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Supplementary Figures. 1| Comparison of healthy and diabetic testis at single
cell resolution. a, Sample information of diabetic patients’ testicular cells analyzed in
this study. b, Bar graph showing the ratio of each cluster in spermatogenesis between
normal and diabetic patients. ¢, Cell number of each cluster in spermatogenesis
between normal and diabetic patients. d, Line plots showing the similar relative
expression patterns of the potential marker gene of each cluster between normal and
diabetic patients. e, Gene expression patterns of somatic marker genes on UMAP
plots. A gradient of gray, red indicates low to high expression levels. f, Developmental
pseudotime of adult human male germ cells from donors with normal fertility (left)
and diabetic patients (right). Black line indicates the developmental path of these cells.
g, Immunofluorescence of FGFR3 (red) co-stained with KIT (green) in diabetic
patients’ testicular paraffin sections. Scale bar, 10 pum. Yellow arrowheads indicated
Diff.ing SPG, white arrowhead indicates SSC. h, Immunofluorescence of PNA (pink)
co-stained with DDX4 (green) in diabetic patients’ testicular paraffin sections. Scale
bar, 10 pm. White arrowhead S1, yellow arrowhead indicated S2, and arrows
indicated S3. i, Immunofluorescence of FGFR3 (red) co-stained with STRAS (green)
in diabetic patients’ testicular paraffin sections. Yellow arrowhead indicates Diff.ed
SPG, White arrowhead indicates SSC. Scale bar, 10 pm. j, Immunofluorescence of
DDX4 (red) co-stained with SOX9 (green) in diabetic patients’ testicular paraffin
sections. Yellow arrowhead indicates Sertoli cells (ST). Scale bar, 10 um. k,
Immunofluorescence of YH2AX (red) co-stained with SYCP3 (green). Yellow
arrowhead indicates leptotene (L) spermatocytes, white arrowhead indicates zygotene
(Z) spermatocytes, and white arrowhead indicates pachytene (P). Scale bar, 10 um. 1,
Immunofluorescence of DDX4 (red) co-stained with INSL3 (green) in diabetic
patients’ testicular paraffin sections. Scale bar, 10 um. Yellow arrowhead indicates

Leydig cells (LD).
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Supplementary Figures. 2| Metabolic difference in SPG, SPC and SPD stages and
metabolic disorders associated with diabetes affect the pluripotency of
spermatogonia. a, Schematic illustration of the metabolism related genes analysis
workflow. b, Metabolic pathway activities in the three major germ cell types (SPG,
SPC, SPD) from the normal and diabetic patients single-cell RNA sequencing data. ¢,
Boxplot showing the differences in the expression of Citrate cycle (TCA cycle)
between normal and diabetic patients at different spermatogonia stages. The y axis
represents the sum of the TPM of all genes in this gene set. The cell numbers at each
stage are indicated above each box. Each box represents the median and the 25% and
75% quartiles, and the whiskers indicate 1.5 times of the interquartile range. P value
was calculated by wilcoxon rank sum test. d, GSEA analysis showing the down-
regulated pathway activity in spermatogonia cells of diabetic patients. P value was
calculated by permutation test. e, Boxplot showing the expression levels of /D4 in
SSC 1 stage. The cell numbers at each stage are indicated above each box. Each box
represents the median and the 25% and 75% quartiles, and the whiskers indicate 1.5
times of the interquartile range. The cell numbers at each stage are indicated above
each box. f, Immunofluorescence of FGFR3 (red) co-stained with ID4 (green) in
normal and diabetic patients’  testicular paraffin sections. n = 3 per group. Mean =+
SEM. Representative immunofluorescence images and quantitative analysis of 1D4.

Two-tailed student’s t test was performed. Scale bar, 10 pm.



b~ do o,
_ o o
5 o o PeP 9 M - %,
53 o % . 3 o
S = © 4
oI ® ) % L
I P 8 0% WL O\m\
L 3 >
P ___* a %, ; 2
¥ -~ o] 2, Q' g \o.\\
* — 2,
* K T T T T T o,
[ o =) o o =} o
x 2 o ~ ™ N - T T T T T 1
* Len S o =) o o o o
X 5 (wrl) wnisyyde 8 § 8 & <
* 3 By} OjuUl pa|dAEBI} Uj0Iq JO dduessig
¥ Fo € =
* N M @ _ s
% O}
* []
* L & I W o
X % 5 g
£ 2 5}
Lo i s
LA R O | I e e e | -

I
kel (=} Lo} o [to} o
N

IS -
(7/1oww) asoon|b poojq Bunesy mu
($) W.u =
o >
£ )]
3
~ s =
= o8 A [ B
3 - ok
~ ° < =y c
1 28 o] = N
a S % O o T
[SH = (@]
< m
&> & iy o 8 O
e 5] N N =
(6) wbrom Apog o 10400 WOH
|oJ3u0) NOH |joljuo) NOH
Qo o o — S
© .f PY Of L
< O @ - %)
w % W %, W
N N % ©Q
~ @ 0
3 3 +H 1] e ase 1 By
3 o 1 a %, o' §558 5388 £ “,
£ oy %, %,
.m QHF T T T T T 1
] o o o o o o
o n < [sp] N -
= 2
g k5
£ g
Q
7] 9] () ()
8 D o )]
=] — —
> W (0] [0)
p 3 o | = =
7)) % » 0%, ~
2 - I X 57
WV L g % \ rryw.quﬁ_‘
£ o
g 5 S
: S S = =
B o o > >
<
2
°
2
© S
@ —
[ — =
o
N0 & =
< = Z

[043U0D WOH |onuoD NOH

[01u0D WOH



Supplementary Figures. 3| Loss of BTB integrity in induced hyperglycemia
murine model (HGM). a, Schematic illustration of the hyperglycemia mouse model.
b, Body weight between control and HGM after 12 weeks high fat feeding.
Box-and-whisker plots denote the maximum (top whisker), 75th (top edge of box),
25th (bottom edge of box) and minimum (bottom whisker) percentiles, and the
median (line in box). n = 12 mice per group. ¢, Fasting blood glucose between control
and HGM after STZ injection. Mean + SEM. ****p< (.0001. n = 12 mice per
group. d, H&E staining of pancreatic sections in control and HGM. The area marked
by the dotted line is the islet. Scale bar, 20 um. e, Immunofluorescence of INSULIN
(green) in control and HGM pancreatic sections. Scale bar, 50 pum. f,
Immunofluorescence of PNA (pink) co-stained with DDX4 (green) in control and
HGM testicular paraffin sections. Scale bar, 100 um. The yellow rectangular box
shows a partial magnification of the testis. g, H&E staining of testicular paraftfin
sections in control and HGM. Scale bar, 50 pm. Black arrows show obvious vacuoles
in tubule. h, Immunofluorescence of biotin (red) between control and HGM testicular
paraffin sections. Scale bar, 50 um. Biotin positive seminiferous tubules percentage in
control and HGM. Mean =+ SEM. Unpaired two-tailed t test. Statistics were
performed in six mouse testes each group (n=6). i, Inmunofluorescence of biotin (red)
co-stained with SYCP3 (green) in control and HGM testicular paraffin sections.
Distance of biotin penetrated into the epithelium were counted in control and HGM.
Scale bar, 10 um. Box-and-whisker plots denote the maximum (top whisker), 75th
(top edge of box), 25th (bottom edge of box) and minimum (bottom whisker)
percentiles, and the median (line in box). Data are presented as means = SEM.
Unpaired two-tailed t test. j-m, Immunofluorescence of VIM (red) co-stained with
TJP1, GJA1l, NCAMI and CDH2 (green) in control and HGM testicular paraftin
sections. n = 3 per group. Box-and-whisker plots denote the maximum (top whisker),
75th (top edge of box), 25th (bottom edge of box) and minimum (bottom whisker)
percentiles, and the median (line in box). Representative immunofluorescence images
and quantitative analysis of TJP1, GJA1, NCAMI1 and CDH2. Scale bar, 10 um. Two-

tailed student’s t test was performed.
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Supplementary Figures. 4| Decreased sperm quality in hyperglycemia murine
model.

a, Brightfield diagram of 4-Cell, Morula and Blastocyst between control and HGM.
Scale bar, 1 mm. b, Two cell, Four cell, Morula and Blastocyst development rate in
control and HGM. Unpaired two-tailed t test. n = 6 independent experiments.
Box-and-whisker plots denote the maximum (top whisker), 75th (top edge of box),
25th (bottom edge of box) and minimum (bottom whisker) percentiles, and the
median (line in box). ¢, The trilinear table shows all the embryo injection data in

control and HGM.
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Supplementary Figures. S| APJ expression is not affected in the testis of diabetic
mice.

a, Immunofluorescence of VIM (red) co-stained with APJ (green) in normal and
diabetic patients’ testicular paraffin sections. Scale bar, 10 um. The yellow arrow
indicates the Sertoli cells. b, Immunofluorescence of VIM (red) co-stained with APJ
(green) in control and db/db testicular paraffin sections. Scale bar, 10 um. The yellow
arrow indicates the Sertoli cells. ¢, Quantitative analysis of APJ. ns, not significant. n
= 3 per group. Box-and-whisker plots denote the maximum (top whisker), 75th (top
edge of box), 25th (bottom edge of box) and minimum (bottom whisker) percentiles,
and the median (line in box). Fluorescence intensity values of more than 50 positive
cells in at least 5 fields of view were counted in normal and diabetic patients’

testicular paraffin sections and db/db testicular paraffin sections. Two-tailed student’s

t test was performed.
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Supplementary Figures. 6| High glucose-induced ROS elevation activates HIF1A.
a, Immunoblots of HIF1A in TM4 treated different concentrations glucose. b,
Representative figures for TM4 cell treated with high glucose for 24 hours followed
by DHE staining and flow cytometry. Results of three independent experiments are
shown (n=3). Two-tailed student’s t test was performed. ¢, Immunoblots of HIFIA in
TM4 treated with high glucose and H>O». d, Immunoblots of HIF1A and APLN in
TM4 treated different concentrations IDF-11774 (HIF1A inhibitor) and HG.
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Supplementary Figures. 7| Various active forms of APLN impairs cell junction
proteins expression without affecting cell identity and viability. a, Immunoblots of
indicated proteins in TM4 treated APLN, Apelin-13 and Pyrl-Apelin-13. b,
Immunofluorescence of KI67 (red) in TM4 treated APLN, Apelin-13 and
Pyrl-Apelin-13. Scale bar, 50 um. ¢, KI67-positive cells percentage statistics in TM4
treated APLN, Apelin-13 and Pyrl-Apelin-13, Mean + SEM. ns, not significant,
one-way ANOVA. Results of three independent experiments are shown (n=3). d,
Annexin V-FITC apoptosis assay on TM4 cells treated with APLN, Apelin-13 and
Pyr1-Apelin-13. e, Apoptosis rate on TM4 cells treated with APLN, Apelin-13 and
Pyrl-Apelin-13. Mean = SEM. ns, not significant, one-way ANOVA. Results of
three independent experiments are shown (n=3). f, Immunofluorescence of ACTB
(red) co-stained with TJP1 (green) on TM4 cells treated with APLN, Apelin-13 and
Pyrl-Apelin-13. Scale bar, 10 um. g, Immunofluorescence of ACTB (red) co-stained
with GJA1 (green) on TM4 cells treated with APLN, Apelin-13 and Pyrl-Apelin-13.
Scale bar, 10 um. h, Immunofluorescence of ACTB (red) co-stained with NCAM1
(green) on TM4 cells treated with APLN, Apelin-13 and Pyrl-Apelin-13. Scale bar,
10 pm. i, Immunofluorescence of ACTB (red) co-stained with CDH2 (green) on TM4
cells treated with APLN, Apelin-13 and Pyrl-Apelin-13. Scale bar, 10 pum. j,
Quantitative analysis of TJP1, GJAl, NCAM1 and CDH2. n = 3 biologically
independent samples. Box-and-whisker plots denote the maximum (top whisker), 75th
(top edge of box), 25th (bottom edge of box) and minimum (bottom whisker)
percentiles, and the median (line in box). Fluorescence intensity values of more than
100 positive cells were counted in TM4 cells treated with APLN, Apelin-13 and
Pyrl-Apelin-13. One-way ANOVA was performed. k, Immunoblots of GJAI,
NCAMI, TJP1 in TM4 treated APLN, Apelin-13 and Pyr1-Apelin-13.
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Supplementary Figures. 8| Cell adhesion assays after treatment of TM4 cells with
different APLN and its small molecules. a, Experimental design for cell adhesion
assay. b, Representative images of DiD (red) immunofluorescence in TM4 cell. Scale
bar, 100 pm. ¢, Representative images of DiD (red) immunofluorescence both treated
APLN in “red” and “blue” TM4 cell. Scale bar, 100 um. d, Statistics on the ratio of
red TM4 cells to blue TM4 cells. n=4 biologically independent experiments. Data are
presented as means = SEM. More than 500 cells were counted in each subgroup.

One-way ANOVA was performed.
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Supplementary Figures. 9| Targeting APJ restores expression of cell adhesion
proteins under high glucose or with APLN treatment. a, The relative expression
levels of Ncaml, Cldnll, Gjal, Tjpl in TM4 cell under high glucose or APLN. Data
are presented as means £ SEM. Unpaired two-tailed t test was performed. Results of
three independent experiments are shown. n = 3 per group. b, Immunoblots of APJ in
TM4 cells transfected shRNA of APJ. ¢, Annexin V-FITC apoptosis assay on TM4
cells transfected shRNA of APJ. d, Apoptosis rate on TM4 cells transfected shRNA of
APJ, ns, not significant, one-way ANOVA. Results of three independent experiments
are shown. n = 3 biologically independent cell. Mean += SEM. e, Immunoblots of
WT1, AR and SOX9 in stable KD APJ cell. f, Immunoblots of TJP1, GJAl and
NCAMI in stable KD APJ cell. g, Immunoblots of indicated proteins in stable KD
APJ cell treated APLN or high glucose.
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Supplementary Figures. 10| The AMPK and MAPK pathways are downstream
effectors of APLN/APJ in Sertoli cells. a, Immunoblots of AMPKal, p-AMPKal,
MAPKI1/3 and p-MAPKI1/3 in TM4 treated high glucose, APLN or both. b,
Immunofluorescence of ACTB (red) co-stained with TIP1, NCAM1, GJA1 (green) on
TM4 cells treated with Ulixertinib, AICAR or both. Scale bar, 10 um. ¢, Quantitative
analysis of TJP1, GJA1, and CDH2. n = 3 per group. Box-and-whisker plots denote
the maximum (top whisker), 75th (top edge of box), 25th (bottom edge of box) and
minimum (bottom whisker) percentiles, and the median (line in box). Fluorescence
intensity values of more than 100 positive cells were counted in TM4 cells treated

with Ulixertinib, AICAR or both. Two-tailed student’s t test was performed.
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Supplementary Figures. 11| Compromising APLN effect with ML221 in cultured
TM4 cells. a, Immunofluorescence of ACTB (red) co-stained with TJP1, NCAMI,
GJA1 (green) on TM4 cells treated with APLN, or APLN combined with ML221.
Scale bar, 10 pm. b, Quantitative analysis of TJP1, GJA1, and CDH2. n = 3 per group.
Box-and-whisker plots denote the maximum (top whisker), 75th (top edge of box),
25th (bottom edge of box) and minimum (bottom whisker) percentiles, and the
median (line in box). Fluorescence intensity values of more than 100 positive cells
were counted in TM4 cells treated with APLN, or APLN combined ML221.

Two-tailed student’s t test was performed.
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Supplementary Figures. 12| Mating behavior and fertility test.
a, Schematic illustration of the experimental and analysis workflow. b, Fertility

testing of control and ML221 group.
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Supplementary Figures. 13| Testis, kidney and liver weights and H&E staining
between control and ML221 injection group. a, Brightfield diagram of testis
between control and ML221 injection group and weight statistics. Each group has
four mice. Mean + SEM. ns, not significant, unpaired two-tailed t test. b, H&E
staining of testicular sections in control and ML221 injection group. Scale bar, 100
um. ¢, Brightfield diagram of kidney between control and ML221 injection group and
weight statistics. Each group has four mice. Mean *= SEM. ns, not significant,
unpaired two-tailed t test. d, H&E staining of renal sections in control and ML221
injection group. Scale bar, 200 um. e, Brightfield diagram of liver between control
and ML221 injection group and weight statistics. Each group has four mice. ns, not
significant, unpaired two-tailed t test. Mean = SEM. f, H&E staining of liver

sections in control and ML221 injection group. Scale bar, 200 um.
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Supplementary Figures. 14| ML221 significantly improved sperm count, motility
and ICSI blastocyst rate in db/db mice. a, Sperm counts and sperm motility level
between control, ML221 and C57BL/6N group. PR: progressive motile, NP:
non-progressive motile, IM: immotility. b, Sperm counts of control, ML221 and
C57BL/6N group. ns, not significant, unpaired two-tailed t test. Mean = SEM.n=4
mice per group (n = 3 mice for C57BL/6N). ¢, Sperm motility of control, ML221 and
C57BL/6N group. Mean = SEM. ns, not significant, unpaired two-tailed t test. n = 4
mice per group (n = 3 mice for C57BL/6N). d, Blastocyst development rate in control
and ML221 injection group. n = 3 biologically independent experiments. Mean =+
SEM. Unpaired two-tailed t test. e, Blastocyst arrest rate in control and ML221
injection group. n = 4 biologically independent experiments. Mean == SEM. Unpaired
two-tailed t test. f, Brightfield diagram of blastocyst between control and ML221

injection group. Scale bar, 200 um.
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Supplementary Figures. 15| Inhibition APLN improves BTB related gene
expression in human cultured testis. a, Inmunofluorescence of CDH2 (green) and
VIM (red) in human testis culture on Day 7 paraftin sections between indicated
sample groups. Scale bar, 20 um. n = 3 per group. Box-and-whisker plots denote the
maximum (top whisker), 75th (top edge of box), 25th (bottom edge of box) and
minimum (bottom whisker) percentiles, and the median (line in box). Quantitative
analysis of CDH2. Data are presented as means + SEM. One-way ANOVA was
performed. b, Immunofluorescence of NCAMI1 (green) and VIM (red) in human testis
culture on Day 7 paraffin sections between indicated sample groups. Scale bar, 20 um.
n = 3 per group. Box-and-whisker plots denote the maximum (top whisker), 75th (top
edge of box), 25th (bottom edge of box) and minimum (bottom whisker) percentiles,
and the median (line in box). Quantitative analysis of NCAM1. Unpaired two-tailed t

test was performed.
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Supplementary Figures. 16| Annexin V-FITC apoptosis assay analysis by FACS.

a, Representative FACS gating scheme for Annexin V-FITC apoptosis assay.
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