its propensity score.

Once the subclasses are defined, LSPS checks that the subclassification
achieves covariate balance. Balance is achieved if when we reweigh the data
according to the subclasses, each covariate in the treatment and control group
follows the same distribution.
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To check covariate balance, we first compute the weight for each datapoint
wi to be equal to the reciprocal of the number of datapoints from its treatment
group within its subclass. Mathematically, that is,

wi = 1/
( N∑

i

1(Ti = t)1(Si = s)
)
,

where the denominator is the number of datapoints that received treatment t
in subclass s. Then, the weighted mean of the covariate for treatment group
t is

x̄t =

∑
i:ti=t wixi∑
i:ti=twi

, t ∈ {0, 1}.

The weighted covariate variance is defined as

σ2
t =

∑
i:ti=t wi

(
∑

i:ti=t wi)2 −
∑

i:ti=tw
2
i

∑
i:ti=t

wi(xi − x̄t)
2.

With the weighted covariate mean and variance, LSPS computes the stan-
dardized mean difference to assess covariate balance.

S2. Outcome Model for Survival Analysis

In the empirical studies of Section 4, we use a Cox proportional hazards
model (Cox, 1972) to estimate an unbiased hazard ratio (the outcome Y is
time to event). The Cox model is expressed by the hazard function denoted
by h(τ). Within a subclass s, the subclass-specific hazard function hs(τ) is
estimated as,

hs(τ) = hs
0(τ) exp(ζst),

where τ is the survival time, hs
0(τ) is the baseline hazard at time τ , t is

the treatment, and exp(ζs) is the subclass-specific hazard ratio of the treat-
ment. This expression gives the hazard function at time τ for subjects with
treatment t in subclass s.

The parameters in the Cox model are estimated by optimizing the likeli-
hood

L(ζs) =
∏

i:Ci=1∩Si=s

exp(ζsti)∑
j:Yj≥Yi

exp(ζstj)
,
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where Ci = 1 indicates the occurrence of the outcome.
The hazard ratio can be obtained by reweighting exp(ζs) by the size of

the subclass. However, in practice, due to within-subclass zero counts and
finite machine precision, the hazard ratio is estimated by optimizing the Cox
partial conditional across subclasses as in the Cyclops R package [69].

S.3 Proof of Theorem 2

We prove Theorem 2, which states that under certain monotonicity as-
sumptions about the effect of the unmeasured confounder on the treatment
and on the outcome, the average treatment effect adjusting for the all mea-
sured covariates lies between the true effect and the effect adjusting for only
the measured confounders.

Let T be a binary treatment, Y be an outcome, U be an ordinal un-
measured confounder, U ∈ {1, . . . , K}, and X be some measured covariates.
Furthermore, let XC be the measured confounders, and X∁

C be the com-
plement set of the measured confounders, X∁

C = {x : x ∈ X : x ̸∈ XC}.
We assume that the measured covariates X∁

C form a noisy measurement of
U . We denote this noisy measurement as U ′. The relationship between
the true unmeasured confounder U and the noisy measurement U ′, is estab-
lished by the following misclassification probabilities, pij = p(U ′ = i |U = j),

i, j ∈ {1, . . . , K}. Then, p(U ′ = i) =
∑K

j=1 pijp(U = j).
We assume that the misclassification probabilities of U is nondifferential

with respect to T , Y , and X; that is, p(U ′ = u′ |U = u, Y = y, T = t,X =
x) = p(U ′ = u′ |U = u, Y = y′, T = t′,X = x′) for all y, y′ ∈ Y , t, t′ ∈ {0, 1},
and x, x′ ∈ X . If pij ≤ pik and pji ≤ pki for j < k < i , and pil ≥ pim and
pli ≥ pmi for i < l < m, then we say that the misclassification probabilities
are tapered.

The proof of this theorem relies on Lemma 1-4. We extend Lemma 1-4
in Ogburn and VanderWeele [53] to conditions where identifiability holds by
conditioning on measured and unmeasured confounders.

Lemma 1. If EXC
[Y |T = 1] ≥ EXC ,U ′ [Y |T = 1] ≥ E [Y (1)] and EXC

[Y |T = 0] ≤
EXC ,U ′ [Y |T = 0] ≤ E [Y (0)], or if EXC

[Y |T = 1] ≤ EXC ,U ′ [Y |T = 1] ≤
E [Y (1)] and EXC

[Y |T = 0] ≥ EXC ,U ′ [Y |T = 0] ≥ E [Y (0)], then the treat-
ment effect adjusting for all measured covariates falls between the true effect
and the effect adjusting for the measured confounders alone.
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Lemma 2. If E [Y |T,X,U ] and E [T |X,U ] are either both nonincreasing or
both nondecreasing in U , then EXC

[Y |T = 1] ≥ E [Y (1)] and EXC
[Y |T = 0] ≤

E [Y (0)]. If one of E [Y |T,X,U ] and E [T |X,U ] is nonincreasing and the
other nondecreasing in U , then EXC

[Y |T = 1] ≤ E [Y (1)] and EXC
[Y |T = 0] ≥

E [Y (0)].

Lemma 3. Suppose that U is nondifferentially misclassified with respect to T
and Y . If E [Y |T,X,U ] and E [T |X,U ] are both nondecreasing or both non-
increasing in U , then EXC ,U ′ [Y |T = 1] ≥ E [Y (1)] and EXC ,U ′ [Y |T = 0] ≥
E [Y (0)]. If one of EXC ,U ′ [Y |T,X, U ] and E [T |X,U ] is nondecreasing and
the other nonincreasing in U , then EXC ,U ′ [Y |T = 1] ≤ E [Y (1)] and EXC ,U ′ [Y |T = 0] ≤
E [Y (0)].

Lemma 4. Suppose that U is nondifferentially misclassified with respect to
T and Y with tapered misclassification probabilities. If E [Y |T,X,U ] and
E [T |X,U ] are both nondecreasing or both nonincreasing in U , then EXC ,U ′ [Y |T = 1] ≤
EXC

[Y |T = 1] and EXC ,U ′ [Y |T = 0] ≤ EXC
[Y |T = 0]. If one of E [Y |T,X,U ]

and E [T |X,U ] is nondecreasing and the other nonincreasing in U , then
EXC ,U ′ [Y |T = 1] ≥ EXC

[Y |T = 1] and EXC ,U ′ [Y |T = 0] ≥ EXC
[Y |T = 0].

Lemma 2 establishes the relationship between the true expectations and
expectations conditioning on the measured confounders. Lemma 3 estab-
lishes the relationship between expectations conditioning on all measured
covariates and the true expectations. Lemma 4 establishes the relationship
between expectations conditioning on all measured covariates and expecta-
tions conditioning on the measured confounders. Lemma 2-4 establish the
conditions of Lemma 1, and Theorem 2 then follows.
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