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Supplementary Figure 1. Number and sex of mice per group. (a) Number of APPPS1 mice and WT 
mice in the various groups treated with the BACE1-inhibitor (BI), control-treated (Ctrl), or analyzed at 
baseline (Bsl). See Fig. 1b for group description. The targeted number of mice per group was 10 for the 
young and adult groups and 12-15 for aged groups (i.e., short-term treatment, aged and chronic treatments). 
Slight deviations in numbers are the result of mouse availability from our in-house mouse colony or 
premature death. (Note that there was no difference in deaths between BI- and control-treated mice). 
Previous research has not revealed an obvious sex difference in CSF NfL or Aβ load inAPPPS1 mice19,59, 
and thus both male and female mice were randomly included in the study. (b) Number of mice used for 
the endpoint titration assay to calculate Aβ seeding dose 50 of brain extracts (SD50; see Fig. 3 for details). 
Shown are the numbers of mice with induced Aβ deposition/total number of mice inoculated per group at 
each brain extract dilution for the different groups. In the top rows (black) previously published data of 
untreated APPPS1 mice (number of mice with seeded Aβ deposition/total number of mice in each age 
group13) were incorporated into the present study in line with the 3Rs principles of reducing animal 
numbers. In bold, animals done in the present study. They were included for comparative analysis with the 
previously published numbers to make sure that the current and past inoculations results are in the same 
range. In the bottom rows, the short-term (3 months) BI-treated mice are shown in red while the young-
chronic treated mice are shown in blue. Per group, 6-7 mice were inoculated, except for dilutions where 
seeding could be predicted with high confidence (two dilutions with 1 mouse only). Two groups have only 
4 mice due to the death of mice. (c) SD50 calculations for the BI-treated mice in the present study using 
three different methods. For curve-fitting the s.e.m. is indicated and curve-fitting was used to generate the 
curves in Fig. 3c. 
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Supplementary Figure 2. Aβ load assessed by immunostaining after short-term and chronic BACE1 
inhibition. The same mice were used as in Fig. 2 and outlined in Supplementary Fig. 1a. (a) Total Aβ 
immunostaining in neocortex was determined by stereological analysis, and the results mirror brain Aβ 
load assessed by the immunoassays shown in Fig. 2a. BI treatment caused a significant decrease in Aβ 
immunostaining compared to the respective age-matched control group (ANOVA, ‘young’: F(2, 27)= 
155.8; ‘adult’: F(2, 26)= 7.25; ‘aged’: F(2, 37)= 4.95; all P<0.05;  post hoc Tukey’s multiple comparisons, 
*P<0.05, **P<0.01, ***P<0.001). (b) Cortical Aβ immunostaining in the young-chronic and adult-chronic 
groups was normalized to the 21.5 mo-old control mice of the 3-month treatment group shown in (b). Two-
tailed unpaired t-tests show significantly lowered Aβ-immunostaining in both groups (‘young chronic’: 
t(26)=30.99; ‘adult-chronic’: t(24)=14.77; both ***P<0.001). All data are represented as group means ± 
s.e.m. Open circles are males, filled circles females; no consistent effect of sex was found (see Methods). 
(c) Representative Aβ-immunostained coronal sections (from sets of every 36th section through the 
neocortex) for each of the BI-treated and untreated control groups. Scale bars: 500µm. 
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Supplementary Figure 3. Soluble Trem2 and activated microglia after short-term and chronic 
BACE1 inhibition. The same mice were used as in Fig. 2 and outlined in Supplementary Fig. 1a. (a, b) 
Soluble Trem2 and (c-e) microglial activation in brains of APPPS1 and WT mice. (a) BI treatment for 3 
months caused a significant decrease in soluble Trem2 (sTrem2) compared to the respective age-matched 
control group, and sTrem2 was below baseline in the ‘adult’ and ‘aged’ groups (ANOVA, ‘young’ (F(2, 
27)= 54.04; ‘adult’ F(2, 26)= 12.25; ‘aged’ F(2, 37)= 25.54, all P<0.001; post hoc Tukey’s multiple 
comparisons, ***P<0.001). (b) Brain sTrem2 in the young-chronic and adult-chronic groups were 
normalized to the 21.5 mo-old control mice of the 3-month treatment group shown in (a). Two-tailed 
unpaired t-tests revealed significantly lower brain Aβ levels in the BI-treated mice (‘young chronic’: 
t(26)=17.15; ‘adult-chronic’: t(24)=6.229, both ***P<0.001). BI treatment of transgene-negative WT mice 
had no effect on brain sTrem2. (c) Iba1-immunostained microglia in the cortex of APPPS1 and WT mice 
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were categorized and colored based on size: Red: area <50µm2 (resting); yellow: area 50 to < 80µm2 
(resting-intermediate); green: area 80 to <120µm2 (activated); blue: area ≥120µm2 (activated, plaque-
associated). Representative sections from a 1.5 mo-old APPPS1 mouse (young baseline), two 21.5 mo-old 
APPPS1mice, one control-treated and one BI-treated mouse from 1.5 mo to 21.5 mo of age. Scale bar 
insert, 100µm. (d) Quantitative analysis revealed a significant decrease of the activated (blue) microglia 
over the total section area in BI-treated mice compared to controls, and additionally below baseline in the 
‘adult’ and ‘aged’ groups (ANOVA, ‘young’ (F(2, 26)= 279.9; ‘adult’ F(2, 25)= 18.81; ‘aged’ F(2, 37)= 
12.85 , all P<0.001; post hoc Tukey’s multiple comparisons, *P<0.05, **P<0.01, ***P<0.001). Note that 
one ‘young baseline’ and one ‘adult control’ mouse were excluded because of a processing error. (e) 
Activated (blue) microglia in the young-chronic and adult-chronic groups were normalized to the 21.5 mo-
old control mice of the 3-month treatment group shown in (d). Two-tailed unpaired t-tests revealed 
significantly lower brain Aβ levels in the BI-treated mice (‘young-chronic’ and ‘adult-chronic’ 
t(26)=12.11; P<0.001 and t(24)=2.948; P=0.0070, respectively). BI treatment of WT mice had no effect 
on microglial activation. Note the similarities of the results of sTrem2 and activated microglia to the results 
for total brain Aβ (Fig. 2 and Supplementary Fig. 2). All data are represented as group means ± s.e.m. 
Open circles are males, filled circles females; no consistent effect of sex was found (see Methods). 
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Supplementary Figure 4. CSF Tau after short-term and chronic BACE1 inhibition. CSF Tau was 
measured at baseline and after short-term BI treatment in ‘young’, ‘adult’, and ‘aged’ mice and after 
chronic treatments (see Fig. 1 and Supplementary Fig. 1a for treatment groups and number of mice per 
group – however, note that Tau measurements were performed after CSF NfL and CSF proteome 
measurements for mice with enough CSF remaining. Accordingly, N was 10, 9, 6 for 1,5 mo, 4.5 mo, and 
BI 4.5 mo; 10, 9, 9 for 12 mo, 15 mo, and BI 15 mo; 8, 9, 7 for aged 18.5 mo, 21.5 mo, and BI 21.5 mo; 
12, 11 for young-chronic 21.5 mo and BI 21.5 mo; 14, 11 for adult-chronic 21.5 mo and BI 21.5 mo; 13, 
10 for young-chronic WT 21.5 mo and WT BI 21.5 mo; 12, 12 for adult-chronic WT 21.5 mo and WT BI 
21.5 mo). (a) BI treatment for 3 months completely prevented the Tau increase (note that in the aged group 
less than half of the CSF samples were left for analysis (ANOVA, ‘young’ F(2, 22) = 56.19; P<0.001; 
‘adult’ F(2, 25)= 6.664, P=0.005; ‘aged’ F(2, 21)= 3.552, P=0.05; post hoc Tukey’s multiple comparisons, 
*P<0.05, ***P<0.001. (b) CSF Tau levels in the young-chronic and adult-chronic groups were normalized 
to the 21.5 mo-old control mice of the 3-month treatment group shown in (a). In the adult-chronic group, 
Tau levels were lowered below baseline (i.e. compared to levels at 12 mo of age) while chronic treatment 
fully prevented an increase in CSF Tau, given the tau levels in WT mice (two-tailed unpaired t-tests for 
‘young chronic’: t(21)=9.5; ‘adult-chronic’: t(23)=7.973, both ***P<0.001; ‘young chronic 
WT’: t(21)=0.7996; ‘adult-chronic WT’: t(22)=1.229, both P>0.05). All data are represented as group 
means ± s.e.m. Open circles are males, filled circles females; no effect of sex was found (see Methods). 
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Supplementary Figure 5. CSF proteome after chronic BACE1 inhibition. The CSF of the 21.5 mo-old 
‘young-chronic` (1.5 to 21.5 mo) BI- and control-treated APPPS1 and wildtype (WT) mice was used for 
proteomic analysis (see Fig. 1 for groups; 8 animals from each group were randomly selected for this 
proteomic analysis). (a) Volcano plot comparing the CSF proteome of control-treated APPPS1 vs. control-
treated WT mice (n=8 vs. n=8). Selected proteins are labeled with their UniProt gene names. Note the 
general increase in the abundance of many neurodegenerative markers (orange) such as Nefl, Nefm, Nefh, 
and Mapt (Tau) and inflammation-related proteins (red) such as Trem2, Lag3, Ctsz, and Lyz1 in APPPS1 
mice compared to WT mice. (b) Volcano plot comparing the CSF proteome of 1.5 to 21.5 mo BI-treated 
vs. control-treated APPPS1 mice (n=8 vs. n=8) demonstrate that long-term BI treatment largely prevents 
the changes shown in (a). (c) Volcano plot comparing chronic (life-long) BI-treated APPPS1 mice vs. 
control-treated WT control mice (n=8 vs. n=8). The significant reduction of the well-known BACE1 
substrates (blue) such as Sez6 and Sez6l validates the successful BACE inhibition until old age. For all 
Volcano plots the –log10 of the p-value of each protein is plotted against its log2 fold difference for each 
group comparison. The hyperbolic curves indicate the thresholds of the permutation-based FDR correction 
for multiple hypotheses (p=0.05; s0=0.1). Proteins above the FDR curves (black circles) are significantly 
changed. (d) Dot plots of selected proteins. The protein LFQ intensities were normalized on the average 
of the WT control-treated mice (mean and SD). Note again the increase of Nefl and Mapt, and the 
neuroinflammatory markers sTrem2, Apoe, and Cst7 in APPPS1 mice, as well as the near complete 
normalization of the values by BACE inhibition. The well-known BACE substrate Sez6 shows a decreased 
abundance due to BACE inhibition in both WT and APPPS1 mice, validating the efficacy of BACE1 
inhibition into old age. For detailed proteomic results see Supplementary Data 1. 
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Supplementary Figure 6. Weekly body weights of BACE1-Inhibitor- and control-treated APPPS1 
and wildtype mice. See Fig. 1b for group description and Supplementary Fig. 1 for mouse numbers. (a) 
No difference in body weight was observed in any of the three age groups of APPPS1 mice treated for 3 
months with BI vs. control treatment.  Note that, in the ‘aged’ 18.5 – 21.5 mo-old group, seven longitudinal 
datasets were incomplete. (b, c) Body weight of chronically treated young and adult APPPS1 mice (b) or 
non-transgenic WT mice (c). While BI treatment had no robust effect on body weight in the WT mice, 
apparent opposite changes, depending on the start of the treatment, were noted in the APPPS1 mice. Shown 
are group means ± SD (shaded area). Note that the BI-containing food pellets and control pellets (same 
pellets without the BI) were more nutritious compared to the standard lab chow, and thus animals tended 
to gain weight when switched to the BI-containing food pellets and control pellets. 
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Supplementary Table 1. CSF NfL values of APPPS1 mice and wildtype (WT) mice used to generate 
the curve in Fig. 1a.  

 

 

CSF NfL [pg/mL] in
1.5 mo 3 mo 6 mo 12 mo 18 mo end-stage

APPPS1 63 ±3.4 (n=3) 410 ±30.8 (n=9) 1,255 ±85.8 (n=10) 3,405 ±354 (n=12) 12,475 ±1,446 (n=11) 19,689 ±1,566 (n=9)

61 529 1,170 4,227 5,775 23,562

58 505 1,330 2,078 14,986 25,004

69 318 1,491 2,727 9,559 21,252

416 981 4,466 22,464 18,015

510 1,631 4,718 9,573 15,134

428 1,568 2,926 14,467 14,252

278 1,407 2,415 10,031 14,084

2,583 1,103 1,512 16,296 19,404

379 1,053 3,402 6,727 26,495

323 816 5,474 14,588

4,383 12,754

2,526

1.5 mo 3 mo 6 mo 12 mo 18 mo end-stage*

WT 169 ±7.9 (n=3) 239 ±27.2 (n=6) 438 ±68.9 (n=3) 623 ±57.4 (n=7) 1,290 ±187.4 (n=6) 5,903 ±1,171 (n=6)

155 318 374 606 1,016 11,207

171 162 575 365 926 6,566

182 226 364 651 1,070 4,571

190 603 974 4,935

217 2,025 1,931 5,327

322 888 1,825 2,814

608

642

Mean ±SEM (grey values: significant outliers according to Grubb's test; P<0.05)

*

Age group

Since the mean age of the end stage WT group was 26 months compared to 22 months in the APPPS1 mice, the mean value of CSF NFL for 22-mo-old WT mice was interpolated 

(2,756 pg/mL) based on polynomial curve-fitting (4th degree).
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