

Supplementary Figure 1. Arid1a inactivation promotes prostate tumorigenesis.

a, ARID1A staining indexes using a 10-point quantification scale in cohorts of normal prostate tissues (n = 40) and tumors (n = 100). **b**, ARID1A expression levels stratified by PSA in TMA (n = 100). **c**, IHC score of ARID1A stratified by Gleason score (GS) in TMA (n = 100). **d**, ARID1A-stained sections of representative DLP and IB analysis of tissues from 6-month-old *Arid1a*^{flox/flox} and *Arid1a*^{PC-/-} mice (n = 3). Scale bar: 50 µm. **e**, H&E-stained sections of representative AP, DLP, and VP in mice at 12 months of ages (n =10, representative data are shown). Scale bar: 50 µm. **f**, MRI analysis and quantitation of 16-week-old *Pten*^{PC-/-} and *Pten*^{PC-/-}; *Arid1a*^{PC-/-} prostates (n = 10). **g**, H&E-stained sections of 12-week-old *Pten*^{PC-/-} and *Pten*^{PC-/-} mice (n = 15, representative data are shown). Scale bars, 50 µm. **h**, AR and CK8 staining of lymph nodes from 12-week-old mice. Scale bar, 50 µm. **i**, Relative expression of lineage markers in epithelium from 12-week-old mouse prostates (n = 3), ns, no significance.

f, **i**, Data represent the mean \pm SEM. Statistical significance was determined by two-tailed χ^2 test (**a**, **b**, **c**) and two-tailed unpaired *t* test (**f**, **i**). Source data are provided as a Source Data file.

Supplementary Figure 2. PMN-MDSC enrichment promotes the progression of Arid1a-deleted tumors.

a, Percentage of CD45⁺ immune cells in 3-month-old *Pten*^{PC-/-} and *Pten*^{PC-/-}; *Arid1a*^{PC-/-} prostate tumors (n = 8). **b**, Gating strategy for FACS analysis (Fig. 2c) is shown for tumor-infiltrating immune cells. The same strategy was used for the subsequent experiments. c, qRT-PCR analysis of Ly6G⁺ cells from 3-month-old Pten^{PC-/-}; Arid1a^{PC-/-} prostate tumors and peripheral blood of WT mice (n = 5). p values for the individual gene expression in Ly6G⁺ cells of peripheral blood and tumor: Nos2 (p < 0.0001), Nox2 (p = 0.0004), Arg1 (p = 0.0017), S100a9 (p = 0.0019), *Stat3* (p < 0.0001), *Cxcl10* (p = 0.0001), *Cxcl4* (p < 0.0001), *Tnf* (p = 0.0001), *Il6* (p < 0.0001), *Ccl9* (p = 0.0001). d, Summary of T cell proliferation assessed by CFSE flow cytometry after 4 days of co-culture. High and low proliferation were defined as T cell division ≥ 2 and ≤ 1 , respectively (n = 5). e, IFN- γ secretion by CD8⁺ T cells measured by ELISA (n = 5). f, Representative images of organoids and quantification as indicated (n = 10 fields from 3 experiments per group). Scale bar, 500 µm. g, Volume of subcutaneous tumors derived from WT and Arid1a KO Myc-CaP cells with or without anti-Ly6G antibody treatment. WT + Isotype, WT + anti-Ly6G or Arid1a KO + anti-Ly6G (n = 12, each group); Arid1a KO + Isotype (n = 11). h, Quantification of tumor-infiltrating immune cells in WT and Arid1a KO Myc-CaP subcutaneous tumors with or without anti-Ly6G antibody treatment (n = 6). i, The prostate weights of *Pten*^{PC-/-}; *Arid1a*^{PC-/-} mice with or without anti-Ly6G administration. The treatment was performed twice a week for 4 weeks when the mice were 10-week-old (n = 6). j, Quantification of Ki67⁺ and CD8⁺ in prostate sections. k, Flow cytometry analysis of PMN-MDSCs, CD8⁺ T cells and IFN γ^+ CD8⁺ T cells (n = 6). l, Graphical scheme describing the ADT strategy. m, Gross photographs and volume of prostates from the indicated mice with ADT (n = 10). Scale bar, 1 cm. p value for the prostatic volume: AP (p < 0.0001), DLP (p < 0.0001) and VP (p < 0.0001). **n**, H&E-stained sections in 5-month-old *Pten*^{PC-/-} and *Pten*^{PC-/-}; *Arid1a*^{PC-/-} prostates after ADT (n = 10, representative data are shown). Scale bars, 50 µm. **o**, Quantification of histological grade from the indicated mice with ADT (n = 10). p, Immunohistochemical analysis in castrated prostate sections. Scale bar, 50 μ m.

a, **c**, **e**-**k**, **m**, Data represent the mean \pm SEM. Statistical significance was determined by two-tailed unpaired *t* test (**a**, **c**, **e**, **i-k**, **m**), Fisher's exact test (**d**), one-way ANOVA followed by multiple comparisons (**f**), two-way ANOVA followed by multiple comparison (**g**, **h**) and χ^2 test (**o**) . **p**, Representative data of triplicate experiments are shown. Source data are provided as a Source Data file. **p < 0.01, ns, no significance.

Supplementary Figure 3. ARID1A loss activates NF-KB signaling to enhance the recruitment of MDSCs.

a, Heatmap summarizing the qRT-PCR results in epithelial cells of 3-month-old $Pten^{PC-/-}$ and $Pten^{PC-/-}$; $Arid1a^{PC-/-}$ mouse prostates (n = 3). **b**, IB analysis of the indicated proteins in cytoplasmic extracts and nuclear extracts from Myc-CaP cells stimulated with TNF α (30 min). **c-e**, IB analysis of WT and Arid1a-KO Myc-CaP cells with or without IFN α (c), IFN γ (d) and IL-6 (e) stimulation. **f**, The qRT-PCR results in WT and Arid1a KO Myc-CaP cells with or without TNF α stimulation (n =3). **g**, Hyperactivation of NF- κ B in Arid1a-depleted Myc-CaP cells analyzed by GSEA. NES, normalized enrichment score. *p* value was determined by GSEA. **h**, *Cxc19* and *Cxc110* transcripts were quantified by real-time PCR in sg*Arid1a*- and vector-expressing Myc-CaP cells stimulated with IFN γ at the indicated time points (n = 3). **i**, *Cxc19* and *Cxc110* transcripts were quantified by real-time PCR in epithelial cells of 3-month-old *Pten*^{PC-/-} and *Pten*^{PC-/-}; *Arid1a*^{PC-/-} prostates (n = 3).

f, **h**, **i**, Data represent the mean \pm SEM and statistical significance was determined by two-tailed unpaired *t* test. **b**-**e**, Data were evaluated in triplicate, and representative data are shown. Unprocessed immunoblots are shown as source data. ns, no significance.

Supplementary Figure 4. Arid1a ablation silences the enhancer of the A20 gene to stimulate NF-KB signaling.

a, IB analysis of the indicated protein in 3-month-old $Pten^{PC-/-}$ and $Pten^{PC-/-}$; $Arid1a^{PC-/-}$ mouse prostates. **b**, IB analysis of the whole-cell lysate (WCL) from 12-week-old $Pten^{PC-/-}$ and $Pten^{PC-/-}$; $Arid1a^{PC-/-}$ prostates and anti-BRG1 immunoprecipitates as indicated. **c**, Bar charts revealing the distributions of ATAC-seq peaks and H3K27ac ChIP-seq peaks in vector-expressing Myc-CaP cells. **d**, Venn diagram of the genes showing the reduced accessibility and expression simultaneously in *Arid1a* KO Myc-CaP cells compared to WT cells. **e**, GO-BP enrichment of the overlapped 85 genes by DAVID, ranked according to *p* value. **f**, *A20* enhancer RNA were quantified by real-time PCR (n = 3). **g**, ChIP-seq tracks of BRG1 and H3K27ac signals in *Cxcl9*, *Cxcl10* and *Cxcl11* gene loci, as indicated. **h**, IB analyses of the WCL and anti-RIP1 immunoprecipitates of Myc-CaP cells. Cells were treated with 20 ng/ml TNF α for 30 min before harvesting. **i**, ChIP-qPCR assays of H3K27ac at the *A20* enhancer in WT and *Arid1a* KO Myc-CaP cells with or without *A20* enhancer activation (CRISPRa/dCas9-based induction, n = 3). **j**, ChIP-qPCR assays of H3K27ac at the *A20* enhancer in WT and Arid1a KO tumors with or without A20 enhancer activation by FACS (n = 5). **f**, **i**-**k**, Data represent the mean ± SEM and statistical significance was determined by two-tailed unpaired *t* test. **a**, **b**, h, Experiments were repeated three times independently with similar results; data from one representative

experiment are shown. Source data are provided as a Source Data file. ns, no significance.

Supplementary Figure 5. IKKβ promotes ARID1A reduction in PCa cells.

a, IB analysis of C4-2 and DU145 cells with *TP53* or *Pten* KD, respectively. **b**, IB analysis of 22RV-1 cells with *TP53* an/or *Pten* KD. **c**, IB analysis of C4-2, PC3 and Myc-CaP cells treated with TNF α for the indicated duration of time. **d**, *ARID1A* transcripts were quantified by real-time PCR in PCa cells with or without TNF α stimulation (n = 3), ns, no significance. **e**, IB analysis of the indicated protein in the WCL and immunoprecipitates from 293T cells transfected with Flag-ARID1A and HA-IKK β , Myc-IKK α or HA-NEMO. **f**, Interaction between ARID1A and IKK β . Flag-ARID1A-F2 and HA- IKK β full-length (IKK β -FL) and mutants (IKK β -F1, IKK β -F2, IKK β -F3) were ectopically expressed in 293T cells, followed by anti-HA immunoprecipitation and immunoblotting with Flag and HA antibodies. **g**, HA-IKK β and Flag-ARID1A full-length (ARID1A-FL) and mutants (ARID1A-F1, ARID1A-F2, ARID1A-F3) were ectopically expressed in 293T cells, followed by anti-Flag immunoprecipitation and immunoblotting. **h**, In vitro binding of ARID1A-F2 to IKK β by GST pulldown analysis. **i**, IB analysis of the indicated proteins in cytoplasmic extracts and nuclear extracts from Myc-CaP cells stimulated with TNF α . **j**, IKK β and ARID1A immunostaining as indicated in Myc-CaP cells. Scale bar, 100 µm. **k**, IB analysis of A549 and HCT116 cells treated with TNF α for the indicated duration of time. **l**, IB analysis of Jurkat, RAW264.7 and OCI-Ly10 cells treated with TNF α for the indicated duration of time.

d, Data represent the mean \pm SEM and statistical significance was determined by two-tailed unpaired *t* test. All experiments were repeated three times independently with similar results; data from one representative experiment are shown. Source data are provided as a Source Data file.

Supplementary Figure 6. IKK β phosphorylates ARID1A and promotes its β -TRCP-dependent degradation. a, IB analysis of the WCL and immunoprecipitates of the indicated proteins in C4-2 control and *IKK\beta* KD cells with or without IKK β -WT, IKK β -SA or IKK β -SD overexpression. b, IB analysis of 293T cells with WT or mutant ARID1A overexpression treated with TNF α for the indicated duration of time. c, Sequencing validations of the CRISPR ARID1A-SA knock-in allele in C4-2 cells. d, IB analysis of WT and *Arid1a*^{mut} Myc-CaP cells with or without CHX treatment for the indicated duration of time. e, *Arid1a* transcripts were quantified by real-time PCR. ns, no significance.

e, Data represent the mean \pm SEM and statistical significance was determined by two-tailed unpaired *t* test. **a**, **b**, **d**, Experiments were repeated three times independently with similar results; data from one representative experiment are shown. Source data are provided as a Source Data file.

Supplementary Figure 7. Targeting ARID1A or its coordinated signals increase the sensitivity to ICB therapy.

a, CD15 expression levels stratified by GS in TMA (GS < 7, n = 14, GS = 7, n = 53, GS > 7, n = 33). **b**, Kaplan-Meier plot of recurrence after radical prostatectomy based on the proportions of CD15⁺ and CD8⁺ cells in patients (n = 50 for each group). **c**, IHC analysis for ARID1A and PTEN. Scale bars, 50 µm. The correlation between PTEN and ARID1A expression is shown as stacked columns (n = 100). **d**, Quantification of each tumor-infiltrating immune cell population in WT and ARID1A-overexpressing Myc-CaP xenografts with or without anti-PD-1 treatment (n = 5). **e**, Prostate tumor histology of *Pten*^{PC-/-}; *Arid1a*^{PC-/} mice with or without NF- κ B inhibition (JSH-23) in combination with anti-PD1/CTLA-4 treatment (n = 10). **f**, Quantification of the indicated tumor-infiltrating immune cell population of *Pten*^{PC-/-}; *Arid1a*^{PC-/} mouse prostates with or without JSH-23 treatment in combination with anti-PD1/CTLA-4 therapy (n = 5). **g**, ELISA of CXCL2 and CXCL3 in prostate tumors of 4-month-old *Pten*^{PC-/-}; *Arid1a*^{PC-/-} mice treated as indicated (n = 5).

d-g, Data represent the mean \pm SEM. Statistical significance was determined by one-way ANOVA followed by multiple comparisons (**a**), log-rank test (**b**), χ^2 test (**c**, **e**) and two-way ANOVA followed by multiple comparisons (**d**, **f**, **g**). Source data are provided as a Source Data file. ns, no significance.

Supplementary Table 1. Clinical Summary of Tissue Microarray from PCa Patients, Related to Figure 1 and Figure 7

Variables	tumor	Benign Prostatic Hyperplasia
Numbers	100	40
Age at diagnosis, yr	50-82 (mean 67.8)	
Year of surgery	2012/8-2020/3	
PSA at diagnosis, ng/ml	0.48-157.9 (mean 25.4)	
Pathologic Gleason score, n (%)		
6	14 (14)	
7	53 (53)	
8	14 (14)	
9	18 (18)	
10	1 (1)	
No. of biochemical recurrence, n (%)	39 (39)	
Adverse pathologic events, n (%)		
Extra-prostaticextension	18 (18)	
Seminal vesicle invasion	15 (15)	
Positive surgical margins	2 (2)	

Supplementary Table 2. Clinical Summary of Tumor Tissue Specimens from Advanced PCa Patients, Related to Figure 7

Variables	Adenocarcinoma	
Numbers	42	
Age at diagnosis, yr	49-79 (mean 68)	
PSA at diagnosis, ng/ml	0.07-359.87 (mean 58.25)	
Pathologic Gleason score at initial diagnosis, n (%)		
8	10 (23.8)	
9	28 (66.7)	
10	4 (9.5)	
Samples from body sites, n (%)	Prostate, 42 (100%)	

Oligonucleotides		—
		_
SIP50-2		
siP52-1	ACAUGAGGUUCGGUUCUA	
siP52-2	GGACAUGACUGCCCAAUUU	
siP65-1	CGGAUUGAGGAGAAACGUA	
siP65-2	AUGGAUUCAUUACAGCUUA	
silKKa-1	GCAGAUGACGUAUGGGAUA	
silKKa-2	UAGGGUCUGGGAUUCGAUA	
silKKB-1	CCAGCCAAGAAGAGUGAAG	
silKKB-2	GCUGGUUCAUAUCUUGAAC	
siNFMO-1	GAGGGAGUACAGCAAACUG	
siNEMO 2		
SIPTEN-1	GCAGAUAAUGACAAGGAAUAUUA	
siPTEN-2	GGUGAAGAUAUAUUCCUCCAAUA	
siTRP53-1	GGAGTATTTGGATGACAG	
siTRP53-2	AACCUCUUGGUGAACCUUAGUAC	
Primers for shRNA		_
ARID1A-shRNA-homo-1	F:CCGGGCCTGTGCAGTAGAGTGTAGACTCGAGTCTACACTCTACTGCACAGGCTTTTTG	
	R:AATTCAAAAAGCCTGTGCAGTAGAGTGTAGACTCGAGTCTACACTCTACTGCACAGGC	
ARID1A-shRNA-homo-2	F:CCGGGCTGCCACGTGTGTATATATACTCGAGTATATATACACACGTGGCAGCTTTTTG	
	R-AATTCAAAAAAGCTGCCACGTGTGTGTATATATACTCGAGTATATATA	
APID1A shPNA homo 3		
IKKR abDNA hama 1		
INTP-SHRIVA-NOMO-1		
	R:AATTCAAAAAGCTGATTGTGTGTGTGTGTGAAACACTCGAGTGTTTCACACACA	
IKKβ-shRNA-homo-2	F:CCGGGGACAGTGTCCAATTCAAATCCTCGAGGATTTGAATTGGACACTGTCCTTTTTG	
	R:AATTCAAAAAGGACAGTGTCCAATTCAAATCCTCGAGGATTTGAATTGGACACTGTCC	
IKKβ-shRNA-homo-3	F:CCGGGGATTCAGCTTCTCCTAAACACTCGAGTGTTTAGGAGAAGCTGAATCCTTTTTG	
	R:AATTCAAAAAGGATTCAGCTTCTCCTAAACACTCGAGTGTTTAGGAGAAGCTGAATCC	
Arid1a-shRNA-mus-1	F: CCGGCAGGCCCTATGGCCCTAATATCTCGAGATATTAGGGCCATAGGGCCTGTTTTTG	
	R: AATTCAAAAACAGGCCCTATGGCCCTAATATCTCGAGATATTAGGGCCATAGGGCCTG	
Arid1a-shRNA-mus-2	F: CCGGTGCCCAAGATCGAGGTTATATCTCGAGATATAACCTCGATCTTGGGCATTTTTG	
Primers for real time PT aPCP		—
		—
Azo-mus		
Cxcl1-mus	F: ACTGCACCCAAACCGAAGTC R: TGGGGACACCTTTTAGCATCTT	
Cxcl2-mus	F: CCAACCACCAGGCTACAGG_R: GCGTCACACTCAAGCTCTG	
Cxcl3-mus	F: GATTTTGAGACCATCCAGAGC R: CTCTTCAGTATCTTCTTGATG	
Cxcl9-mus	F: GGAGTTCGAGGAACCCTAGTG R: GGGATTTGTAGTGGATCGTGC	
Cxcl10-mus	F: CCAAGTGCTGCCGTCATTTTC R: GGCTCGCAGGGATGATTTCAA	
Cxcl11-mus	F: GTAAACCAGTCAGCCTGAG R: GCTTTCTCCAGGTACTCTTG	
Ccl2-mus	E GGCCIGCIGIICACAGIIG B CIGCIGGIGAICCICIIGIAG	
Col3 mus		
Cold mus		
Colf-mus		
Cci5-mus	F: GCTGCTTTGCCTACCTCTCC R: TCGAGTGACAAAAACACGACTGC	
Arid1a-mus	F: CTTCCCCAACCACCAGTACAA R: CTGTGCGAAGGACGAAGAC	
Arid1b-mus	F: GTTGTATGGGATGGGTACTCACC R: CTGGTTGTAGTATGGCTGCTG	
Ar-mus	F: CTGGGAAGGGTCTACCCAC R: GGTGCTATGTTAGCGGCCTC	
Tmprss2-mus	F: CAGTCTGAGCACATCTGTCCT R: CTCGGAGCATACTGAGGCA	
Ck8-mus	F: TCCATCAGGGTGACTCAGAAA R: CCAGCTTCAAGGGGCTCAA	
Ck18-mus	F: CAGCCAGCGTCTATGCAGG R: CTTTCTCGGTCTGGATTCCAC	
Ck5-mus		
Trn63-mus		
Fzh2-mue		
Ezilz-illus		
Suz-mus		
Asci1-mus		
Brg1-mus	F: CAAAGACAAGCATATCCTAGCCA R: CACGTAGTGTGTGTAAGGACC	
Baf155-mus	F: AGCTAGATTCGGTGCGAGTCT R: CCACCAGTCCAGCTAGTGTTTT	
Actl6a-mus	F: GTGTACGGCGGAGATGAAGTT R: GGGAAATCAACCTTAGGGCAGT	
Actl6b-mus	F: GCGCTCGTCTTTGACATTGG R: ATTGGTGTCGATGTGGAAAATCT	
Brm-mus	F: CTCCTGGACCAATTCTGGGG R: CATCGTTGACAGAGGATGTGAG	
Dpf1-mus	F: GAGGCCATCGAGCACTGTC R: CGGGCGGGGTAAGTGTAGA	
β-actin-mus	F: GGCTGTATTCCCCTCCATCG R: CCAGTTGGTAACAATGCCATGT	
ARID1A-homo	E: CCTGAAGAACTCGAACGGGAA R: ICCGCCATGTTGTTGGTGG	
		—
		—
Anu la-syrinA-mus-l		
Anu Ta-sgrinA-mus-2		_
Primers for real-time Chip-qPCR		_
A20-mus	F: CAAATCCCTCTACTTACAATCCC R: ACCGAAATCACCTCTGTATGTTC 12	_
Primers for enhancer RNA		
A20-eRNA-mus	F: TGGCAGGCATTCAGACTACAAAA R: AGAGCTTAAAGCAGGGTAGCAAA	