

Figure S1: Epigenetic features of PyMT tumors. (a) Five WT PyMT tumors were dispersed into single cell suspensions and subjected to EpiTOF analysis as in Fig 1. (b) Luminal and basal-like subpopulations as defined in the EpiTOF analysis of in vivo tumor samples were compared. The expression of each of the markers was centered to have zero mean and is displayed in the form of a split violin plot ordered according to extent difference. Black lines designate medians. Red boxes denote H3K36me2 and H3K27ac. (c) Violin plot comparing mean expression levels of the indicated epigenetic marks in luminal vs basal-like in vivo EpiTOF subpopulations. Benjamini-Hochberg correction for multiple comparisons. (d) The relative abundance of cells in each subpopulation (within the total epithelial cell population) was compared in WT vs Lats1-CKO cells. Values were derived from EpiTOF data of WT and littermate matched Lats1-CKO tumor-derived cell lines and are presented as a heatmap (left panel), where darker red indicates a greater portion of the cells. Each column represents an independent cell line. Benjamini-Hochberg correction for multiple comparisons, *** p-value <0.01 within each subpopulation. In the right panel, the relative portion of each subpopulation is presented as a stacked bar graph, with each column representing an independent cell line of the indicated genotype. Source data are provided as a Source Data file.

Figure S2: Characterization of luminal and basal-like subpopulations. (a) Two independent WT cell lines and Lats1-CKO cell lines each were used to generate luminalenriched and basal-like-enriched cultures, using FACS sorting with EpCAM and CD49f antibodies. The enriched cultures were subjected to RNA-seq analysis. Principal Component Analysis (PCA) of global gene expression of the indicated cultures is presented. (b) RNA from WT luminal-enriched and WT basal-like-enriched cultures were subjected to RT-qPCR analysis of conventional luminal and basal-like genes. Values were normalized to Hprt ; Krt8 and Krt18 values in the luminal cultures and Krt14 and Krt5 values in the basal-like cultures, respectively, were set as 1.0. Mean \pm SD of 2 biological repeats. Source Data file is provided. (c) Integrative Genomics Viewer (IGV) snapshots depicting ATAC-seq signals in the vicinity of the indicated genes in the four different cell subpopulations (WT = wild type PyMT, L1 = Lats1-CKO). For each gene, the Y-axis scale is identical for the different subpopulations. The associated RefSeq gene structure is presented below the tracks. (d) WT and Lats1-CKO enriched luminal or basal-like cultures were subjected to immunofluorescent staining. Scale bar = $100\mu m$. Representative images of 5 biological repeats. (e) Genes differentially expressed in WT luminal (WT lum) compared to WT basal-like (WT BL) cells (RNA-seq analysis using DESeq2, raw p-value<0.05) were associated with ATAC-seq peaks present within 5kb of their TSS. Expression differences (log2 fold change) are plotted against accessibility differences between WT luminal and WT basal-like cells (log2 fold change), and peaks harboring an estrogen response element (ERE) are marked in red (HOMER¹ annotation). A total of 297 peaks are shown. (f) Genes contributing to the enrichment of the ERa activation signature in the GSEA analysis shown in figure 2e (left, 21 genes) were associated with ATAC peaks present within 5kb of their TSS (n= 40 peaks). For each peak, the mean read concentration (log2) in each condition was calculated. Boxplot shows median concentration of all peaks, lower and upper hinges correspond to the first and third quartiles and whiskers extend to the largest and smallest value. (g) Gene Set Enrichment Analysis (GSEA) of WT luminal vs Lats1-CKO luminal differential gene expression compared with Cicatiello et al "ER repressed" gene set². (H) Cumulative ATAC-seq reads coverage of 72 enhancers of ER-repressed genes² in WT luminal, compared to Lats1-CKO luminal, cultures. Genes contributing to the leading edge of the GSEA in (g) were associated with enhancers using the ENC+EDP enhancer database³. Merged coverage from both replicates is shown. Lines depict average coverage, shaded areas represent SE. (i) WT and Lats1-CKO luminal-enriched and basal-like-enriched cultures were subjected to Western blot analysis with the indicated antibodies. GAPDH served as loading

control. Representative blot of 3 biological repeats. (j) Relative gene expression from RNAseq in WT luminal vs Lats1-CKO luminal cultures was plotted according to magnitude of change (log2FoldChange, x-axis) and significance (*DESeq2*, -log10(raw p-value), y-axis). Dotted lines designate p-value < 0.05 and FC > 1.5, respectively. Genes associated with significantly differential ATAC-seq peaks (WT luminal vs WT basal-like cells as shown in Fig 2b (+/-5kb from TSS)) are colored according their increased accessibility in basal-like (BL) (red) or luminal (blue) cells.

Fig S3

С

Figure S3: Tumorigenic capacity of different types of PyMT tumor-derived cells. (a) Dissociated cells from a freshly harvested Lats1-CKO PyMT tumor were profiled by FACS (top, panel 1), using antibodies for EpCAM and CD49f. Basal-like cells were defined as EpCAM^{low}CD49f^{high} (upper left quadrant). After a total of 19 passages in culture, the basal-like subpopulation was enriched by FACS sorting (panel 3), followed by 7 additional passages in culture and FACS analysis (panel 4). Bold black frame ("basal-like-sort") depicts the gates used for FACS-enrichment of the basal-like cell population. (b) WT or Lats1-CKO PyMT tumor-derived cell lines were injected into mammary fat pads of 5 female FBV/N mice. After 4 weeks, tumors were excised and examined histologically. Representative H&E stained sections of primary tumors or lung metastases are presented. "NA" = Not Applicable. Scale bar = $25\mu m$ (c) Luminal only, basal-like only or an equal number of luminal and basal-like cells of the indicated genotypes were injected into the mammary fat pads of female FBV/N mice. Four weeks post-injection, tumors were excised and weighed. Values represent average \pm SE of 5 mice from each group. Two-way ANOVA was used to compute significance. Source data are provided as a Source Data file.

Figure S4: LATS1 regulates phenotypic plasticity independently of YAP or TAZ. (a) MYC-tagged mouse Lats1, or vector control, was introduced into three independent Lats1-CKO tumor-derived cell lines. Levels of LATS1 were assessed by Western blot analysis using antibodies against LATS1 or MYC-tag (9E10). GAPDH served as loading control. Numbers above each lane denote parental cell line number. Representative blot of 2 technical repeats. (b) Lats1-CKO (red) PyMT cells were transiently transfected with MYC-tagged LATS1 (OE-LATS1, green). After 48 hours, cells were fixed and stained with anti-MYC and anti-KRT8 antibodies and subjected to imaging flow cytometry (ImageStreamX). Only single, focused cells with intact nuclei were analyzed. KRT8 positive (KRT8+) and OE-LATS1 (MYC+) cells were defined compared to an unstained control or a vector only control, respectively. Distribution pattern of cells expressing KRT8 (left; shape encompasses cells stained positively for KRT8) and intensity of KRT8 (right) staining was measured for each cell population. (c) WT or Lats1-CKO basal-like-enriched cells harboring control shRNA (shCont) or stable knockdown of Yap (shYap) or Taz (shTaz) were subjected to Western blot analysis with an antibody reactive with both YAP and TAZ. GAPDH served as loading control. Representative blot of 3 biological repeats. (d) Cells as in (c) were subjected to RT-qPCR analysis of expression of the YAP/TAZ target Cyr61. Values were normalized to Hprt. Average \pm SE of 5 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided as a Source Data file. (e) Cells as in (c) were analyzed by FACS, using EpCAM and CD49f antibodies. (f) Graphical representation of average relative numbers of luminal (upper right quadrant) or basal-like (upper left quadrant) cells, measured by FACS as in (e). Values represent average ± SD of 3 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided as a Source Data file. (g) Cells as in (c) were subjected to RT-qPCR analysis of expression of the luminal marker Krt18. Values were normalized to Hprt. Average ± SE of 5 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided as a Source Data file.

Figure S5: Transcriptional effects of knockdown of Lats1 and Ncor1. (a) WT and Lats1-CKO PyMT cells were transfected with control siRNA (siCont) or siRNA against Ncor1 (siNcor1). Three days later, an additional dose of siRNA was administered. Six days after the first transfection, cells were harvested for RT-qPCR analysis. Values were normalized to Hprt. WT siCont values were set as 1.0. Average \pm SE of 3 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided. (b) RT-qPCR analysis in the same cells as in (a). Average ± SE of 3 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided. (c) MCF7 cells were transiently transfected with control siRNA (siCont) or siRNA against LATS1, NCOR1 or both together. Two days later, cells were harvested for RT-qPCR analysis of LATS1-NCOR1-repressed genes. Values were normalized to Hprt. Average ± SE of 3 biological repeats. One-way ANOVA was used to calculate significance. Source data are provided. (d) Endogenous proteins were immunoprecipitated (IP) from WT or Lats1-CKO PyMT cells, followed by Western blot analysis with the indicated antibodies. "mock" denotes beads only (no antibody) with lysate. 2.5% of each lysate was run as "input". β-ACTIN served as loading control for input. Representative blot of 2 biological repeats. (e) Endogenous proteins were immunoprecipitated (IP) from MCF7 cells, followed by Western blot analysis with the indicated antibodies. A rabbit anti-HIS-tag antibody incubated with lysate served as a species-specific negative control. 2.5% of each lysate was run as "input". GAPDH served as loading control for input, and antibody heavy chain (HC) as a loading control for IP. Representative blot of 5 biological repeats. (f) MCF7 cells were subjected to immunofluorescent staining with antibodies against endogenous LATS1 (red) or endogenous NCOR1 (green) (top panels). Reactions lacking primary antibodies against NCOR1 (mid panels) or against LATS1 (lower panels) served as cross-reactivity controls. Representative images of 3 biological repeats. (g) Lats1-CKO PyMT cells were transiently transfected with MYC-tagged LATS1, and 48 hours later were stained with anti-MYC and anti-NCOR1 antibodies and subjected to imaging flow cytometry (ImageStreamX). Only single, focused cells with intact nuclei were analyzed. NCOR1 positive and MYC-LATS1 cells were defined compared to an unstained control or vector only controls, respectively. Similarity (correlation of staining pattern, see Materials and Methods) of LATS1 and NCOR1 with nuclear DAPI staining was used to assess cells with nuclear LATS1 (panel 1) or nuclear NCOR1 (panel 2). Similarity of staining patterns between LATS1 and NCOR1 was also measured (panel 3). The intensity of endogenous NCOR1 staining was measured in Lats1-CKO cells (panel 4, yellow), WT-PyMT cells (panel 4, blue) and Lats1-CKO cells

overexpressing MYC-LATS1 (OE-LATS1)(panel 4, green). Similarity >1.5 was considered significant. (h) Lats1-CKO cells were transiently transfected with GFP-tagged mouse *Lats1* together with control siRNA (siCont) or *Ncor1* siRNA (siNcor1). Colocalization of endogenous NCOR1 and GFP-tagged LATS1 was evaluated by Proximity Ligation Assay (PLA), using antibodies against NCOR1 and GFP. Scale bar = $10\mu m$. Representative images of 2 biological repeats. (i) Colocalization of endogenous NCOR1 and LATS1 in MCF7 cells was evaluated by PLA. Reactions lacking an antibody against NCOR1 served as a negative control. Scale bar = $10\mu m$. Representative images of 2 biological repeats.

a

b

Figure S6: ChIP and transcriptional analysis of ER-repressed genes. (a) WT and Lats1-CKO (L1) cells were subjected to chromatin immunoprecipitation (ChIP) with antibodies against NCOR1. qPCR of a gene desert region on chromosome 12, as well as beads without antibody, incubated with chromatin ("beads control"), were used as background controls. Values were normalized to input, and represent averages of 2 biological repeats. Source data are provided as a Source Data file. (b) WT or Lats1-CKO cells were transfected with control siRNA (siC) or siRNA against Ncor1 (siN) for 48 hours, followed by ChIP with antibodies against H3K27ac. qPCR of indicated regulatory regions of specific genes (left panel) and of a gene desert region on chromosome 12, as well as beads without antibody, incubated with chromatin ("beads control"), were used as background controls (right panel). Values represent averages of 2 biological repeats. Source data are provided as a Source Data file. (c) WT and Lats1-CKO luminal and basal-like enriched cultures were treated with 3µM of the p300 inhibitor A-485. Cells were harvested after 24 hours and analyzed by Western blot for H3K27ac. GAPDH served as a loading control. Representative blot of 2 technical repeats. (d) The relative expression of LATS1-NCOR1-repressed genes was examined by RT-qPCR. Gapdh was used for normalization. Source data are provided as a Source Data file. (e) WT or Lats1-CKO cells were transfected as in (b) followed by ChIP with antibodies against H3K36me2. Controls and data analysis were as in (b). Values represent averages of 2 biological repeats. Source data are provided as a Source Data file. (f) WT and Lats1-CKO cells were infected with recombinant lentiviruses expressing control shRNA (shCont) or shRNA against Ncor1 (shNcor1) and maintained under drug selection for at least 2 weeks, followed by RTqPCR analysis of Lats1 (left) and Ncor1 (right) mRNA. Values were normalized to Hprt and represent the mean \pm SE of 3 biological replicates. One-way ANOVA was used to calculate significance. Source data are provided as a Source Data file.

b nuclear LATS1 and NCOR1

a

cytoplasmic LATS1 and NCOR1

patient A

patient B

patient C

patient D

Figure S7: LATS1 and NCOR1 have similar effects on the expression of ER-repressed genes in human luminal breast cancer. (a) Comparison of gene expression in human luminal B tumors (BRCA-TCGA database) with low levels of *LATS1* (LATS1^{low}) or low levels of *NCOR1* (NCOR1^{low}). The Venn diagram depicts genes differentially expressed (FC>1.5, p-value<0.05). Top vs bottom quartiles of *NCOR1* or *LATS1* expression were used to define tumors with high or low *NCOR1* or *LATS1*, respectively. Numbers within regions represent number of genes. Bold black outline indicates the group of genes putatively co-repressed by LATS1 and NCOR1. (b) Immunohistochemistry (IHC) analysis of LATS1 and NCOR1 in human luminal breast tumors. Two representative tumor sections with nuclear LATS1 and NCOR1 (samples A and B) and two representative tumor sections with cytoplasmic LATS1 and NCOR1 (samples C and D) are presented (scale bar = 50μ m).

References:

- Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* 38, 576-589, doi:10.1016/j.molcel.2010.05.004 (2010).
- 2 Cicatiello, L. *et al.* Estrogen receptor alpha controls a gene network in luminal-like breast cancer cells comprising multiple transcription factors and microRNAs. *Am J Pathol* **176**, 2113-2130, doi:10.2353/ajpath.2010.090837 (2010).
- 3 Gorkin, D. U. *et al.* An atlas of dynamic chromatin landscapes in mouse fetal development. *Nature* **583**, 744-751, doi:10.1038/s41586-020-2093-3 (2020).

 Table S1: Table of reagents used in study

 Table S2: Number of reads and peaks, ATAC-seq

Table S3: ATAC-seq motif enrichment

 Table S4: ATAC-seq ERE motif enrichments

Supplementary 7	Table 1			
EpiTOF antibo	dies			
protein name	Name	Product	Provider	Metal
EpCAM	Anti- Mouse CD326 [EpCAM] (G8.8)-166Er	3166014	FLUIDIGM	166Er
CD49f	Anti-Human/Mouse CD49F (GoH3)-164Dy-100 Tests	3164006B	FLUIDIGM	164Dy
CD45	Anti-Mouse CD45 (30-F11)-89Y-100 Tests	3089005B	FLUIDIGM	89Y
CD24	Anti-Mouse CD24 150Nd (cancer stem cell marker)	3150009B	FLUIDIGM	150Nd
CD44	Anti-Human/ Mouse CD44 171Yb (cancer stem cell marker)	3171003	FLUIDIGM	171Yb
a-SMA	alpha SMA (Smooth muscle actin) (fibroblast marker)	ab5694	Abcam	173Yb
GATA3	Anti-Human/ Mouse GATA3 167Er	3167007A	FLUIDIGM	167Er
ERa	Anti-Estrogen Receptor alpha antibody [E115] - Low endotoxin, Azide free	ab167611	Abcam	146 Nd
beta-Catenin	Anti-Human/ Mouse/ Rat beta-Catenin 147Sm	3147005	FLUIDIGM	147Sm
CyclinB	Anti-Human/ Mouse CyclinB1	3153009A	FLUIDIGM	153eu
Ki-67	Anti- Human Ki-67 (B56) 162Dy	3162012	FLUIDIGM	162Dy
p53	Anti-Human p53	3143018	FLUIDIGM	143Nd
OCT3/4	Anti-Human/Mouse Oct3/4 (40/Oct-3)-165Ho 50 Tests	3165023A	FLUIDIGM	165Ho
AREG	Anti-Human/ Mouse AREG	LS-C341363	LSBio	159Tb
p21	Anti-p21 antibody [EPR18021] - BSA and Azide free	ab232512	Abcam	174 Yb
ZEB1	EMT azide and BSA free	NBP2-81015	Novus	158 Gd
YAP	D8H1X	CST-14074-BF	CST	161 Dy
EZH2	D2C9	CST-5246-BF	CST	144 Nd
LATS1	(C66B5)	CST-3477-BF	CST	169 Tm
pYAP (S127)	D9W2I	CST-13008	CST	151 Eu
Н3	Anti-Histone 3 (D1H2)-176Yb 50 Tests	3176016A	FLUIDIGM	176Yb
pH3	Anti-Human/ Mouse/ Rat pHistone H3 [Ser28]	3175012A	FLUIDIGM	175Lu
cleaved H3	Rabbit monoclonal anti-cleaved-Histone H3 (Thr22) (clone D7J2K)	CST-12576 (custom f	CST	163Dy
H3K27ac	Acetyl-Histone H3 (Lys27) (D5E4) XP® Rabbit mAb #8173	CST-8173P	CST	160Gd
H3K36me3	Tri-Methyl-Histone H3 (Lys36) (D5A7) XP® Rabbit mAb #4909	CST-4909	CST	141Pr
H3.3	Rabbit monoclonal anti-Histone H3.3 (clone EPR17899)	ab176840	Abcam	155Gd
H3K4me3	Tri-Methyl-Histone H3 (Lys4) (C42D8) Rabbit mAb #9751	CST-9751	CST	145Nd
H3K27me3	Mouse monoclonal anti-trimethyl-Histone H3 (Lys27) (clone MABI 0323)	Active Motif-61017	Active Motif	168Er
H3K4me1	Mono-Methyl-Histone H3 (K4) (D1A9) XP(R) Rabbit mAb, 100 ul	CST-5326S	CST	154Sm
H3K9me3	Tri-Methyl-Histone H3 (Lys9) (D4W1U) Rabbit mAb #13969	CST-13969S	CST	170Er
H2B	Recombinant Anti-Histone H2B antibody [EP957Y] - BSA and Azide free	ab239842	Abcam	142Nd
H4K16Ac	Acetyl-Histone H4 (Lys16) (E2B8W) Rabbit mAb	CST-13534	CST	152Sm
H3K36me2	Di-Methyl-Histone H3 (Lys36) (C75H12) Rabbit mAb #2901	CST-2901	CST	149Sm
H3K64ac	Anti-Histone H3 (acetyl K64) antibody [EPR20713] - BSA and Azide free, 100 ug	ab251549	Abcam	156Gd
			•	
other antibodie	S			
LATS1	(C66B5) Rabbit mAb	CST-3477	CST	
LATS1	LATS1 antibody	HPA031804	Sigma	
GAPDH	(14C10) Rabbit mAb	CST-2118	CST	
MYC-tag	9E10	ab32	Abcam	
Н3	Anti-Histone H3 antibody - Nuclear Marker and ChIP Grade (ab1791)	ab1791	Abcam	
H3K27ac	Acetyl-Histone H3 (Lys27) (D5E4) XP [®] Rabbit mAb	CST-8173P	CST	
H3K36me?	Di-Methyl-Histone H3 (I vs36) (C75H12) Rabbit mAb (Alexa Eluor [®] 647 Conjuga	CST-15090	CST	
FRa	Recombinant Anti-Estrogen Recentor alpha antibody [E115] - ChIP Grade (ab3206)	ab32063	Abcam	
EncaM-APC	(D326 (EnCAM) mouse	130-102-234	Miltenyl	
EpCAM-APC	anti human CD326 (En-CAM) 9C4	3242.08	Biolegend	
CD49f-PF	human & mouse	130-119-767	Miltenvl	
YAP/TA7	YAP/TAZ (D24F4) Rabbit mAb	CST-8418	CST	
GFP	Anti-GEP from mouse [9F9 F9]	ah1218	Ahcam	
NCOR1	NCoR1 Antibody	CST-5948	CST	
NCOR1	NCoR1 Antibody	ab3482	Abcam	
NCOR1	NCoR1 Antibody (F-1)	sc-515934	Santa Cruz	

CST-34589

MABT329

sc-53253 A00702 CST

Sigma

Santa Cruz GenScript

 KRT8
 Anti-Cytokeratin 8 Antibody, clone TROMA-1

 KRT14
 Anti-Cytokeratin 14 Antibody (LL001)

 b-ACTIN
 beta Actin Antibody monoclonal mouse nonconjugated

 qPCR primers

HDAC1 (D5C6U) XP[®] Rabbit mAb

HDAC1

qi en pin	incr 5	
Cyr61	F-5' CGGAGGTGGAGTTAACGAGAAA	mouse, expression
	R-5' AAGACAGGAAGCCTCTTCAGTGAG	
Krt14	F-5' AGCGGCAAGAGTGAGATTTCT	mouse, expression
	R-5' CCTCCAGGTTATTCTCCAGGG	
Krt18	F-5' CAGCCAGCGTCTATGCAGG	mouse, expression
	R-5' CCTTCTCGGTCTGGATTCCAC	
Krt8	F-5' TCCATCAGGGTGACTCAGAAA	mouse, expression
	R-5' CCAGCTTCAAGGGGGCTCAA	
Krt5	F-5' TCTGCCATCACCCCATCTGT	mouse, expression
	R-5' CCTCCGCCAGAACTGTAGGA	

Lats 1	F-5' AGCAGCACGTAGAGAACGTCC	mouse, expression
	R-5' AATCCAACCCGCATCATTTC	
Ncor1	F-5' CTGCTCCGCATCAAGTGATAA	mouse, expression
	R-5' CCAGGAGTTCCCTGTGAGATA	
Ccna2	F-5' AAGAGAATGTCAACCCCGAAAAA	mouse, expression
	R-5' ACCCGTCGAGTCTTGAGCTT	
Oxtr	F-5' GGCCGTGTTCCAGGTTCTC	mouse, expression
0.nu	R-5' TGCAAGTATTTGACCAGACGAC	
Sema6	F-5' ACAGCCTGCCCCTAAAGT	mouse expression
	R-5' AGCTCCTCTTATATTCGAGCCC	
Pdofrh	F-5' AGGAGTGATACCAGCTTTAGTCC	mouse expression
1 ugiio	R-5'CCGAGCAGGTCAGAACAAAGG	
Cena?		mouse expression
Cellaz	R-5' ACCOGTOGAGTOTTGAGOTT	niouse, expression
Fade 1		mouse expression
1 dus 1		niouse, expression
Turiat		mouro approacion
1 WISt2		inouse, expression
Calsal		mouse supression
Colsal		inouse, expression
NL 110		
Neddy		mouse, expression
NEDDO		1 .
NEDD9		human, expression
0.1.ITP	R-5'TICIGCICIAIGACGGICAGG	
OXTR	F-5' CIGCIACGGCCTIATCAGCIT	human, expression
	R-5' CGCTCCACATCTGCACGAA	
SEMA6A	F-5' AATCAGTATITCGCATGGCAACT	human, expression
-	R-5' GCAATGTAGAGGGTTCCGTTCA	
COL5A1	F-5' GCCCGGATGTCGCTTACAG	human, expression
	R-5' AAATGCAGACGCAGGGTACAG	
PDGFRB	F-5' AGCACCTTCGTTCTGACCTG	human, expression
	R-5' TATTCTCCCGTGTCTAGCCCA	
Chr12 ChIP	F-5' CCATTGTTGGTGGGATTGC	gene desert
	R-5' TGAGGAACCGCCAGACTGAT	
Kisser ChIP	F-5' TCCCTCTCCGTAGACATGGG	TSS
	R-5' AAGGAGCCTTTCGCATCTCC	
Klh19 ChIP	F-5' TCCTTCCTTCTTCCCCGGT	enhancer
	R-5' AACGACGACCACAGGTTGTT	
Oxtr ChIP	F-5' TGCTATGCCAAAGACCCCAG	promoter
	R-5' AGTGACAGCTTGGACGAAGG	
Sema6a ChIP	F-5' TACCAAAAAGGAACCCGGCA	enhancer
	R-5' TGTAAGTCCAAGCAGCGGAG	
Nedd9 ChIP	F-5' CCCTACTGTCCCCACTGCTA	enhancer
	R-5' GGAAACTCCACGTCACACCT	
Pdgfrb-TSS	F-5' TGGGGCAGGCCACTCTAATA	TSS
	R-5' GGACGCGTGTGTCTGTTTTC	
Col5a1-ChIP	F-5' AGCCAGAGCTGTTCAGATGTT	enhancer
	R-5' GAGCCTTCTGGAGCTCTCTTG	
Twist2-ChIP	F-5' AGACAAAACTGAAAGTGCCGC	TSS
	R-5' CCAGGGGCAGGACAAATTCT	
Trim29-ChIP	F-5' CAGTCTAGGCTGAAGCACCC	intron
	R-5' CCCAGGCCTGTCCCTAAATG	
Fads1-ChIP	F-5' TCATGGCAAGGACAGCGATT	TSS
	R-5' CGCTGGGGAACTCTTCACAT	
L		

plasmids

1	Juginius
	pCMV-6myc-mouse LATS1 expression vector
	pEGFP3C-full length MmLats1-WT
	pcDNA III
	pEGFP3C vector
ſ	pCDNA4TO-6xMyc-hsLATS1
ſ	pCDNA4/TO-Flag
ĺ	pcDNA6/TR
	pLP1 (packaging vector for lentivirus)
	pLP2 (packaging vector for lentivirus)
	pVSVG (packaging vector for lentivirus)
	smart vector inducible non-targeting hEF1a turboRFP
ĺ	Smart vector inducible shYAP
	Smart vector inducible shTAZ (WWTR1)
ĺ	PLKO1 shNCOR1 (mouse)

knockdown sequences

shYAP (seq GCATGAGACAGCTTCCATA)				
shNCOR1 (seq	CGGCATAATCTTGACAACCTT)			
pLKO.1 eGFP s	pLKO.1 eGFP shRNA control			
siCont	siRNA SMARTpool (Dharmacon)			
siNcor1	siRNA SMARTpool siGENOME Mouse Ncor1 M-058556-01-0005 (Dharmacon)			

Supplementa	ary Table S2				
Sample	Replicate	No. of reads (total)	Number of nucleosome- free reads (uniquely and properly paired)	No. of Peaks	
WT-lum	1	125,474,813	10,764,697	72,685	
WT-lum	2	101,645,671	7,514,288	58,783	
WT-Bas	1	125,581,278	16,786,894	70,446	
WT-Bas	2	124,679,765	6,606,816	51,497	
L1-KO-lum	1	111,389,522	2,159,884	14,753	* sample was excluded from further analy
L1-KO-lum	2	157,106,727	8,967,914	93,467	
L1-KO-Bas	1	126,393,577	10,823,469	86,279	
L1-KO-Bas	2	125,802,680	6,137,454	99,022	

Supplementary Table 3 Motif enrichments Genomatix TF families Z-Score >2 cuttoff

upLuminal Z-S	core (genome)	upBasal-like	Z-Score (genome)
ZF5F	20.75	AP1F	16.49
SP1F	19.65	NF1F	11.32
AP2F	19.09	ZF02	10.92
AP1F	18.08	HAML	10.7
NRF1	17.45	AP2F	10.64
ZF15	15.87	NOLF	10.22
AP1R	14.08	AP1R	10.01
BEDF	13.69	SP1F	9.99
EBOX	13.12	ZF11	9.41
ZF02	12.96	MYOD	9.19
EGRF	12.66	ZTRE	8.28
SNAI	12.58	CTCF	8.28
E2FF	12.4	KLFS	7.95
KLFS	12.34	EGRF	7.72
NF1F	12.12	ZF36	7.62
CTCF	10.85	AP4R	7.5
ZTRE	10.8	BEDF	7.48
XCPE	10.7	ZF29	7.4
ZICF	10.62	ZFXY	7.28
GLIF	10.52	HESF	6.88
ZFHX	9.92	ZF32	6.48
MAZF	9.7	MAZF	5.88
MYOD	9.7	NDPK	5.59
TF2B	9.65	ZF5F	5.5
MTEN	8.59	GLIF	5.36
NOLF	8.3	NFKB	5.36
BRAC	8.26	ZF64	5.27
GCF2	8.2	RBPF	5.23
XBBF	7.73	ZF07	5.18
HAND	7.55	GCF2	5.16
HESF	7.54	NEUR	5
HIFF	7.52	HAND	4.92
AHRR	7.38	SMAD	4.92
HDBP	7.2	P53F	4.85
ZF22	7.15	STAF	4.84
RXRF	7.03	MTEN	4.82
NDPK	7.01	ZF22	4.81
WHNF	6.93	EBOX	4.8
CDEF	6.82	MIZ1	4.78
NFKB	6.63	SREB	4.77
HASF	6.56	YBXF	4.56
ZF07	6.48	INSM	4.47
ZF43	6.42	PAX5	4.42

PAX9	6.39 ZICF	4.35
CALM	6.37 IKRS	4.31
SMAD	6.36 RP58	4.26
ZF29	6.17 CP2F	4.23
ZF36	6.01 NGRE	4.17
OAZF	6 ZF43	3.99
CHRE	5.85 HIFF	3.82
INSM	5.8 XCPE	3.6
E4FF	5.77 HICF	3.55
DEAF	5.7 E2FF	3.51
TALE	5.61 ZF19	3.48
AP4R	5.53 NACA	3.44
ZF64	5.52 KOX8	3.36
CP2F	5.47 ETSF	3.36
MIZ1	5.29 AHRR	3.28
MYRF	5.04 OAZF	3.26
VEZF	5.03 ZF42	3.24
FXRE	5.01 MZF1	3.14
SREB	4.97 FXRE	3.11
ZF11	4.96 SAL2	2.97
CREB	4.84 RXRF	2.97
NGRE	4.79 NRF1	2.94
PTF1	4.76 WHNF	2.89
ZF57	4.75 PAX9	2.85
RBP2	4.71 RBP2	2.77
ZFXY	4.61 PBXC	2.77
ZF32	4.35 MYRF	2.67
PEG3	4.33 TF3C	2.64
MEF3	4.29 ZF04	2.63
NEUR	4.01 NRSF	2.52
ZF37	3.97 ZF21	2.35
EREF	3.92 VEZF	2.28
ZF33	3.72 ZF08	2.18
BTBF	3.64 OSRF	2.16
ZBED	3.61 ZF20	2.07
HICF	3.5 NKRF	2.07
PAX5	3.46 TELO	2.06
MIRF	3.34 HUB1	2.01
CARE	3.24 MOKF	2
ESRR	3.2 PEG3	2
SAL2	3.09 PTF1	2
SF1F	2.97	
NACA	2.94	
ZF42	2.94	
PURA	2.92	
DICE	2.82	
TZAP	2.82	
NRSF	2.81	

PLAG	2.77
PERO	2.76
ETSF	2.67
PBXC	2.61
P53F	2.57
NR2F	2.48
RBPF	2.47
MITF	2.34
TELO	2.3
MTF1	2.29
DMTF	2.25
ZF47	2.23
PAX3	2.11
ZF04	2.08
ZF38	2.08
STAF	2.07
KOX8	2.06
TEAF	2.03

Supplementary Table 4

		UpLumPeaks		UpBasPeaks		
		424 matrices with z>2		363 matrices with z>2		
Genomatix name	motif	Over representation (genome)	Z-Score (genome)	Over representation (genome)	Z-Score (genome)	Comments/source
V\$EREF	weighted from 5 motifs below	1.53	3.92	1.28	1.83	Weighted family score
V\$ER.01		1.14	0.5	1.21	0.74	8 genomic binding sites
V\$ER.02	B 10 SER.02	2.28	4.36	1.3	0.8	11 palindromic high affinity ERE binding sitesEstrogen gene activation
V\$ER.03		1.79	3.52	1.79	3.17	19 ChIP confirmed genomic binding sites; Most close to HOMER sequence
V\$ER.04		1.63	2.71	1.7	2.71	474 genomic binding sites identified by ChIP-seq approach
V\$ESR2.01		1.74	3.05	1.67	2.45	ER-beta targets; 4148 genomic binding sites identified by ChIP-seq

HOMER name	motif	Over representation (genome)	Z-Score (genome)	Over representation (genome)	Z-Score (genome)	Comments/source
ERE(NR) - HOMEI	<u><u>EAGGTCASE</u>TGACC</u>	1.52	2.55	1.54	2.34	MCF7 ChIP

Supplementary Table 5	
NCOR target list	
Ingenuity Pathway Analysis (IPA, QIAGEN	I)
ATF3	
AURKA	
AXIN2	
BCL6	
BIRC3	
BIRC5	
BUB1B	
BUB3	
(3	
CAV1	
CCNA2	
CCNB1	
CCNB2	
CCND1	
CCNE2	
CDH1	
NUC	
JUP	

KIF2C KISSER KLF6 LCN2 LGALS3BP LGR5 **MAPK8IP3** MDM2 ME1 MT1E MT1X NEDD9 OXTR РВК PLS3 PMAIP1 PPARG PSIP1 RARA RGS10 RRM2 RUNX2 S100A9 SAT1 SEMA6A SERPINE1 SOX11 SOX9 SPTSSA SWAP70 TOP2A TTK TYMS UCP3 ZNF160

<u>List of Western blots in Breast cancer plasticity is restricted by a LATS1-NCOR1</u> repressive axis

Fig S2D

Fig S4A

Fig S5D

Fig S5E

Fig S6C

