

Supplementary Material

Contents

1Supplementary Figures1
Figure S1. Microsynteny analysis of <i>E. pubescens</i> and other plant genomes1
Figure S2. Multiple sequence alignment of the amino acid sequences from EpPT8 and representative plants PTs
Figure S3. The chemical structures of flavonoid substrates used in the enzymatic assays
Figure S4. Determination of enzymatic products of the recombinant EpPT8 protein by liquid chromatography mass and tandem mass spectrometry
Figure S5. 1H NMR spectrum of the enzymatic product of EpPT8 catalyzed reaction with kaempferol as substrate
2 Supplementary Tables
Table S1. Karyotype and genome features of five <i>Epimedium</i> species
Table S2. The location record for wild populations of <i>E. pubescens</i> in China.
Table S3. Sequencing data used for <i>E. pubescens</i> assembly
Table S4. Summary of raw ONT data. 8
Table S5. Annotations of <i>E. pubescens</i> genome. 9
Table S6. Twelve plant species used in comparative genomic analyses. 10
Table S7. PCR primers for the amplification of different EpPT8 constructs10
Table S8. Summary of assembled contigs from ONT data. 11
Table S9. Characteristics of pseudo-chromosomes by Hi-C. 11
Table S10. Exon statistics from predicted gene models. 12
Table S11. Non-coding RNAs in <i>E. pubescens</i> genome. 12
Table S12. Identification of repetitive elements in <i>E. pubescens</i> genome
Table S13. LTR copia and LTR gypsy in 6 pseudo-chromosomes
Table S14. BUSCO evaluation of <i>E. pubescens</i> genome
Table S15. PTs of the UbiA superfamily used in the phylogenetic tree. 16
Table S16. Comparison of enzymatic activity between EsPT2 and EpPT8

Supplementary Figures

Figure S1. Microsynteny analysis of *E. pubescens* and other plant genomes. (A) Microsynteny analysis between *E. pubescens* and V. vinifera genome. The syntenic block on chromosome 1 of *E. pubescens* corresponds to three syntenic blocks on chromosomes 6, 8 and 13 of *V. vinifera*, respectively. (B) Dot plots of orthologues between *E. pubescens* and *P. somniferum* (left), and between *E. pubescens* and *C. Chinensis* (right). (C) Syntenic block collinearity plots. Left, inter-chromosomal syntenic block collinearity plot, Chr01-Chr06 and Chr01-Chr03 with orange lines, Chr02-Chr06 and Chr02-Chr03 with light blue lines, Chr03-Chr05 and Chr04-Chr05 with green lines; right, intra-chromosomal syntenic block collinearity plot, dark red lines for syntenic blocks on the same chromosome.

	* *	
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MaIDT	MVSR CASPSFSITKYTPHQCSLLTSLKPFSSQKPGTRIPYKLQQNQISCALRKHSHTPLTHT MVSR CASPSFSITKYTPHQCSLLTSLKPFSSQKPGTRIPYKLQQNQISCALRKHSHTPFTHT MGFV LAATSFPKAPSFTSGRSSWNSKEYTKN-YYASSHYTTLWHKTGIIQKEPCFMMAWPQNLKLH MGSM LLASTFFCASSITTGCSCMPSKQYAKN-YNASSHYTTLWHKTGIIQKEPCFMAWPQNLKLH MDSG SYISST-SACSITTGCNLWRRKHSTNNIYYASSCASKASKYKKKTQIECNILRSQQSSLNHH MDWG LAISSHPKPYSYTTGGNLWRSKHTTKNIYFASSWISKASKYKKKTQIENULRFQQPSLDHH MAKNSLNPISFGQKERHSPFGGNLWQSNCTKN-YYASSYAPKASWHKKNIQKEYFFLRFKQSSSNHL MELS ISHSSLRLPAIIPQRCKASSHEKRLFSIKPTKNIKSSNFPSNCSTANKLILPLGLYGERKL	62 65 65 65 65 65 65 65 65 65
Consensus	M-SLA-SSAYSITTGGN-WRSK-TTKN-YYASSYVTKASYKKKQSQIEILRQTSL-HH	70
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MaIDT	* 	119 119 128 133 134 135 138 129
Consensus	YK-I-GGST-GE-EKKYVVKA-SK-S-E-EP-ATNSENVSVSN-LDVFYKFIRPYAMIS-IILSAT-S	140
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MaIDT	CILPVOTMADLSPKFFIGVAQAIASMVLMNLFNVAVNOVYDVELDKVNKPYLPLASGGVSMTSATLFTIL CILPVOTMADLSPKFFIGVAQAIASMVLMNLFNVAVNOVYDVELDKVNKPYLPLASGGVSMTSATLFTIL TLIAVEKLSDISAAYFIGLLQVMVVSSCMOVFMAGLNQLYDVEIDKVNKPYLPLASGGUSMTSATLFTIL SFVAVEKLSDISAAYFIGLLQVMVVSSCMOVFMAGLNQLYDVEIDKVNKPYLPLASGLSFFNVVIITAS SLLAVEKLSDISAAYFIGLQVLQVVVVICHIFGVGLNQLCDIEIDKVNKPYLPLASGLSFFNVVIITAS SLLAVEKLSDISLSTFIGVLQVVVVICHIFGVGLNQLYDVEIDKVNKPYLPLASGCISFTAVFIAAS SLLAVEKLSDISLSFLIGVLQGVLPQLFIEIVLCGVNQLYDVEIDKVNKPHLPLASGSFSFKTGVIISAA SLLAVEKLSDISLSFLIGVLQGVPQLFIEIVLCGVNQLYDVEIDKVNKPHLPLASGSFSFKTGVIISAA SLLAVEKLSDISLSFLIGVLQALVPNLFNGVYMAGUNQLYDVEIDKVNKPHLPLASGSFSFKTGVIISAA	189 189 198 203 204 205 208 199
Consensus	SLLAVEKMSDIS-SFFIGVLQ-IVSMI-MNVF-VGVNQLYDVEIDKINKPYLPLASGELSFTNAVIITAS	210
	N(Q/D)xxDxxxD	
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MalDT	TAALSIALGYFSSP-ALFYGSIAFFLSASAYSVNFPLLRWKNN-ALGAIISLMLWGISLDTGVFFHIQQY TAALSIALGYFSSP-ALFYGSIAFFLSASAYSVNFPLLRWKNN-ALGAIISLMLWGISLDTGVFFHIQQY TFILGHLFPLIIGSGPLFWSFVFSSLAIAYCADLPLLRWKRHSALTALNYIIDLGGVKPLGYVHMQTY SLILGLGFAWIVGSWPLFWTVLICCMFTAAYNVDLPLRWKRYPVIAINFIADVAVTRSLGFFLHMQTC LLIMSFWLSLVIGSWPLICNLVVIASSWTAYSIDVPLLRWKRYPFVAANCMISTWALALPISYFHHMQTY SFIJSLWIGSIVGSWPSLWALISFCVIUTGYSVNVYSINVPLRWKRHPALAAMCHISTWALALPISYFHHMQTY FALSFGFTWITGSWPLICNLVVIASSWTAYSIDVPLLRWKRYPFVAANCMISTWALALPISYFHHMQTY FAVGALSILRLMNA-DWITTSIFCFGLFLAHFYSAPPLRFKQSPIATSIVNPLNAGIVHNLG-LIYATRA	257 257 268 273 274 275 278 267
Consensus	T-ILSL-L-WIVGSWPLFWSLILLWTAYSVNVPLLRWKRHPAL-AI-SIM-WGIVLPLGYFLHMQTY	280
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MalDT	* VLGKPMVLKNSFIYALIFQSLFSIYVAT KDLPDVEGDKANGSTNLTILIGKEKVFWGCTSLMLATYIGT VLGKPMVLKNSFIYALIFQSLFSIYVAT KDLPDVEGDKANGSTNLTILIGKEKVFWGCTSLMLATYIGT VFKRPDTFSRPLIFCMAMSSYFALIAIFKDITDMEGDEKFGIKSLSLHGKKPVFWICVSLLDMAYVVA VFKRPTTFPRPLIFCTAIVSIYALVIALFKDITDMEGDEKFGIQSLSLHGKKPVFWICVSLLEMAYGYT VLKRPIVFPRSLGFLYAFMIFYSLGMALSKDISDVKGDKAYGIDTLAIRLGOKWYFWICIILFEMAFGYA VLKRPIGFPRSLGFLYAFMIFYSLGALSKDIPDVEGDKEHGIDSFAXRLGOKRAFWICVSFLEMAFGYA VLKRPISTFSLYFTIFMSFFSLYIALFKDIPDVEGDKEHGIDSFAXRLGOKRAFWICVSFLEMAFGYA VLKRPIGFPRSLGFLYAFMIFYSLGALSKDIPDVEGDKEHGIDSFAXRLGOKRAFWICVSFLETAYGYA	327 327 338 343 344 345 348 337
Consensus	VLKRPMVF-RSLIF-VVFMSLFSIVIAL-KDIPDVEGDKAHGIQSLSI-LGKKKVFWICVSLLEMAYGVA	350
E 570		701
EpPT8 EsPT2 LaPT2 SfFPT GmG2DT GmG4DT GuA6DT MaIDT	AAFGATLPILKNKLVTMVAHSALAVFLWLDAKQIDLADDASTQSYYLLWWKLCNIEYLLIPFVG AAFGATLPILKNKLVTMVAHSALAVFLWLDAKQIDLADDASTQSYYLLWWKLCNIEYLLIPFVG ILMGTLSPFLWVKIAMGLGHGILASLVSYYANSVDLKSNPAIQSFYMFIWKLLTVEYFLIPLFR ILVGATSPILWSKIITVLGHAVLASVLWYHAKSVDLTSNVVLQSFYMFIWKLLTVEYFLIPLFR LLAGATSSYLWIKIITVLGHAVLASVLWYHAKSVDLTSNVVLQSFYMFIWKLLTAVFLMALIR ILAGASCSHFWTKIFTGMGNAVLASILWYQAKSVDLSDKASTQSFYMFIWKLLYAGFFLMALIR ILMGATSSCLWSKIITVLGHAILASILWYQAKSVDLSDKASTQSFYMFIWKLLYAGFFLMALIR LLMGATSSCLWSKIITVLGHAILALVFYRAKSINLKSKASIASFFMFIWKLLYAGFFLWALIR ALAGILLPKVFNPYVMAPAHAILGLLLFLKTRELDKANYTVEASETFYKFIWKLLLEFVIFPFI-	391 391 402 407 408 409 412 402
Consensus	IL-GATSP-LWNKIVTMLGHAILASILWYQAKSIDLASNASTQSFYMFIWKLL-AEYFLIPLIR	416

Figure S2. Multiple sequence alignment of the amino acid sequences from EpPT8 and representative plants PTs. The sequence similarity was illustrated by the sequence alignment and the amino acids were labeled with the colors of red, green and black (high, medium and low identity, respectively); the conserved motifs of PTs, N(Q/D)xxDxxxD and KDxxDx(D/E)GD were highlighted in blue boxes; the nine blue stars denote the difference of amino acid between EpPT8 and EsPT2; the representative plant PTs were described in Supplementary Table 15.

Figure S3. The chemical structures of flavonoid substrates used in the enzymatic assays. The classes and chemical structures of flavonoid substrates used in the enzymatic assays with the recombinant EpPT8 proteins expressed in yeast cells.

Figure S4. Determination of enzymatic products of the recombinant EpPT8 protein by liquid chromatography mass and tandem mass spectrometry. (A) The MS (upper) and MS/MS (lower) chromatograms of the substrate, kaempferol. (B) The MS (upper) and MS/MS (lower) chromatograms of the enzymatic product, 8-prenylkaempferol.

Figure S5. ¹H NMR spectrum of the enzymatic product of EpPT8 catalyzed reaction with kaempferol as substrate. (A) ¹H NMR (600 MHz) spectrum of kaempferol in DMSO- d_6 . (B) 1H NMR (600 MHz) spectrum of 8-prenylkaempferol in DMSO-d6. The inserts illustrated their chemical structures, respectively.

2 Supplementary Tables

Taxa	Converted genome size (Gb/1C)	Chromosome number (2n)	Karyotype classification	Karyotype symmetry	Reference
Epimedium brevicornu Maxim.	3.14	12	4m (2sat) + 8sm	2A	(Zhang, 2018; Zhang et al., 2018)
<i>Epimedium sagittatum</i> (Sieb. Et Zucc.) Maxim	4.24	12	6m (2sat) + 6sm	2A	(Chen et al., 2012)
Epimedium pubescens Maxim.	4.43	12	6m (2sat) + 4sm+2st	2A	(Chen et al., 2012; Zhang et al., 2008)
Epimedium koreanum Nakai	4.10	12	6m (2sat) + 6sm	2A	(Zhang et al., 2018; Zhang et al., 2008)
Epimedium wushanense T. S. Ying	4.49	12	6m (2sat) + 6sm	2A	(Chen et al., 2012; Zhang et al., 2018)

Table S1. Karyotype and genome features of five *Epimedium* species.

Note: Karyotype classification includes m, median region; sm, submedian region; st, subterminal region; the original data of genome size unit was converted according to 1 pg = 978 Mb (Chen et al., 2012).

Record	Species	Location	Longitudo	Latituda
No.			Longitude	Latitude
1	E. pubescens	Baoxing county, yaan, Sichuan Province	102.82061	30.38835
2	E. pubescens	Yucheng district, Yaan, Sichuan Province	103.11986	29.58355
3	E. pubescens	Yucheng district, Yaan, Sichuan Province	103.03993	29.90817
4	E. pubescens	Yucheng district, Yaan, Sichuan Province	102.98368	30.23822
5	E. pubescens	Jianwei county, Leshan, Sichuan Province	103.93844	29.25571
6	E. pubescens	Shizhong district, GongLai, Sichuan Province	103.19144	30.26062
7	E. pubescens	Ermei Mountain, Sichuan Province	103.35633	29.57442
8	E. pubescens	Chongzhou, Sichuan Province	103.54000	30.82141
9	E. pubescens	Pengcheng, Sichuan Province	103.91928	31.19608
10	E. pubescens	Shuangliu district, Chendu, Sichuan Province	104.15686	30.30769
11	E. pubescens	Dujiangyan district, Chendu, Sichuan Province	103.36627	31.00452
12	E. pubescens	JinTang county, Chengdu, Sichuan Province	104.48548	30.76636
13	E. pubescens	Longquanze district, Chendu, Sichuan Province	104.16692	30.30853
14	E. pubescens	Hongya county, Meishan, Sichuan Province	103.10567	29.54398
15	E. pubescens	Qingshen country, Meishan, Sichuan Province	103.87124	29.77207
16	E. pubescens	Beichuan county, Mianyang, Sichuan Province	104.59590	31.93521
17	E. pubescens	Pingwu county, Mianyang, Sichuan Province	104.75149	32.41079
18	E. pubescens	Longchang county, Neijiang, Sichuan Province	104.64770	29.73899
19	E. pubescens	Hejiang county, Luzhou, Sichuan Province	105.83753	28.81850
20	E. pubescens	Anyue county, Ziyang, Sichuan Province	105.36226	30.11038
21	E. pubescens	Jiange county, Guangyuan, Sichuan Provience	105.28069	32.04828
22	E. pubescens	Cangxi county, Guangyuan, Sichuan Province	105.94140	31.73908
23	E. pubescens	Qingchuan county, Guangyuan, Sichuan Province	104.83319	32.52969
24	E. pubescens	Nanjiang county, Bazhong, Sichuan Province	106.48425	32.40037
25	E. pubescens	Bazhong county, Bazhong, Sichuan Province	106.75352	31.94683
26	E. pubescens	Enyang district, Bazhong, Sichuan Province	106.63709	31.79759
27	E. pubescens	Langzhong, Sichuan Province	106.44756	32.09486
28	E. pubescens	Dazu county, Chongqing	105.70735	29.55004
29	E. pubescens	Tongnan County, Chongqing	105.77277	29.85159
30	E. pubescens	Cheng County, Gansu Province	105.38433	33.43912
31	E. pubescens	Nanzheng district, Hanzhong, Shanxi Province	106.33866	32.46858
32	E. pubescens	Liuba county, Hanzhong, Shanxi Province	106.93690	33.61961
33	E. pubescens	Ningqiang county, Hanzhong, Shanxi Province	106.26286	32.83295
34	E. pubescens	Mian county, Hanzhong, Shanxi Province	106.67950	33.16002
35	E. pubescens	Lueyang county, Hanzhong, Shanxi Province	106.16325	33.33336
36	E. pubescens	Yang county, Hanzhong, Shanxi Province	107.55209	33.22917
37	E. pubescens	Taibai Mountain, Shanxi Province	107.82156	34.06204
38	E. pubescens	Shiquan county, Ankang, Shanxi Province	108.25452	33.04482
39	E. pubescens	Yang county, shangluo, Shanxi Province	109.70686	33.50044

Note: Wild populations were sampled at the field trips during 2018-2019.

		Average read	Estimated
Sequencing type	Number of reads	length (bp)	coverage
Illumina paired end	5,521,463,927	150	230.94 ×
Oxford Nanopore	48,010,544	20,267	271.32 ×
Hi-C	1,965,567,758	150	94.88 ×

Table S3. Sequencing data used for *E. pubescens* assembly.

Note: Hi-C, High-through chromosome conformation capture.

Raw ONT feature Size (bp) Number Average length 20,267 N/A N90 15,233 28,139,216 19,643 N80 22,552,532 N70 23,653 18,046,283 N60 27,725 14,249,100 N50 31,921 10,979,770 Longest 1,363,653 N/A Total sequencing size 973,018,880,629 N/A Total number ($\geq 2 \text{ kb}$) 39,251,621 N/A

Table S4. Summary of raw ONT data.

Note: ONT, Oxford Nanopore Technology; N/A, Not Available.

Database	Gene number	Percentage
GO	35,485	79.35%
KEGG	33,202	74.24%
KOG	25,592	57.22%
Pfam	35,782	80.01%
Swissprot	33,911	75.83%
TrEMBL	41,965	93.84%
eggNOG	36,370	81.32%
NR	42,016	93.95%
All Annotated	42,262	94.50%

Table S5. Annotations of *E. pubescens* genome.

Note: NR, NCBI non-redundant protein sequences; KEGG, Kyoto Encyclopedia of Genes and Genomes; KOG/COG/eggNOG, Clusters of Orthologous Groups of proteins; Pfam, Protein family; GO, Gene Ontology.

Table S6. Twelve plant species used in comparative genomic analyses.

Index	Order	Family name	Species name	Assembly accession number
1	Amborellales	Amborellaceae	Amborella trichopoda	GCF_000471905.2_AMTR1.0
2	Poales	Poaceae	Oryza sativa	GCF_001433935.1_IRGSP-1.0
3	Ranunculales	Ranunculaceae	Aquilegia coerulea	GCA_002738505_Aquilegia_coerulea_v1
4	Ranunculales	Ranunculaceae	Coptis chinensis	GCA_015680905.1_ ASM1568090v1
5	Ranunculales	Papaveraceae	Papaver somniferum	GCF_003573695.1_ASM357369v1
6	Ranunculales	Papaveraceae	Macleaya cordata	GCA_002174775.1_MC_HNAU_1.0
7	Brassicales	Brassicaceae	Arabidopsis thaliana	GCF_000001735.4_TAIR10.1
8	Vitales	Vitaceae	Vitis vinifera	GCF_000003745.3_12X
9	Gentianales	Rubiaceae	Coffea arabica	GCF_003713225.1_Cara_1.0
10	Solanales	Solanaceae	Solanum lycopersicum	GCF_000188115.4_SL3.0
11	Proteales	Nelumbonaceae	Nelumbo nucifera	GCF_000365185.1_Chinese_Lotus_1.1
12	Ranunculales	Berberidaceae	E. pubescens	The present study

Table S7. PCR primers for the amplification of different EpPT8 constructs.

Gene ID	Primer name	Sequence (5'-3')
<i>EpPT8</i> (first round)	EpPT8Lf1	GTGAGGGAGAGACACAGAAC
	EpPT8Lr1	CAACATAACACGCAGTCTCTC
<i>EpPT8</i> (second round)	EpPT8Lf2	AGCAGACAACAGCCATGGTT
	EpPT8Lr2	CAACATAACACGCAGTCTCTC
EpPT8	EpPT8Lf3	CACCATGGTTTCTAGATGTGCTTCT
	EpPT8Lr3	TTAACCAACGAATGGAATGAGT
$EpPT8\Delta TP82$	EpPT8Lf4∆82	CACCATGGCAACAAGTTCTGAAAAT
	EpPT8Lr4∆82	TTAACCAACGAATGGAATGAGT
$EpPT8\Delta TP32$	EpPT8Lf5∆32	CACCATGAAACCAGGAACCAGAATAC
	EpPT8Lr5∆32	TTAACCAACGAATGGAATGAGT

Note: *EpPT*8ΔTP82 and *EpPT*8ΔTP32, 82 and 32 amino acids truncated from the N terminus of *EpPT*8, respectively.

Assembly feature	Size (bp)	Number
N90	254,495	4,138
N80	389,708	3,022
N70	525,036	2,243
N60	692,316	1,657
N50	877,533	1,201
Longest	6,346,141	N/A
Total contigs	3,536,924,949	6,229

Table S8. Summary of assembled contigs from ONT data.

Table S9. Characteristics of pseudo-chromosomes by Hi-C.

Pseudo-	Anchored	Anchored	Ordered	Ordered length	Gene
chromosome	contigs	length (Mb)	contigs	(Mb)	number
Chr01	1,152	645.96	952	607.80	7,579
Chr02	1,194	615.34	1,001	586.90	7,611
Chr03	1,132	622.10	926	586.71	7,446
Chr04	1,002	575.86	844	548.07	7,477
Chr05	879	485.57	759	466.93	6,739
Chr06	817	460.22	680	437.45	5,975
Total	6,176	3,405.05	5,162	3,233.86	42,827

Exon number	Gene number	Percentage
Transcripts with 1 exon	9,149	20.46%
Transcripts with 2 exons	10,206	22.82%
Transcripts with 3 exons	6,467	14.46%
Transcripts with 4 exons	4,336	9.70%
Transcripts with 5 exons	3,197	7.14%
Transcripts with > 5 exons	11,367	25.42%
Total	44,722	

Table S10. Exon statistics from predicted gene models.

Table S11. Non-coding RNAs in *E. pubescens* genome.

Pseudo-chromosome	Rrna	miRNA	Trna	snoRNA	snRNA
Chr01	474	25	879	91	31
Chr02	386	37	1,583	51	43
Chr03	262	24	869	35	177
Chr04	105	38	716	40	29
Chr05	121	15	852	11	39
Chr06	132	25	572	38	111
Unassigned	233	8	323	12	28
Total	1,713	172	5,794	278	458

Туре	Number	Length (bp)	Coverage
Class I:Retroelement	3,550,242	2,245,994,178	62.61
Class I/DIRS	1,460	219,668	0.01
Class I/LINE	227,819	87,492,563	2.44
Class I/LTR/Cassandra	99	5,942	1.65E-06
Class I/LTR/Caulimovirus	4,136	4,488,343	0.13
Class I/LTR/Copia	243,224	178,735,444	4.98
Class I/LTR/ERV	52,190	8,771,265	0.24
Class I/LTR/Gypsy	1,155,754	943,867,153	26.31
Class I/LTR/Pao	28,618	17,296,104	0.48
Class I/LTR/Viper	175	15,711	4.38E-06
Class I/SINE	19,576	2,965,262	0.08
Class I/LTR/Unknown	1,817,191	1,002,136,723	27.94
Class II: DNA transposon	466,973	147,224,020	4.10
Class II/Academ	194	11,748	3.27E-06
Class II/CACTA	78,364	28,900,259	0.81
Class II/Crypton	5,427	621,102	0.02
Class II/Dada	2,255	370,627	0.01
Class II/Ginger	2,460	237,447	0.01
Class II/Helitron	11,155	6,184,166	0.17
Class II/IS3EU	1,380	101,886	2.84E-05
Class II/Kolobok	5,470	1,199,699	0.03
Class II/MITE	1,033	125,957	3.51E-05
Class II/Maverick	2,291	163,850	4.56E-05
Class II/Merlin	426	24,575	6.84E-06
Class II/Mutator	23,547	16,615,931	0.46
Class II/Novosib	2,372	197,352	0.01
Class II/P	3,236	262,167	0.01

Table S12. Identification of repetitive elements in E. pubescens genome.

Continued

]	Гуре	Number	Length (bp)	Coverage
Class II: DNA tr	ansposon	583,950	276,608,409	7.92
Class II/	PIF-Harbinger	24,903	8,916,941	0.25
Class II/	PiggyBac	2,655	192,915	0.01
Class II/	Sola	2,822	279,276	0.01
Class II/	Stowaway	1	48	1.34E-08
Class II/	Tc1-Mariner	33,428	10,804,977	0.30
Class II/	Zator	217	15,880	4.42E-06
Class II/	Zisupton	3,216	532,558	0.01
Class II/	Hat	88,969	24,745,965	0.69
Class II/	Unknown	171,152	46,718,694	1.30
SSR		14,863	8,183,433	0.23
Total		4,032,078	2,401,401,631	66.94

Droudo chromosomo	Gypsy	Percentage	Copia	Percentage
r seudo-chromosome	length (bp)	(%)	length (bp)	(%)
Chr01	170,059,097	25.11	31,260,085	4.62
Chr02	163,092,995	25.28	33,060,954	5.12
Chr03	162,885,740	24.97	30,565,062	4.69
Chr04	152,844,065	25.31	28,881,589	4.78
Chr05	126,761,586	24.90	24,636,231	4.84
Chr06	120,064,765	24.88	24,645,457	5.11
Unassigned	48,158,905		5,686,066	
Total	943,867,153		178,735,444	
Ratio of total Gypsy and Copia		26.62		5.03

Table S13. LTR copia and LTR gypsy in 6 pseudo-chromosomes.

Table S14. BUSCO evaluation of *E. pubescens* genome.

BUSCO annotation	Number	Percentage
Complete BUSCOs	1,236	89.90%
Complete and single-copy BUSCOs	1,082	78.70%
Complete and duplicated BUSCOs	154	11.20%
Fragmented BUSCOs	47	3.40%
Missing BUSCOs	92	6.70%
Total BUSCO groups searched	1,375	100.00%

Note: BUSCO, Benchmarking universal single-copy orthologs.

Table S15. PTs of the UbiA state	uperfamily used in the phylogenetic tree.
----------------------------------	---

Protein name	Substrates	Plant species	Accession ID
OsPPT1	<i>p</i> -hydroxybenzoic acid	Oryza sativa	BAE96574.1
ZmPPT		Zea mays	NP_001148558.1
AtPPT1		Arabidopsis thaliana	NP_567688
LePGT-1		Lithospermum erythrorhizon	BAB84122.1
LePGT-2		Lithospermum erythrorhizon	BAB84123.1
GmVTE2-1	Homogentisate acid	Glycine max	ABB70126.1
TaVTE2-1		Triticum aestivum	ABB70123.1
ZmVTE2-1		Zea mays	ABB70122.1
CpVTE2-1		Cuphea avigera	ABB70125.1
AtVTE2-1		Arabidopsis thaliana	AAM10489.1
ApVTE2-1		Allium ampeloprasum	ABB70124.1
HvHGGT		Hordeum vulgare	AAP43911.1
OsHGGT		Oryza sativa	AAP43913.1
TaHGGT		Triticum aestivum	AAP43912.1
ZmHGGT		Zea mays	XP_008659772.1
GmVTE2-2		Glycine max	KRH71769.1
OsVTE2-2		Oryza sativa	XP_015646905.1
ZmVTE2-2		Zea mays	NP_001146703.1
DcVTE2-2		Daucus carota	XP_017246707.1
AtVTE2-2		Arabidopsis thaliana	ABB70127.1
AtrVTE2-2		Amborella trichopoda	XP_011628799.1
GmATG4	Chlorophyllide a/b	Glycine max	NP_001239633.1
OsATG4		Oryza sativa	ABO31092.1
ZmATG4		Zea mays	NP_001142204.1
AtATG4		Arabidopsis thaliana	NP_190750.1
GmCOX10	Haem B	Glycine max	XP_003556552.1
OsCOX10		Oryza sativa	EEC70799.1
AtCOX10		Arabidopsis thaliana	NP_566019.1

Continued

Protein name	Substrates	Species	Accession ID
AtABC4	1,4-dihydroxy-2-napthoic acid	Arabidopsis thaliana	NP_001117518.1
GmABC4		Glycine max	XP_003532605.1
OsABC4		Oryza sativa	NP_001049226.1
ZmABC4		Zea mays	NP_001152170.1
PcPT	Coumarin	Petroselinum crispum	BAO31627.1
PsPT1		Pastinaca sativa	AJW31563.1
PsPT2		Pastinaca sativa	AJW31564.1
CIPT1		Citrus limon	BAP27988.1
FcPT1a		Ficus carica	BBC82715.1
GmC4DT	Flavonoid	Glycine max	BAW32575.1
GmG2DT		Glycine max	BAW32578.1
GmG4DT		Glycine max	BAH22520.1
GmIDT1		Glycine max	BAW32576.1
GmIDT2		Glycine max	BAW32577.1
GmIDT3		Glycine max	XP_014618511.1
GmPT01		Glycine max	NP_001335591.1
GuA6DT		Glycyrrhiza uralensis	AIT11912.1
GuILDT		Glycyrrhiza uralensis	AMR58303.1
LaPT1		Lupinus albus	AER35706.1
LaPT2		Lupinus albus	AWK21939.1
LjG6DT		Lotus japonicus	ARV85585.1
PcM4DT		Psoralea corylifolia	AYV64464.1
SfFPT		Sophora flavescens	AHA36633.1
SfG6DT		Sophora flavescens	BAK52291.1
SfiLDT		Sophora flavescens	BAK52290.1
SfN8DT-1		Sophora flavescens	BAG12671.1
CsPT3		Cannabis sativa	DAC76713.1
CtIDT		Cudrania tricuspidata	AJD80983.1
MaIDT		Morus alba	AJD80982.1

Continued

Protein name	Substrates	Species	Accession ID
HIPT-1	Phloroglucinol	Humulus lupulus	BAJ61049.1
HIPT2		Humulus lupulus	AJD80255.1

Note: PTs, prenyltransferases; UbiA, ubiquinone biosynthesis gene.

Table S16. Comparison of enzymatic activity between EsPT2 and EpPT8

Substrate names		Conversion rate (%)
	EpPT8	EsPT2
Kaempferol	71.02%	21.88%
Quercetin	34.81%	15.65%

Note: Conversion rate was calculated as: peak area of reaction product/peak area of the sum of substrate and product.