SUPPLEMENTARY INFORMATION

Supplementary figures (Supp Figs 1-11) are provided followed by supplementary tables (Supp Tables 1-9).

Supp Fig 1 ECFC-EC monolayers are CD31+CD90-CD144+ by flow cytometry, while OSC monolayers have heterogeneous expression of CD90, but crucially do not express CD31. Additionally, some OSC monolayers also exhibit heterogeneous expression of pericyte marker PDGFRb. **a** CD31 vs. CD90 expression for ECFC-EC and OSC monolayers. Representative plots shown from 3 independent experiments of live, single cells. Average of 20,000 events recorded per cell type. Gating determined by FMO controls on EC monolayers. **b** CD31 vs. PDGFRb expression for ECFC-EC and OSC monolayers. Representative plots shown from 3 independent experiments of live, single cells. Average of 20,000 events recorded per cell type. Gating determined by FMO controls on EC monolayers. **b** CD31 vs. PDGFRb expression for ECFC-EC and OSC monolayers. Representative plots shown from 3 independent experiments of live, single cells. Average of 20,000 events recorded. Gating determined by FMO controls on EC monolayers. **c** CD31 vs. CD144 expression for ECFC-EC monolayers. Representative plots shown from 3 independent experiments of live, single cells. Average of 20,000 events recorded. Gating determined by FMO controls on EC monolayers. **c** CD31 vs. CD144 expression for ECFC-EC monolayers. CD31/CD144 expression also validated on previously gated CD31+CD90-ECFC-EC monolayers. where indicated.

Ò

1

Normalized Total Vessel Length

Ò

1

Ż

Normalized Junction Density

3

ż

Supp Fig 2 Workflow for quantification of microvessel networks using Angiotool. **a** Detailed workflow of microvessel network quantification. Day 7 CD31+ microvessel networks undergo IF microscopy, and resultant images are processed using ImageJ. Processed images are then quantified using Angiotool, which yields skeletonized images and allows for statistical comparison of different microvessel network conditions. **b** Day 7 CD31+ microvessel networks from 3D *in vitro* fibrin hydrogels utilized in this study studies exhibit qualitative differences in vessel robustness. Scale bar represents 200 µm. Each image represents an independent biological replicate (*n* = 1 per vessel density condition). **c** Skeletonized images of the different 3D *in vitro* microvessel networks allows for the quantification of differences between 3D *in vitro* microvessel networks. **d** Resultant quantification of microvessel networks. Junction density, total vessel length, and average lacunarity values normalized by the "Low Microvessel Robustness" condition.

Supp Fig 3 3D fibrin hydrogels can be degraded by leveraging fibrinolytic activity of nattokinase. **a** Schematic detailing enzymatic digestion of 3D *in vitro* fibrin hydrogels containing Day 7 microvessel networks consisting of ECs and OSCs. **b** Absorbance values at 400 nm for 150 μ L 3D *in vitro* blank hydrogels (fibrin only, no cells) exposed to a variety of concentrations of nattokinase diluted in EGM-2 over the course of 2 hours. Error bars represent 1 standard deviation around the mean absorbance value. Sample size of 3 for each measurement. **c** Estimated percent gel degradation for 150 μ L 3D *in vitro* blank hydrogels based on normalization of absorbance values from Supp. Fig. 2B.

Supp Fig 4 Quality control of complete 3D *in vitro* microvessel network scRNA-Seq dataset, along with validation of clustering. a Bar chart indicating number of cells isolated from each 3D *in vitro* microvessel network condition before and after QC filtering as part of the scRNA-Seq analysis. b Violin plot of total number of transcripts for each microvessel network sample before QC filtering. c Violin plot of total number of unique genes for each sample before QC filtering.
d Violin plot of total number of transcripts for each sample after QC filtering. e Violin plot of total number of unique genes for each sample before QC filtering.
d Violin plot of total number of transcripts for each sample after QC filtering. genes for each sample of total number of unique genes for each sample after QC filtering.
d Violin plot of total number of transcripts for each sample after QC filtering. genes for each total number of unique genes for each sample after QC filtering. f Scatterplot of resultant number of cell clusters to Seurat resolution parameter value (values between 0.1-1.5). g Scatterplot of average silhouette score for clusters as determined by Seurat resolution parameter (values between 0.1-1.5).

а

Supp Fig 5 Additional characteristic EC and OSC gene expression of clusters from 3D *in vitro* microvessel network dataset. a Violin plots of additional EC-characteristic genes *CD34*, *EGFL7*, *KDR*, *NOS3*, *SOX18*, *TIE1*, and *VWF* for each cluster identified in complete 3D *in vitro* microvessel network dataset. b Violin plots of additional stroma-characteristic genes *ACTA2*, *CD248*, *CSPG4*, *DCN*, *FBN1*, *NES*, and *THY1* for each cluster identified in complete 3D *in vitro* microvessel network dataset.

Supp Fig 6 Dimensionality reduction and analysis of clustering results of re-normalized and reclustered ECs isolated from 3D *in vitro* microvessel network dataset. **a** PCA plot of EC dataset separated by microvessel network type (Marrow, Heart, Skin, Lung, cPancreas, nPancreas). **b** PCA plot of EC dataset separated by cluster identity (EC-1, EC-2, EC-3, EC-4, EC-5). **c** tSNE plot of EC dataset separated by microvessel network type. **d** tSNE plot of EC dataset separated by cluster identity. **e** Scatterplot of resultant number of cell clusters to Seurat resolution parameter value (values between 0.1-1.5). **f** Scatterplot of average silhouette score for clusters as determined by Seurat resolution parameter (values between 0.1-1.5). **g** Violin plot of percentage of ribosomal genes (percentage of gene expression by *RPS* and *RPL* genes per cell) grouped by microvessel network type. **h** Violin plot of percentage of ribosomal genes (percentage of gene expression by *RPS* and *RPL* genes per cell) grouped by EC cluster identity.

Supp Fig 7 Dimensionality reduction and analysis of clustering results of re-normalized and re-clustered OSCs isolated from 3D *in vitro* microvessel network dataset. a PCA plot of OSC dataset separated by microvessel network type (Marrow, Heart, Skin, Lung, cPancreas, nPancreas). b PCA plot of OSC dataset separated by cluster identity (OSC-1, OSC-2, OSC-3, OSC-4, OSC-5, OSC-6, OSC-7, OSC-8). c tSNE plot of OSC dataset separated by microvessel network type. d tSNE plot of OSC dataset separated by cluster identity. e Scatterplot of resultant number of cell clusters to Seurat resolution parameter value (values between 0.1-1.5).
f Scatterplot of average silhouette score for clusters as determined by Seurat resolution parameter (values between 0.1-1.5). g Violin plot of percentage of ribosomal genes (percentage of gene expression by *RPS* and *RPL* genes per cell) grouped by microvessel network type. h Violin plot of percentage of ribosomal genes (percentage of gene expression by *RPS* and *RPL* genes per cell) grouped by microvessel network type.

Supp Fig 8 Additional violin plots of EC-related genes from clusters identified in skin *in vivo* dataset (data from Solé-Boldo, *et al.*) identifies a population of lymphatic ECs to be excluded from downstream analysis [2]. **a** Violin plots of EC-related genes *CD34*, *ICAM2*, *KDR*, *NOS3*, *SOX18*, *TEK*, *TIE1*, and *VWF*. **B** Violin plots of lymphatic EC-related genes *FLT4*, *LYVE1*, *PDPN*, and *PROX1*.

Supp Fig 9 Additional violin plots of EC-related genes from clusters identified in heart *in vivo* dataset (data from Tabula Sapiens, *et al.*) [1]. **a** Violin plots of EC-related genes *CD34, ICAM2, KDR, NOS3, SOX18, TEK, TIE1,* and *VWF*. **B** Violin plots of lymphatic EC-related genes *FLT4, LYVE1, PDPN,* and *PROX1*.

Supp Fig 10 Additional violin plots of EC-related genes from clusters identified in lung *in vivo* dataset (data from Schupp, *et al*) [3]. **a** Violin plots of EC-related genes *CD34, ICAM2, KDR, NOS3, SOX18, TEK, TIE1,* and *VWF*. **B** Violin plots of lymphatic EC-related genes *FLT4, LYVE1, PDPN,* and *PROX1*.

Supp Fig 11 Additional violin plots of EC-related genes from clusters identified in normal pancreas *in vivo* dataset (data from Tabula Sapiens, *et al.*) [1]. **a** Violin plots of EC-related genes *CD34, ICAM2, KDR, NOS3, SOX18, TEK, TIE1,* and *VWF*. **B** Violin plots of lymphatic EC-related genes *FLT4, LYVE1, PDPN,* and *PROX1*.

Vendor	Cat #	Fluorophore	Target	Vol. per 100 μL Test (μL)
BD Biosciences	560411	FITC	CD144/ VE-Cadherin	20
BioLegend	303116	APC	CD31/ PECAM1	5
BioLegend	328122	BV 421	CD90/ THY1	5
BioLegend	323606	PE	PDGFRβ/ CD140b	5
ThermoFisher	L10119	Fixable Near IR	Live/Dead	1

Supp Table 1 Antibodies used in the flow cytometry characterization of cell monolayers prior to3D fibrin hydrogel culture from Supp. Fig. 1.

Vendor	Cat #	Species	Target	Fluorophore	Dilution
ThermoFisher	13031982	Mouse	CD31/ PECAM1	N/A	1:100
ThermoFisher	A21427	Rabbit	Anti-Mouse	Alexa Fluor 555	1:400

Supp Table 2 Antibodies used in the immunofluorescent characterization of microvessel

networks from 3D *in vitro* fibrin hydrogels from Fig. 1.

Name	Environment	Version
Ubuntu	Linux	20.04.4
CellRanger	Linux	5.0.0
GRCh38	Linux	3.0.0
base	R	4.0.3
Matrix	R	1.4-1
org.HS.eg.db	R	3.12.0
topGO	R	2.42.0
SparseM	R	1.81
GO.db	R	3.12.1
circlize	R	0.4.14
AnnotationDbi	R	1.52.0
graph	R	1.68.0
stringr	R	1.4.0
SeuratWrappers	R	0.3.0
monocle3	R	1.0.0
SingleCellExperiment	R	1.12.0
SummarizedExperiment	R	1.20.0
GenomicRanges	R	1.42.0
GenomeInfoDb	R	1.26.7
IRanges	R	2.24.1
S4Vectors	R	0.28.1
MatrixGenerics	R	1.2.1
matrixStats	R	0.61.0
NMF	R	0.24.0
cluster	R	2.1.3
rngtools	R	1.5.2
pkgmaker	R	0.32.2
registry	R	0.5-1
CellChat	R	1.1.3
Biobase	R	2.50.0
BiocGenerics	R	0.36.1
igraph	R	1.3.0
cowplot	R	1.1.1
ggplot2	R	3.3.5
patchwork	R	1.1.1
dplyr	R	1.0.8
SeuratObject	R	4.0.4
Seurat	R	4.1.0
svglite	R	2.1.0
forcats	R	0.5.1

Supp Table 3 System version information for Linux command line and relevant packages from

R computing environment.

#	EC-1	EC-2	EC-3	EC-4	EC-5
1	MT2A	RGCC	NEAT1	HIST1H1B	MALAT1
2	MT1E	IL32	MT-CO2	HIST1H4C	NEAT1
3	TXN	LXN	HSPA5	UBE2C	VWF
4	SERPINE1	CDC42EP5	APLP2	HIST1H2AG	COL4A1
5	SH3BGRL3	SOX18	MT-CYB	HIST1H1C	HSPG2
6	RPL22L1	PGF	THBS1	HIST1H1D	COL4A2
7	BOLA3	TMSB4X	HSP90B1	CKS2	TCIM
8	HMGA1	TPT1	MT-ATP6	HMGB2	COL18A1
9	S100A6	RPS27	MALAT1	HIST1H3B	DEPP1
10	ANXA2	BTG1	CTGF	HIST1H1E	XIST
11	POLR2E	PNRC1	CYR61	HIST2H2AC	PECAM1
12	PRDX1	GNG11	AHNAK	CDK1	ARGLU1
13	GSTP1	RPL10	EDN1	CCNB1	CLDN5
14	PFN1	C12orf57	MT-CO3	TOP2A	WSB1
15	FKBP11	CALM1	HHIP	TPX2	TCF4
16	ADIRF	NOP53	MT-CO1	KPNA2	RHOB
17	LDHA	RPL28	ITGB1	NUSAP1	UACA
18	PSMD2	RPS28	PTX3	TUBB4B	PXDN
19	PPIA	RPL13	CRIM1	RRM2	MACF1
20	OAZ1	COMMD6	CLEC14A	TUBA1C	PNISR
21	MLLT11	RPL34	MT-ND4	CKS1B	SPTBN1
22	UROD	RPL26	ENG	AURKB	CLEC14A
23	ENO1	RPS4X	EFEMP1	UBE2S	LAMB1
24	FKBP3	RPS8	CKAP4	DLGAP5	THBS1
25	SRGN	RPS15A	MT-ND3	CDC20	NRP2
26	MYL12B	RPL39	SLC3A2	UBE2T	CDH5
27	S100A11	RPS26	SLC7A11	TUBA1B	UTRN
28	EFHD2	SELENOW	PRSS23	HIST1H4E	MYH9
29	VPS29	RPL15	CLDN11	SMC4	MMRN1
30	SDCBP	OST4	FLNB	H2AFZ	GABPB1-AS1
31	DKK1	RPS14	NR2F2	H2AFX	RSRP1
32	VEPH1	ZFAS1	MACF1	TYMS	HLA-B
33	TAF10	CCDC85B	AKAP12	PTTG1	KIAA1551
34	UCHL3	RPS3A	MMRN1	BIRC5	LUC7L3
35	NDUFA3	RPL37	APP	G0S2	RNF213
36	MYL6	RPL30	MCAM	PCLAF	PLK2
37	NDUFB6	GUK1	HMOX1	HMGN2	DLL4
38	IL1RL1	RPL32	ITGA5	STMN1	SOX4
39	NDUFAF2	RPL22	CD59	HMGB1	APP
40	CTNNAL1	RPS19	MT-ND2	RANBP1	RGCC

Supp Table 4 Top 40 differentially expressed genes for each EC cluster, ordered by fold change over all other clusters (as determined by Seurat). Top 10 differentially genes for each cluster are shown in Fig. 4E.

#	OSC-1	OSC-2	OSC-3	OSC-4	OSC-5	OSC-6	OSC-7	OSC-8
1	CCND1	CLU	SUSD2	TIMP1	AREG	IGFBP2	CENPF	COL3A1
2	ANP32B	MT1X	APOE	IGFBP3	CXCL1	PTX3	CKS2	COL1A1
3	DYNC1LI2	ADIRF	COL4A1	TGFBI	CXCL8	CFD	PTTG1	COL1A2
4	MAP4	DCN	S100A4	MT3	SERPINE1	FN1	UBE2S	IGFBP7
5	HNRNPA1	GLUL	NDUFA4L2	LOX	ANGPTL4	PLAT	HMGB2	C7
6	MAP1B	CD9	CRYAB	COL1A1	PAPPA	COL6A3	TOP2A	MGP
7	S100A11	ADH1B	COL4A2	CTGF	GDF15	DUSP23	CCNB1	COL5A2
8	SH3BGRL3	MT1E	BGN	GLRX	HSPA5	RPS26	ASPM	FBN1
9	NPM1	SFRP1	CCL2	CTHRC1	RALA	COL8A1	UBE2C	PAPPA
10	PTPN11	CAMK2N1	TAGLN	LMCD1	GREM1	STC2	HIST1H4C	COL6A3
11	ZEB1	ID1	ID3	F3	SOD2	CCDC68	TPX2	CXCL2
12	UACA	ADAMTS1	COL6A3	FBXO32	INHBA	GAS6	H2AFZ	COL6A1
13	SET	DUSP1	COL6A1	COL3A1	HMGA2	LEPR	CKAP2	NDUFA4L2
14	MAP4K4	PHLDA1	NR4A1	CCDC80	SLC16A3	SRGN	STMN1	COL5A1
15	KIF1C	C1S	XIST	SPARC	PDLIM4	TXNIP	CDKN3	CXCL1
16	PALLD	MALAT1	LY6K	PLOD2	P4HA2	PLA2G16	TUBB4B	SPARC
17	TCEAL4	C1R	CYR61	SERPINE1	MME	CHST2	MKI67	COL6A2
18	CFL1	CCDC85B	COL6A2	IER3	CDKN1A	ITGBL1	SMC4	LOXL2
19	FKBP1A	PLIN2	C11orf96	COL1A2	CXCL2	PIP	NUSAP1	COL11A1
20	C12orf75	CEBPD	HLA-DRB1	COL5A1	HILPDA	DSEL	CENPE	CXCL3
21	MYL9	TBX3	TNC	NNMT	PLOD2	STMN2	CKS1B	CTGF
22	PFN1	MT1G	ACTA2	GREM1	SPON2	WNT5B	ARL6IP1	HTRA1
23	PPIA	NFKBIA	LOXL2	CTSC	VCAN	CCPG1	HMMR	PCOLCE
24	HSP90AA1	SELENOP	JUNB	THBS1	G0S2	CPM	BIRC5	COL4A1
25	MYL12A	IGFBP6	EMP1	POSTN	UCHL1	THBS1	TUBA1C	C11orf96
26	OAZ1	SPON2	COL8A1	HSD17B1	NDRG1	NPR3	KPNA2	CRLF1
27	MYL12B	MT1M	EPS8	CCL20	UGCG	TFPI	KIF20B	SRGN
28	TFPI2	TXNIP	PDGFRB	HLA-B	PLAUR	LEPROT	TUBA1B	EFEMP1
29	YBX1	SRPX	FOS	INHBA	ERO1A	NUPR1	CCNB2	MT-CO1
30	PTMS	GPX3	MT1M	TPM1	MEG3	RTN4	CDK1	GSTT2B
31	NCL	CTSK	SCUBE3	TFPI2	CCL20	DKK1	CDC20	ID3
32	TMSB4X	LGALS3	SERPINF1	HSD11B1	METRNL	GALNT15	ANLN	COL5A3
33	ATP5F1E	PDE5A	NID1	FKBP11	DCBLD2	TRIB3	DLGAP5	SERPINH1
34	CYCS	TBX2-AS1	NOTCH3	SAT1	TNFAIP6	DNAJC15	AURKA	POSTN
35	TPM4	NR2F1	TINAGL1	RGCC	CALR	EPSTI1	HMGB1	ACTA2
36	EIF5B	CKB	NR2F2	HIF1A	FAM162A	NETO2	MAD2L1	MT-CYB
37	RPL22L1	F2R	MALAT1	LDHA	VEGFA	HTRA1	BUB3	HGF
38	HNRNPA3	CXCL3	LAMC1	RECK	CXCL6	GADD45A	SGO2	COL7A1
39	TPM2	NEAT1	ID1	KDELR3	HIF1A	SLC3A2	JPT1	CXCL8
40	TPM3	PTN	HTRA1	KDELR2	KRT18	LMO7	CENPF	THBS2

Supp Table 5 Top 40 differentially expressed genes for each OSC cluster, ordered by fold

change over all other clusters (as determined by Seurat).

#	ECFC Monolayer	Skin 3D <i>in vitro</i> microvessel network ECs	Skin <i>in vivo</i> ECs
1	MT2A	PHGDH	CD74
2	LGALS1	TAGLN	ZFP36
3	VIM	DDX10	HLA-DRA
4	RPLP1	MPZL2	GNB2L1
5	TMSB10	COL1A1	DARC
6	EEF1A1		SPARCL1
7	FTL		SOD2
8	S100A6		KRT14
9	GAPDH		JUNB
10	RPS2		SOCS3
11	RPL10		HLA-DRB1
12	RPS12		AQP1
13	RPS18		FOS
14	RPL13		NFKBIA
15	RPL41		S100A4
16	RPS3		SPRY1
17	FTH1		SELE
18	RPS19		RGS16
19	MT-CO2		IL6
20	MALAT1		CXCL2

Supp Table 6 Top 10 differentially expressed genes for each culture condition from the Skin EC comparisons (Fig. 6A), ordered by fold change over all other clusters (as determined by Seurat). Only 5 genes were determined to be differentially expressed between the Skin 3D *in vitro* microvessel network ECs compared to all other cells.

#	ECFC Monolayer	Heart 3D <i>in vitro</i> microvessel network ECs	Heart <i>in vivo</i> ECs
1	THBS1	RPS2	MT-RNR2
2	APLN	RPLP0	SPARCL1
3	HHIP	RPL13A	FABP4
4	MCAM	RPS6	TIMP3
5	CYR61	RPL3	MT-RNR1
6	KRT7	RPL12	TXNIP
7	CTGF	RPL15	H19
8	CD99	RPL6	VWF
9	SERPINE1	RPL23A	CD36
10	PLAT	RPL5	CD74
11	PTX3	RPS13	MYL7
12	PPP1R14B	RPL27A	F8
13	TUBA1C	RPL7	ID1
14	AKAP12	RPL31	MTATP6P1
15	RALA	SLC25A6	A2M
16	HMGA1	COL1A1	ACTC1
17	MT2A	RPL22L1	STOM
18	ANKRD1	ТКТ	FLT1
19	CCND1	NNMT	FCN3
20	EDN1	RPL17	AQP1

Supp Table 7 Top 10 differentially expressed genes for each culture condition from the Heart

EC comparisons (Fig. 6B), ordered by fold change over all other clusters (as determined by

Seurat).

#	ECFC Monolayer	Lung 3D <i>in vitro</i> microvessel network ECs	Lung <i>in vivo</i> ECs
1	AKAP12	FTL	TIMP3
2	KRT7	GAPDH	GALNT18
3	TUBA1A	RPLP0	AC073861.1
4	APLN	RPL12	SPARCL1
5	HHIP	FTH1	PTPRM
6	THBS1	TPT1	KIAA1217
7	TUBA1B	RPL17	AQP1
8	JPT1	DCN	PRKG1
9	NES	TIMP1	AFF3
10	ANPEP	TXN	RALGAPA2
11	TUBB4B	IFITM2	MT-RNR2
12	MT-CO2	ТКТ	SLCO2A1
13	MT2A	GLRX	PTPRG
14	MCAM	RAB13	LDB2
15	MT-ND3	RPS4Y1	ADGRL2
16	ANKRD1	MIF	CCL21
17	TUBA1C	NQO1	FCN3
18	PLAT	PTGR1	HSPA1A
19	TFPI2	BNIP3	EPAS1
20	HIST1H4C	HMOX1	MGP

Supp Table 8 Top 10 differentially expressed genes for each culture condition from the Lung EC comparisons (Fig. 6C), ordered by fold change over all other clusters (as determined by Seurat).

# ECFC Monolaver		nPancreas 3D <i>in vitro</i> microvessel	nPancreas in vivo
	,	network ECs	ECs
1	AKAP12	RPL12	SPARCL1
2	APLN	RPS2	MT-RNR2
3	MCAM	RPLP0	TXNIP
4	HHIP	RPS8	MT-RNR1
5	MAP1B	GAPDH	CLPS
6	CCND1	RPS19	PLVAP
7	ANKRD1	ACTG1	CD74
8	CD99	RPS13	ID1
9	CTGF	RPL31	PRSS1
10	THBS1	RPS16	HLA-B
11	PTX3	SLC25A6	FABP5
12	HMMGA1	COL1A1	PRSS2
13	KRT18	COL1A2	A2M
14	LGALS1	SERPINE1	TIMP3
15	TUBA1A	TPM2	REG1A
16	PPP1R14B	TIMP1	ITM2B
17	TUBA1C	EIF4EBP1	CD36
18	RALA	EFEMP1	GSN
19	TUBA1B	FN1	HLA-C
20	APLP2	ZFAS1	TGFBR2

Supp Table 9 Top 10 differentially expressed genes for each culture condition from the nPancreas EC comparisons (Fig. 6B), ordered by fold change over all other clusters (as determined by Seurat).

References

- 1. THE TABULA SAPIENS CONSORTIUM (2022) The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science 376:eabl4896. https://doi.org/10.1126/science.abl4896
- 2. Solé-Boldo L, Raddatz G, Schütz S, et al (2020) Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Communications Biology 2020 3:1 3:1–12. https://doi.org/10.1038/s42003-020-0922-4
- Schupp JC, Adams TS, Jr CC, et al (2021) Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung. Circulation 144:286–302. https://doi.org/10.1161/CIRCULATIONAHA.120.052318