

D

Ε

0.5

VEGF (h)

0

0

12

24

1.0

0.5

0

0

12

24

VEGF (h)

PFKP

Tubulin

75

45

75

45

12

(kDa)

-75

45

PFKP

Tubulin

Figure 1

MK-2206 - + + EGF - + - + HIF-1α 130 - -75 - -75 - -Tubulin

D

F

Tubulin	6-
	6-
	Tubuten.

Figure 3

- -

08 + Flag

Tulution

6--

41-

Tubulin

12

÷

Figure 5

Tubulin

TUL

Н

	U	251		
EGF MK-2206		+ -	- +	+ +
1251 HAFFA	+ 1 (()		-	
Twhatin				•

The Lesta

Tubulin

Supplementary Figure legends

Supplementary Fig. 1 (related to Figure 1) PFKP depletion in GBM cells results in impaired EGFR activation-induced VEGF expression.

WB and qRT-PCR were performed with indicated primers and antibodies, respectively (**A**, **D-F**, **H**).

A LN229/EGFRvIII cells were transfected with shRNA against PFKP.

B Mouse survival times were recorded and visualized using Kaplan-Meier survival curves. Data represent the means \pm SD of 7 mice.

C Representative H&E staining images of intracranial xenografts bearing LN229 cells stably expressing with or without PFKP shRNA (upper panel). IHC analyses of the tumor tissues with an anti-CD31 antibody and quantification of CD31 (bottom panel). Scale bar, 2 mm (upper panel) and 100 μm (bottom panel).

D Expression levels of VEGF in the LN229 cells stably expressing control shRNA or PFKP shRNA.

E Serum-starved U251 cells with or without PFKP depletion were treated with EGF (100 ng/mL) for 12 h.

F Serum-starved LN229 and U251 cells with or without PFKP depletion were treated with EGF (100 ng/mL).

G LN229/EGFRvIII were stably expressed with control shRNA or PFKP shRNA.

H Serum-starved LN229 and U251 cells were pretreated DMSO or actinomycin D (1 μ g/mL) for

1 h and then stimulated with or without EGF (100 ng/mL).

I Serum-starved LN229 and U251 cells stably expressed control shRNA or shPFKP were treated with or without EGF (100 ng/mL) for 12 h.

Data are presented as mean \pm standard deviation of three independent experiments (**D**, **E**, **G**, **I**). ***P < 0.001, based on the Student's t-test.

Supplementary Fig. 2 (related to Figure 2) PFKP Y64 phosphorylation induces EGFR activation-enhanced *HIF-1a* transcriptional expression through SP1 transactivation.

WB and qRT-PCR were performed with the indicated primers and antibodies, respectively (A-E).

A Serum-starved GSCs were pretreated with the indicated inhibitors for 1 h and then stimulated with or without EGF (100 ng/mL) for 30 min.

B Serum-starved LN229 and U251 cells were pretreated with DMSO or MK-2206 (5 μ M) for 1h and then stimulated with or without EGF (100 ng/mL) for 12 h.

C Serum-starved GSCs stably expressing control shRNA or shPFKP were treated with or without EGF (100 ng/mL).

D LN229/EGFRvIII cells were transfected with control siRNA or SP1 siRNA.

E LN229/EGFRvIII cells were pretreated with PBS or mithramycin (500 nM) for 1 h and then stimulated with or without EGF (100 ng/mL).

Data are presented as mean \pm standard deviation of three independent experiments (**B**, **D**, **E**). ***P* < 0.01; ****P* < 0.001, based on the Student's t-test.

Supplementary Fig. 3 (related to Figure 3) PFKP Y64 phosphorylation induces VEGF expression through HIF-1 α expression and β -catenin Ser552 phosphorylation in response to EGFR activation.

A Serum-starved U251 cells were pre-treated DMSO or HIF-1 α inhibitor (10 μ M) for 1h and then stimulated with or without EGF (100 ng/mL) for 12 h. WB and qRT-PCR were performed with indicated primers and antibodies, respectively.

B Serum-starved LN229 and U251 cells were co-transfected with luciferase reporter plasmids (pGL3-HRE-luciferase) and the Renilla control plasmid. The cells were pretreated with DMSO or HIF-1 α inhibitor (10 μ M) for 1 h and then stimulated with or without EGF (100 ng/mL) for 12 h. Luciferase activity was measured.

Data are presented as mean \pm standard deviation of three independent experiments. ***P* < 0.01; ****P* < 0.001, based on the Student's t-test.

Supplementary Fig. 4 (related to Figure 4) PFKP Y64 phosphorylation induces HIF-1 α expression, β -catenin S552 phosphorylation, and VEGF expression, and promotes blood vessel formation *in vivo*.

Mouse survival times were recorded and visualized using Kaplan-Meier survival curves. Data represent the means \pm SD of 7 mice.

Supplementary Fig. 5 (related to Figure 5) VEGF induces PFKP expression, PFKP

expression, PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells

WB and qRT-PCR were performed with the indicated primers and antibodies, respectively (C-E, G-J).

A and **B** Serum-starved LN229 and A172 cells were treated with VEGF (20 ng/mL). Glucose consumption (**A**) and lactate secretion (**B**) were analyzed.

C LN229 and A172 cells in 0.1% serum medium were treated with VEGF (20 ng/mL) and then WST-8 assay was performed. WB was performed with indicated antibodies.

D and **F** Serum-starved LN229 and A172 cells were treated with VEGF (20 ng/mL). The indicated protein expression levels (**D**) and PFK enzymatic activity (**F**) were measured.

E Serum-starved LN18, U373MG, and T98G cells were treated with or without VEGF (20 ng/ml) for 12h.

G Serum-starved LN229 and A172 cells were pretreated with DMSO or MK-2206 (5 μ M) for 1 h and then stimulated with VEGF (20 ng/mL) for 30 min.

H Serum-starved LN229 and A172 cells were pretreated with VEGF (20 ng/mL) for 1 h and then treated with cycloheximide (CHX;100 μ g/mL) in the presence of DMSO or MK-2206 (5 μ M). The quantification of PFKP levels relative to tubulin is shown (bottom panel).

I Serum-starved LN229 and A172 cells were pretreated with DMSO or MK-2206 (5 μ M) for 1 h and then stimulated with or without VEGF (20 ng/mL) for 24 h.

J Serum-starved LN229 and A172 cells were pretreated with DMSO or SU1498 (30 μ M) for 1 h and then stimulated with or without VEGF (20 ng/mL) for 24 h.

K-M A172 cells with or without the expression of PFKP shRNA and with or without the

reconstituted expression of WT Flag-rPFKP or Flag-rPFKP S386A were cultured in serum-free DMEM with or without VEGF (20 ng/mL) for 24 h. PFK enzymatic activity (**K**), glucose consumption (**L**), and lactate secretion (**M**) were analyzed.

N A172 cells with or without the expression of PFKP shRNA and with or without the reconstituted expression of WT Flag-rPFKP or Flag-rPFKP S386A were cultured in 0.1% serum medium with or without VEGF (20 ng/mL) and then WST-8 assay was performed.

Data are presented as mean \pm standard deviation of three independent experiments (**A-C, F, H, K-N**). **P* < 0.05; ***P* < 0.01; ****P* < 0.001, based on the Student's t-test or one-way ANOVA with Tukey's post hoc test.