Plant Communications, Volume 3

### **Supplemental information**

## Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives

Rahul Mahadev Shelake, Ulhas Sopanrao Kadam, Ritesh Kumar, Dibyajyoti Pramanik, Anil Kumar Singh, and Jae-Yean Kim

### **Supplementary information 1**

# Introgression of drought and salinity tolerance traits in crops through CRISPR-based precision genome engineering

Rahul Mahadev Shelake<sup>1\*</sup>, Ulhas Sopanrao Kadam<sup>1</sup>, Ritesh Kumar<sup>2</sup>, Dibyajyoti Pramanik<sup>1</sup>, Anil Kumar Singh<sup>3</sup> and Jae-Yean Kim<sup>1,4\*</sup>

<sup>1</sup>Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea <sup>2</sup>Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN, 55108, United States <sup>3</sup>ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India <sup>4</sup>Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea

### \*Corresponding Authors:

Rahul Mahadev Shelake; Email: rahultnau@gmail.com Jae-Yean Kim; Email: kimjy@gnu.ac.kr



Figure S1. Deciphering uniquely expressed genes in salt-stress tolerance using omics approaches is summarized for rice studies. Comparative omics studies between salinity tolerant and sensitive varieties have been performed to find the differentially expressed genes or proteins (DEGs or DEPs) [Cotsaftis et al., 2011- Pokkali (T), Nona Bokra (T), Nipponbare (S); Li et al., 2018- Pokkali (T), IR-29 (S),; Farooq et al., 2021- Pokkali (T), Nagdong (T), IR-28 (S), Cheongcheong (S)]. Comparative transcriptomics and translatome data predicted several unique DEGs/DEPs that could be combined precisely to improve the salinity tolerance in salt-sensitive commercial rice cultivars. In the above-ground part of the plant, photosynthesis is mainly affected by salinity stress. FtsH-like chloroplast proteins (Os02g43350 and Os05g38400) were highly accumulated during the salinity stress, and these proteins are associated with the photosynthetic electron transport chain (Li et al., 2018). Similarly, transketolase (Os04g19740) was highly expressed. Transketolase enzyme transfers a residue with two carbon atoms from fructose-6-phosphate to glyceraldehydes-3-phosphate, resulting in ribulose-1,5-bisphosphate (RuBP) formation. Both FtsH-like chloroplast proteins and transketolase could be modified and expressed differentially to mitigate the effects of salinity stress on photosynthesis. Cell wall integrity is essential in the cell defense from high salt accumulation. Many genes were upregulated in the salt-tolerant Pokkali land race, which includes arabinogalactan proteins, expansins, SCP-like proteins, and cupin domain-containing proteins (CDPs). Ion transporters are involved in the intrusion and extrusion of Na<sup>+</sup> during elevated salinity stress. Many transporters have been explicitly accumulated in the Pokkali. For instance, transporters like OsNCX3, OsNCX10, OsNCX15, Aquaporins, OsSOS1, NHX1, and OsHKT1 are the best candidates for reorganizing the Na<sup>+</sup> transport (Singh et al., 2015; Li et al., 2018). Specific transporters could be targeted to increase the extrusion or block the Na<sup>+</sup> intrusion. Many known downstream targets help in maintaining cellular homeostasis during salinity stress. The transcripts of the genes like OsMPG1 (Kumar et al., 2012), OsCBSX4 (Singh et al., 2012), and OsCBSCBSPB4 (Kumar et al., 2018), were highly accumulated during salinity stress in Pokkali as compared to IR64 and their overexpression in tobacco has shown tolerance to the salinity stress. Further detailed study of the mode of action of these genes could help in exploring novel genes or pathways to alleviate the salinity stress. Similarly, Pokkalispecific upregulation of F-box domain-containing proteins, Tim17, PDI, LEA, hsp20, dehydrin, Glutathione S-transferase (GST) genes, metallothioneins, and Abscisic stress-ripening (ASR)

was found in comparison to salt-sensitive IR29 variety (Li et al., 2018). These genes could be a strong candidate for tackling salinity stress. DNA methylation modulates the pretranscriptional changes during stress. Analysis of methylation profile in salt-tolerant and susceptible rice varieties showed specific changes in Pokkali (Farooq et al., 2021). The DNA demethylases and methyltransferases were highly induced in the Pokkali compared to IR29. Further, the plasticity of DNA methylation could be tamed to generate the salt-tolerance traits in the salt-sensitive varieties. Most targets mentioned above are positive regulators and need overexpression or activation by CRISPRa-type systems. On the other hand, CRISPR/Cas9mediated knockouts of negative regulators like *OsCKX2* (Joshi et al., 2018), *OsCRN* (Kojonna et al., 2022), *OsEREBP2* and *OsRMC* (Serra et al., 2013) could assist in producing salt-tolerant rice genotypes. **Supplementary Table S1.** Abbreviations of transcription factors (TFs), genes, and protein families.

| Abbreviation | Description                                                |  |  |
|--------------|------------------------------------------------------------|--|--|
| ABRE         | ABA-responsive element family                              |  |  |
| ACQOS        | Acquired osmotolerance                                     |  |  |
| AITR         | ABA-induced transcription repressors                       |  |  |
| AIW1, AIW2   | ABA-induced WD40-repeat 1 and 2                            |  |  |
| AP2/ERF      | APETALA2/ethylene-responsive TF factor family              |  |  |
| AREB/ABF     | ABRE-binding protein/ABRE binding factor family            |  |  |
| AREB1        | ABA-responsive element-binding protein 1 family            |  |  |
| ARF4         | Auxin response factor 4                                    |  |  |
| ARGOS8       | Auxin-regulated gene involved in organ size 8              |  |  |
| AVP1         | Arabidopsis vacuolar H <sup>+</sup> -pyrophosphatase       |  |  |
| BBS1         | Bilateral blade senescence 1                               |  |  |
| BG3          | Big grain3                                                 |  |  |
| bHLH         | Basic helix-loop-helix family                              |  |  |
| bZIP         | Basic leucine zipper protein family                        |  |  |
| C/VIF1       | Cell wall/vacuolar inhibitor of fructosidase 1             |  |  |
| CDF          | Cycling DOF Factor family                                  |  |  |
| CDPK         | Calcium-dependent protein kinase family                    |  |  |
| CIPK         | Calcinuerin B-like-interacting protein kinase family       |  |  |
| CLCg         | Voltage-gated chloride channel family                      |  |  |
| DOF15        | DNA-binding with one finger 15                             |  |  |
| DPA4         | Development-Related PcG Target in the APEX4                |  |  |
| DREB         | Dehydration responsive element binding protein family      |  |  |
| DREB         | Dehydrin, 1,8-dihydroxy naphthalene family                 |  |  |
| DST          | drought and salt tolerance family                          |  |  |
| ELF4         | Early flowering 4                                          |  |  |
| ENA          | Na <sup>2+</sup> -extrusion family                         |  |  |
| ERA1         | Enhanced Response to ABA1                                  |  |  |
| ERF83        | Ethylene-responsive factor83                               |  |  |
| FLN2         | Fructokinase-like2                                         |  |  |
| GI           | GIGANTEA family                                            |  |  |
| GID1a        | Gibberellin-insensitive dwarf1a                            |  |  |
| GNC          | GATA, nitrate-inducible, carbon-metabolism-involved family |  |  |
| GST          | Glutathione S-transferase family                           |  |  |
| GTy-2        | Trihelix transcription factor γ-2                          |  |  |

| HAG1          | Histone acetyltransferase                                                                                       |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| НАК20         | High-affinity K <sup>+</sup> transporter                                                                        |  |  |
| HD-Zip        | Homeodomain-leucine zipper family                                                                               |  |  |
| НКТ           | High-affinity K <sup>+</sup> transporter family                                                                 |  |  |
| HKT1          | High-affinity K <sup>+</sup> transporter1                                                                       |  |  |
| HVP10         | Vacuolar H <sup>+</sup> -pumping pyrophosphatase 10                                                             |  |  |
| HyPRP1        | Hybrid proline-rich protein 1                                                                                   |  |  |
| ITPK1         | Inositol trisphosphate 5/6 kinase 1                                                                             |  |  |
| КСО           | TPK/K <sup>+</sup> channel outward channels family                                                              |  |  |
| KT/HAK/KUP    | K <sup>+</sup> transporter (KT)/high-affinity K <sup>+</sup> (HAK)/ K <sup>+</sup> uptake permease (KUP) family |  |  |
| LBD40         | Lateral organ boundaries domain 40                                                                              |  |  |
| LRR-XII       | Leucine-rich repeat receptor-like kinase subfamily XII                                                          |  |  |
| МАРК          | Mitogen-activated-protein-kinase family                                                                         |  |  |
| MOCA1         | Monocation-induced (Ca <sup>2+</sup> ) increases 1                                                              |  |  |
| МҮВ           | Myeloblastosis family                                                                                           |  |  |
| NAC           | NAM, ATAF1-2, and CUC2 family                                                                                   |  |  |
| NCA1a/OsNCA1b | No catalase activity 1a and b                                                                                   |  |  |
| NHX           | Na <sup>+</sup> /H <sup>+</sup> or K <sup>+</sup> /H <sup>+</sup> exchanger family                              |  |  |
| NPR1          | Non-expressor of pathogenesis-related gene 1                                                                    |  |  |
| OSCA1         | reduced hyperosmolality-induced Ca <sup>2+</sup> increase 1                                                     |  |  |
| OST2          | OPEN STOMATA 2                                                                                                  |  |  |
| PdNF-YB21     | Root-specific nuclear factor Y                                                                                  |  |  |
| PIL14         | Phytochrome-interacting factor-like14                                                                           |  |  |
| PQT3          | Paraquat tolerance 3                                                                                            |  |  |
| RAV2          | Related to ABI3/VP1                                                                                             |  |  |
| RBOHD         | Respiratory burst oxidase homolog D                                                                             |  |  |
| RR22          | B-type response regulator 22                                                                                    |  |  |
| RR9, RR10     | Type-A response regulator 1 and 2                                                                               |  |  |
| SAPK1, SAPK2  | stress/ABA-activated protein kinase 1 and 2                                                                     |  |  |
| SAUR41        | Small auxin up RNA 41                                                                                           |  |  |
| SnRK          | SNF1-related protein kinase family                                                                              |  |  |
| SOD7          | Suppressor of da1-1                                                                                             |  |  |
| SOS           | Salt overly sensitive antiporter family                                                                         |  |  |
| SPL10         | Squamosa promoter-binding protein-like 10                                                                       |  |  |
| SRL1, 2       | Semi-rolled leaf 1 and 2                                                                                        |  |  |
| UGT           | UDP-glycosyltransferase                                                                                         |  |  |
| VGICs         | Non-voltage-gated (tandem pore K <sup>+</sup> ) channels                                                        |  |  |
| WDR           | (WD40-repeat) family                                                                                            |  |  |

|  | WHY WHIRLY family |
|--|-------------------|
|--|-------------------|

**Supplementary Table S2.** The Cas orthologs adopted for CRISPR-based tool development and used to plot the Figure 3.

| Ortholog                   | PAM (5'-3')       | Source                              | Feature                   | Reference                                        |
|----------------------------|-------------------|-------------------------------------|---------------------------|--------------------------------------------------|
| SpCas9                     | NGG               | Streptococcus pyogenes              | Most used Cas<br>ortholog | (Jinek et al., 2012)                             |
| St1Cas9                    | NNAGAAW           | Streptococcus thermophilus          | Cas ortholog              | (Cong et al., 2013)                              |
| St3Cas9                    | NGGNG             | Streptococcus thermophilus          | Cas ortholog              | (Cong et al., 2013)                              |
| NmeCas9                    | NNNNGMTT          | Neisseria meningitidis              | Cas ortholog              | (Hou et al., 2013)                               |
| TdCas9                     | NAAAAN            | Treponema denticola                 | Cas ortholog              | (Esvelt et al., 2013)                            |
| FnCas9                     | NGG               | Francisella novivida                | Cas ortholog              | (Fonfara et al.,<br>2014; Price et al.,<br>2015) |
| SaCas9                     | NNNRRT            | Staphylococcus aureus               | Cas ortholog              | (Ran et al., 2015)                               |
| BlatCas9                   | NNNNCND           | Brevibacillus laterosporus          | Cas ortholog              | (Karvelis et al., 2015)                          |
| FnCpf1                     | TTV/TTTV/KY<br>TV | Francisella tularensis              | Cas ortholog              | (Zetsche et al., 2015)                           |
| LbCpf1                     | TTTV              | Lachnospiraceae bacterium ND2006    | Cas ortholog              | (Zetsche et al., 2015)                           |
| AsCpf1                     | TTTV              | Acidaminococcus sp. BV3L6           | Cas ortholog              | (Zetsche et al., 2015)                           |
| BpCpf1                     | -                 | Butyrivibrio proteoclasticus        | Cas ortholog              | (Zetsche et al.,<br>2015)                        |
| SsCpf1                     | -                 | Smithella sp. SC_K08D17             | Cas ortholog              | (Zetsche et al., 2015)                           |
| Cas13a                     | -                 | Leptotrichia shahii                 | RNA targeting             | (Abudayyeh et al., 2016)                         |
| CjCas9                     | NNNVRYAC          | Campylobacter jejuni                | Smallest Cas ortholog     | (Kim et al., 2017)                               |
| ThermoCas9                 | NNNNCNR           | Geobacillus thermodenitrificans T12 | Cas ortholog              | (Mougiakos et al.,<br>2017)                      |
| Cas13b                     | -                 | Bergeyella zoohelcum                | RNA targeting             | (Smargon et al., 2017)                           |
| ScCas9                     | NNG               | Streptococcus canis                 | Cas ortholog              | (Chatterjee et al., 2018)                        |
| MbCpf1                     | TTV/TTTV          | Moraxella bovoculi 237              | Cas ortholog              | (Tóth et al., 2018)                              |
| Cas13d                     | -                 | Eubacterium siraeum                 | RNA targeting             | (Konermann et al., 2018)                         |
| CasX                       | TTCN              | Uncultured microbial communities    | Cas ortholog              | (Liu et al., 2019)                               |
| Cas12f (Cas14)<br>homologs | 5' T- or C-rich   | Different species                   | Cas ortholog              | (Karvelis et al., 2020)                          |
| SmacCas9                   | NAAN              | Streptococcus macacae               | Cas ortholog              | (Chatterjee et al., 2020a)                       |
| ErCpf1 (MAD7)              | YTTN              | Eubacterium rectale                 | Royalty-free ortholog     | (I. Inscripta,<br>2020)                          |
| CeCpf1                     | TTTV              | Coprococcus eutactus                | Cas ortholog              | (Chen et al., 2020)                              |
| BfCpf1                     | TTTV              | Butyrivibrio fibrisolvens           | Cas ortholog              | (Chen et al., 2020)                              |

| CasΦ (Cas12j) | TBN    | Bacteriophage              | Cas ortholog | (Pausch et al., 2020)  |
|---------------|--------|----------------------------|--------------|------------------------|
| ShyCas9       | NNARMM | Staphylococcus hyicus      | Cas ortholog | (Schmidt et al., 2021) |
| SluCas9       | NNGG   | Staphylococcus lugdunensis | Cas ortholog | (Schmidt et al., 2021) |
| SmiCas9       | NNGG   | Staphylococcus microti     | Cas ortholog | (Schmidt et al., 2021) |
| SpaCas9       | NNGG   | Staphylococcus pasteuri    | Cas ortholog | (Schmidt et al., 2021) |

N:any nucleotide, R:A/G, M:A/C, W:A/T, V:G/C/A, Y:C/T, H:A/C/T, B:G/T/C.

**Supplementary Table S3.** The Cas variants adopted for CRISPR-based tool development and used to plot the Figure 3.

| Variants       | PAM (5'-3')     | Mutation                                             | Feature              | Reference                  |
|----------------|-----------------|------------------------------------------------------|----------------------|----------------------------|
| SpCas9(D1135E) | NAG, NGA        | D1135E                                               | Relaxed PAM          | (Kleinstiver et al., 2015) |
| SpCas9(VQR)    | NGA             | D1135V/R1335Q/T1337R                                 | Relaxed PAM          | (Kleinstiver et al., 2015) |
| SpCas9(EQR)    | NGAG            | D1135E/R1335Q/T1337R                                 | Relaxed PAM          | (Kleinstiver et al., 2015) |
| SpCas9(VRER)   | NGCG            | D1135V/G1218R/R1335E/T1337R                          | Relaxed PAM          | (Kleinstiver et al., 2015) |
| SaCas9 KHH     | NNNRRT          | E782K/N968K/R1015H                                   | Relaxed PAM          | (Kleinstiver et al., 2015) |
| SpCas9(K855A)  | NGG             | K855A                                                | Enhanced specificity | (Slaymaker et al., 2016)   |
| eSpCas9(1.0)   | NGG             | K810A/K1003A/R1060A                                  | Enhanced specificity | (Slaymaker et al., 2016)   |
| eSpCas9(1.1)   | NGG             | K848A/K1003A/R1060A                                  | Enhanced specificity | (Slaymaker et al., 2016)   |
| SpCas9-HF1     | NGG             | N497A/R661A/Q695A/Q926A                              | Enhanced specificity | (Kleinstiver et al., 2016) |
| SpCas9 QQR1    | NAAG            | G1218R/N1286Q/I1331F/D1332K/R1333<br>Q/R1335Q/T1337R | Relaxed PAM          | (Anders et al., 2016)      |
| HeFSpCas9      | NGG             | N497A/R661A/Q695A/K848A/Q926A/K1<br>003A/R1060A      | Enhanced specificity | (Kulcsár et al., 2017)     |
| HypaCas9       | NGG             | N692A/M694A/Q695A/H698A                              | Enhanced specificity | (Chen et al., 2017)        |
| AsCpf1(RR)     | TYCV, CCCC      | S542R/K607R                                          | -                    | (Gao et al., 2017)         |
| AsCpf1(RVR)    | TATV            | S542R/K548V/N552R                                    | -                    | (Gao et al., 2017)         |
| LbCpf1(RR)     | TYCV, CCCC      | G532R/K595R                                          | Relaxed PAM          | (Gao et al., 2017)         |
| LbCpf1(RVR)    | TATV            | G532R/K538V/Y542R                                    | Relaxed PAM          | (Gao et al., 2017)         |
| evoCas9        | NGG             | M495V/Y515N/K526E/R661Q                              | Enhanced specificity | (Casini et al.,<br>2018)   |
| HiFi Cas9      | NGG             | R691A                                                | Enhanced specificity | (Vakulskas et al., 2018)   |
| Sniper Cas9    | NGG             | F539S/M763I/K890N                                    | Enhanced specificity | (Lee et al., 2018)         |
| eHF1-Cas9      | NGG             | N497A/R661A/Q695A/K848A/Q926A/K1<br>003A/R1060A      | Enhanced specificity | (Liang et al.,<br>2018)    |
| eHypaCas9      | NGG             | N692A/M694A/Q695A/H698A/K848A/K1<br>003A/R1060A      | Enhanced specificity | (Liang et al., 2018)       |
| xCas9 3.7      | NG, GAA,<br>GAT | A262T/R324L/S409I/E480K/E543D/M694<br>I/E1219V       | Relaxed PAM          | (Hu et al., 2018)          |
| SpCas9-NG      | NG              | R1335V/L1111R/D1135V/G1218R/<br>E1219F/A1322R/T1337R | Relaxed PAM          | (Nishimasu et al., 2018)   |
| FnCpf1(RVR)    | TYCV, TCTV      | N607R/K671R                                          | -                    | (Tóth et al., 2018)        |
| FnCpf1(RR)     | TWTV            | N607R/K613V/N617R                                    | -                    | (Tóth et al., 2018)        |
| MbCpf1(RR)     | TYCV, TCTV      | N576R/K637R                                          | Relaxed PAM          | (Tóth et al., 2018)        |
| MbCpf1(RVR)    | TWTV            | N576R/K582V/N586R                                    | Relaxed PAM          | (Tóth et al., 2018)        |

| enAsCpf1              | VTTV, TTTT,<br>TTCN, TATV | E174R/S542R/K548R                                                                    | Temperature insensitive | (Kleinstiver et al., 2019)      |
|-----------------------|---------------------------|--------------------------------------------------------------------------------------|-------------------------|---------------------------------|
| iSpmacCas9            | NAA                       | R221K/N394K                                                                          | Relaxed PAM             | (Chatterjee et al., 2020a)      |
| SpCas9-NRRH           | NRRH                      | R1114G/D1135N/V1139A/D1180G/E1219<br>V/Q1221H/A1320V/R1333K                          | Relaxed PAM             | (Miller et al., 2020)           |
| SpCas9-NRTH           | NRTH                      | R1114G/D1135N/D1180G/G1218S/E1219<br>V/Q1221H/P1249S/E1253K/P1321S/D133<br>2G/R1335L | Relaxed PAM             | (Miller et al., 2020)           |
| SpCas9-NRCH           | NRCH                      | R1114G/D1135N/E1219V/D1332N/R1335<br>Q/T1337N/S1338T/H1349R                          | Relaxed PAM             | (Miller et al., 2020)           |
| ScCas9-Sc++           | NNG                       | Т1227К                                                                               | Relaxed PAM             | (Chatterjee et al., 2020b)      |
| HiFi-Sc <sup>++</sup> | NNG                       | R701A/T1227K                                                                         | Relaxed PAM             | (Chatterjee et al., 2020b)      |
| SpG                   | NGN                       | D1135L/S1136W/G1218K/E1219Q/R1335<br>Q/T1337R                                        | Relaxed PAM             | (Walton et al., 2020)           |
| SpY                   | NRN, NYN                  | A61R/L1111R/D1135L/S1136W/G1218K/<br>E1219Q/N1317R/A1322R/R1333P,<br>R1335Q/T1337R   | Relaxed PAM             | (Walton et al., 2020)           |
| enLbCpf1              | TTTV                      | D156R/G532R/K538R                                                                    | Temperature insensitive | (Schindele and<br>Puchta, 2020) |
| ttLbCpf1              | TTTV                      | D156R                                                                                | Temperature tolerance   | (Schindele and<br>Puchta, 2020) |
| enCjCas9              | NNNVRYAC                  | L58Y/D900K                                                                           | Enhanced specificity    | (Nakagawa et al., 2021)         |

N:any nucleotide, R:A/G, M:A/C, W:A/T, V:G/C/A, Y:C/T, H:A/C/T, B:G/T/C.

#### References

- Abudayyeh, O. O., Gootenberg, J. S., Konermann, S., Joung, J., Slaymaker, I. M., Cox,
  D. B. T., Shmakov, S., Makarova, K. S., Semenova, E., Minakhin, L., et al. (2016).
  C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. *Science* 353:aaf5573.
- Anders, C., Bargsten, K., and Jinek, M. (2016). Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. *Mol. Cell* 61:895–902.
- Casini, A., Olivieri, M., Petris, G., Montagna, C., Reginato, G., Maule, G., Lorenzin, F., Prandi, D., Romanel, A., Demichelis, F., et al. (2018). A highly specific SpCas9 variant is identified by in vivo screening in yeast. *Nat. Biotechnol.* 36:265–271.
- Chatterjee, P., Jakimo, N., and Jacobson, J. M. (2018). Minimal PAM specificity of a highly similar SpCas9 ortholog. *Sci. Adv.* **4**:eaau0766.
- Chatterjee, P., Jakimo, N., Lee, J., Amrani, N., Rodríguez, T., Koseki, S. R. T., Tysinger,
  E., Qing, R., Hao, S., Sontheimer, E. J., et al. (2020b). An engineered ScCas9 with
  broad PAM range and high specificity and activity. *Nat. Biotechnol.* 38:1154–1158.
- Chatterjee, P., Lee, J., Nip, L., Koseki, S. R. T., Tysinger, E., Sontheimer, E. J., Jacobson, J. M., and Jakimo, N. (2020a). A Cas9 with PAM recognition for adenine dinucleotides. *Nat. Commun.* 11:1–6.
- Chen, J. S., Dagdas, Y. S., Kleinstiver, B. P., Welch, M. M., Sousa, A. A., Harrington, L.
  B., Sternberg, S. H., Joung, J. K., Yildiz, A., and Doudna, J. A. (2017). Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. *Nature* 550:407–410.
- Chen, P., Zhou, J., Wan, Y., Liu, H., Li, Y., Liu, Z., Wang, H., Lei, J., Zhao, K., Zhang, Y., et al. (2020). A Cas12a ortholog with stringent PAM recognition followed by low offtarget editing rates for genome editing. *Genome Biol.* 21:1–13.
- Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang,
  W., Marraffini, L. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. *Science* 339:819–23.
- Cotsaftis, O., Plett, D., Johnson, A. A. T., Walia, H., Wilson, C., Ismail, A. M., Close, T. J., Tester, M., and Baumann, U. (2011). Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. *Mol. Plant* 4:25–41.
- Esvelt, K. M., Mali, P., Braff, J. L., Moosburner, M., Yaung, S. J., and Church, G. M. (2013). Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. *Nat. Methods* **10**:1116–21.

- Farooq, M., Park, J.-R., Jang, Y.-H., Kim, E.-G., and Kim, K.-M. (2021). Rice cultivars under salt stress show differential expression of genes related to the regulation of Na<sup>+</sup>/K<sup>+</sup> balance. *Front. Plant Sci.* 12:680131.
- Fonfara, I., Le Rhun, A., Chylinski, K., Makarova, K. S., Lécrivain, A. L., Bzdrenga, J., Koonin, E. V., and Charpentier, E. (2014). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. *Nucleic Acids Res.* 42:2577–2590.
- Gao, L., Cox, D. B. T., Yan, W. X., Manteiga, J. C., Schneider, M. W., Yamano, T., Nishimasu, H., Nureki, O., Crosetto, N., and Zhang, F. (2017). Engineered Cpf1 variants with altered PAM specificities. *Nat. Biotechnol.* 35:789–792.
- Hou, Z., Zhang, Y., Propson, N. E., Howden, S. E., Chu, L. F., Sontheimer, E. J., and Thomson, J. A. (2013). Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. *Proc. Natl. Acad. Sci. U. S. A.* 110:15644–15649.
- Hu, J. H., Miller, S. M., Geurts, M. H., Tang, W., Chen, L., Sun, N., Zeina, C. M., Gao, X., Rees, H. A., Lin, Z., et al. (2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. *Nature* 556:57–63.
  - I. Inscripta (2020).https://www.inscripta.com/technology/madzymes-nucleases.
- Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* 337:816–21.
- Joshi, R., Sahoo, K. K., Tripathi, A. K., Kumar, R., Gupta, B. K., Pareek, A., and Singla-Pareek, S. L. (2018). Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. *Plant. Cell Environ.* 41:936–946.
- Karvelis, T., Bigelyte, G., Young, J. K., Hou, Z., Zedaveinyte, R., Budre, K., Paulraj, S.,
   Djukanovic, V., Gasior, S., Silanskas, A., et al. (2020). PAM recognition by miniature
   CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage.
   *Nucleic Acids Res.* 48:5016–5023.
- Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M., and Siksnys,
   V. (2015). Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. *Genome Biol.* 16:1–13.
- Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H.-Y., Song, D. W., Lee, K. J., Jung,M. H., Kim, S., et al. (2017). In vivo genome editing with a small Cas9 orthologue

derived from Campylobacter jejuni. Nat. Commun. 8:14500.

- Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016). High-fidelity CRISPR-Cas9 nucleases with no detectable genomewide off-target effects. *Nature* 529:490–495.
- Kleinstiver, B. P., Prew, M. S., Tsai, S. Q., Topkar, V. V, Nguyen, N. T., Zheng, Z., Gonzales, A. P. W., Li, Z., Peterson, R. T., Yeh, J.-R. J., et al. (2015). Engineered CRISPR-Cas9 nucleases with altered PAM specificities. *Nature* 523:481–5.
- Kleinstiver, B. P., Sousa, A. A., Walton, R. T., Tak, Y. E., Hsu, J. Y., Clement, K., Welch, M. M., Horng, J. E., Malagon-Lopez, J., Scarfò, I., et al. (2019). Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. *Nat. Biotechnol.* 37:276–282.
- Kojonna, T., Suttiyut, T., Khunpolwattana, N., Pongpanich, M., Suriya-Arunroj, D., Comai, L., Buaboocha, T., and Chadchawan, S. (2022). Identification of a negative regulator for salt tolerance at seedling stage via a genome-wide association study of thai rice populations. *Int. J. Mol. Sci.* 23.
- Konermann, S., Lotfy, P., Brideau, N. J., Oki, J., Shokhirev, M. N., and Hsu, P. D. (2018). Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. *Cell* 173:665-676.e14.
- Kulcsár, P. I., Tálas, A., Huszár, K., Ligeti, Z., Tóth, E., Weinhardt, N., Fodor, E., and Welker, E. (2017). Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. *Genome Biol.* 18:190.
- Kumar, R., Mustafiz, A., Sahoo, K. K., Sharma, V., Samanta, S., Sopory, S. K., Pareek,
  A., and Singla-Pareek, S. L. (2012). Functional screening of cDNA library from a salt tolerant rice genotype Pokkali identifies mannose-1-phosphate guanyl transferase gene (*OsMPG1*) as a key member of salinity stress response. *Plant Mol. Biol.* **79**:555–68.
- Kumar, R., Subba, A., Kaur, C., Ariyadasa, T. U., Sharan, A., Pareek, A., Sopory, S. K., and Singla-Pareek, S. L. (2018). OsCBSCBSPB4 is a two cystathionine-β-synthase domain-containing protein from rice that functions in abiotic stress tolerance. *Curr. Genomics* 19:50–59.
- Lee, J. K., Jeong, E., Lee, J., Jung, M., Shin, E., Kim, Y. hoon, Lee, K., Jung, I., Kim, D., Kim, S., et al. (2018). Directed evolution of CRISPR-Cas9 to increase its specificity. *Nat. Commun.* 9.
- Li, Y.-F., Zheng, Y., Vemireddy, L. R., Panda, S. K., Jose, S., Ranjan, A., Panda, P., Govindan, G., Cui, J., Wei, K., et al. (2018). Comparative transcriptome and translatome

analysis in contrasting rice genotypes reveals differential mRNA translation in salttolerant Pokkali under salt stress. *BMC Genomics* **19**:935.

- Liang, Z., Chen, K., Yan, Y., Zhang, Y., and Gao, C. (2018). Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. *Plant Biotechnol. J.* 16:2053–2062.
- Liu, J.-J., Orlova, N., Oakes, B. L., Ma, E., Spinner, H. B., Baney, K. L. M., Chuck, J., Tan, D., Knott, G. J., Harrington, L. B., et al. (2019). CasX enzymes comprise a distinct family of RNA-guided genome editors. *Nature* 566:218–223.
- Miller, S. M., Wang, T., Randolph, P. B., Arbab, M., Shen, M. W., Huang, T. P., Matuszek,
  Z., Newby, G. A., Rees, H. A., and Liu, D. R. (2020). Continuous evolution of SpCas9
  variants compatible with non-G PAMs. *Nat. Biotechnol.* 38:471–481.
- Mougiakos, I., Mohanraju, P., Bosma, E. F., Vrouwe, V., Finger Bou, M., Naduthodi, M.
  I. S., Gussak, A., Brinkman, R. B. L., Van Kranenburg, R., and Van Der Oost, J. (2017). Characterizing a thermostable Cas9 for bacterial genome editing and silencing. *Nat. Commun.* 8.
- Nakagawa, R., Ishiguro, S., Okazaki, S., Mori, H., Tanaka, M., Aburatani, H., Yachie, N., Nishimasu, H., and Nureki, O. (2021). Engineered Campylobacter jejuni Cas9 variant with enhanced activity. *Res. Sq.* Advance Access published 2021.
- Nishimasu, H., Shi, X., Ishiguro, S., Gao, L., Hirano, S., Okazaki, S., Noda, T., Abudayyeh,
  O. O., Gootenberg, J. S., Mori, H., et al. (2018). Engineered CRISPR-Cas9 nuclease with expanded targeting space. *Science* 361:1259–1262.
- Pausch, P., Al-Shayeb, B., Bisom-Rapp, E., Tsuchida, C. A., Li, Z., Cress, B. F., Knott, G. J., Jacobsen, S. E., Banfield, J. F., and Doudna, J. A. (2020). Crispr-casf from huge phages is a hypercompact genome editor. *Science (80-. ).* 369:333–337.
- Price, A. A., Sampson, T. R., Ratner, H. K., Grakoui, A., and Weiss, D. S. (2015). Cas9mediated targeting of viral RNA in eukaryotic cells. *Proc. Natl. Acad. Sci.* 112:6164– 6169.
- Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., et al. (2015). In vivo genome editing using Staphylococcus aureus Cas9. *Nature* 520:186–191.
- Schindele, P., and Puchta, H. (2020). Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. *Plant Biotechnol. J.* 18:1118–1120.
- Schmidt, M. J., Gupta, A., Bednarski, C., Gehrig-Giannini, S., Richter, F., Pitzler, C., Gamalinda, M., Galonska, C., Takeuchi, R., Wang, K., et al. (2021). Improved

CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. *Nat. Commun.* **12**.

- Serra, T. S., Figueiredo, D. D., Cordeiro, A. M., Almeida, D. M., Lourenço, T., Abreu, I. A., Sebastián, A., Fernandes, L., Contreras-Moreira, B., Oliveira, M. M., et al. (2013). OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. *Plant Mol. Biol.* 82:439–55.
- Singh, A. K., Kumar, R., Pareek, A., Sopory, S. K., and Singla-Pareek, S. L. (2012). Overexpression of rice CBS domain containing protein improves salinity, oxidative, and heavy metal tolerance in transgenic tobacco. *Mol. Biotechnol.* 52:205–16.
- Singh, A. K., Kumar, R., Tripathi, A. K., Gupta, B. K., Pareek, A., and Singla-Pareek, S.
  L. (2015). Genome-wide investigation and expression analysis of Sodium/Calcium exchanger gene family in rice and Arabidopsis. *Rice (N. Y).* 8:54.
- Slaymaker, I. M., Gao, L., Zetsche, B., Scott, D. A., Yan, W. X., and Zhang, F. (2016). Rationally engineered Cas9 nucleases with improved specificity. *Science (80-. ).* 351:84– 88.
- Smargon, A. A., Cox, D. B. T., Pyzocha, N. K., Zheng, K., Slaymaker, I. M., Gootenberg, J. S., Abudayyeh, O. A., Essletzbichler, P., Shmakov, S., Makarova, K. S., et al. (2017). Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. *Mol. Cell* 65:618-630.e7.
- Tóth, E., Czene, B. C., Kulcsár, P. I., Krausz, S. L., Tálas, A., Nyeste, A., Varga, É., Huszár, K., Weinhardt, N., Ligeti, Z., et al. (2018). Mb- And FnCpf1 nucleases are active in mammalian cells: Activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants. *Nucleic Acids Res.* 46:10272– 10285.
- Vakulskas, C. A., Dever, D. P., Rettig, G. R., Turk, R., Jacobi, A. M., Collingwood, M. A., Bode, N. M., McNeill, M. S., Yan, S., Camarena, J., et al. (2018). A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. *Nat. Med.* 24:1216–1224.
- Walton, R. T., Christie, K. A., Whittaker, M. N., and Kleinstiver, B. P. (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. *Science* (80-.). 368:290–296.
- Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., van der Oost, J., Regev, A., et al. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* 163:759–71.