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Supplementary Figure 1- Supplementary data related to Figure 1.

(a) iPSDM stimulated with 0.5 mM LLOMe for 1 h, 100 ug/mL silica crystals or beads for 3 h
or infected with Mtb WT or Mtb ARD1 for 48 h. n = 3 independent experiments (b) Same
conditions as in (a) but co-treated with the indicated protease inhibitors. (¢) Quantitative
analysis of Galectin-3 (Gal-3) puncta by confocal imaging. At least 40 cells were counted per
condition. (d) BMM WT, CtsB KO, CtsL KO and CtsS KO were stimulated with 0.5 mM
LLOMe for 1 h and Gal-3 puncta evaluated by confocal imaging. At least 30 cells were counted
per condition. (e, f) iPSDM were stimulated with 0.5mM LLOMe for 1 h, 100 ug/mL silica
crystals for 3 h or infected with Mtb WT for 48 h and cellular viability evaluated using a Cell
Viability Imaging Kit (e) or a Caspase-3 assay kit (f). | mM H>O; for 1h was used as a positive
control. (g) Representative images from one out of three independent experiments showing
iPSDM stained with Caspase-3 assay kit (Caspase-3+ nuclei shown in yellow). (h) Immunoblot
for MFN2, TOM20, TIM23, HSP60 and Citrate synthase (CS) in primary human blood
monocyte-derived macrophages left untreated or treated with 0.5 mM LLOMe for 1h in
presence or absence of PI or BTZ. ACTB levels were used as loading controls (repeated three
times with similar results). (i) Immunoblot for mitochondrial proteins in HeLa, HEK 293T cells
and Eika2 iPSC treated or not with LLOMe for 6 h at the indicated concentrations (repeated
three times with similar results). (j) Immunoblot for total ubiquitin (UB) and mitochondrial
proteins in iPSDM incubated in the presence or absence of 1:400 protease inhibitors, 50 uM
CA074-Me, or 5 nM bortezomib for 1 h (repeated three times with similar results). (k)
Quantitative analysis of mitochondrial area normalized to cellular area in iPSDM after the
indicated conditions. At least 700 cells were counted per condition. (I) Western blot analysis
of mitochondrial proteins in iPSDM WT, ATG7 KO, PRKN KO and PRKN/ATG7 DKO
stimulated with 0.5 mM LLOMe for 1 h. Actin (ACTB) levels were used as loading controls.
(m) Representative electron micrographs of Mtb WT-infected, silica crystals and LLOMe-
treated macrophages. No mitochondrial derived vesicles (MDV) were detected. Mitochondria
counted per condition from at least 19 cells; untreated: 149, LLOMe-treated: 121, Mtb WT
infected: 177 and Silica crystals-treated: 149. Data represent the mean = SEM of three
independent biological replicates. A one-way ANOVA and Tukey post-test was used for
multiple comparisons. **p < 0.01; ***p < 0.001. Images shown are z-stack projections. Scale
bars, 10 um and 1 um for images and zoom-in, respectively. Unprocessed blots and Source data
are provided as a Source Data file.
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Supplementary Figure 2. Quality control of label-free proteomics data generated from
mitochondria isolated by high affinity immunopurification in iPSDM. (a) Representative
images of iPSDM expressing 3XHA-EGFP-OMP25 and immunostained with anti-HA, anti-
OMP25 and anti-TOMZ20 specific antibodies n = 25 cells examined per condition. (b)
Immunoblot for selected organelle markers in iPSDM whole cell lysates or mitochondrial
pulldowns using anti-HA beads from iPSDM expressing 3XHA-EGFP-OMP25 or 3XMYC-
EGFP-OMP25 (repeated three times with similar results). (¢) Immunoblot for mitochondrial
proteins in iPSDM expressing 3XHA-EGFP-OMP25 treated or not with 0.5 mM LLOMe for
1h (repeated three times with similar results). (d) Immunoblot of MITO-tag pulldowns from



iPSDM expressing 3XHA-EGFP-OMP25 treated or not with 0.5 mM LLOMe for 1h.
Mitochondrial protein levels were normalized to HSP60 levels from untreated macrophages
(heatmap). A whole-cell lysate of untreated iPSDM was run as a control (repeated three times
with similar results). (¢) Gene Set Enrichment Analysis (GSEA) of quantitative proteomics
data from HA pulldowns on 3XHA-EGFP-OMP25 versus HA pulldowns on 3xMYC-EGFP-
OMP25-expressing iPSDM under control conditions. The 3XMY C-EGFP-OMP25-expressing
iPSDM served as a negative control in our analysis, and protein lists were ranked based log
fold change. GSEA of GO cellular components was performed using WebGestalt. (f) Boxplots
of normalised log>-transformed intensities from mitochondrial immunoprecipitations (Mito-
IP) before comparison between treatment groups. Plots visualise the mean, with the box bounds
showing the 25th and 75th percentiles and the whiskers the 5th and 95th percentile. (g)
Correlogram of Pearson correlation coefficients of logy-transformed intensities from the
different treatments and replicates used in the Mito-IP analysis. (h) Principal component
analysis of logz-transformed intensities from the different samples used during the Mito-IP
analysis. n=3 independent experiments. Scale bars, 10 um. Unprocessed blots and Source data
are provided as a Source Data file. See also Supplementary Table 1.



a I Il
image acquisition single-cell segmentation

uninfected

Mtb WT

infected

mitochondrial segmentation

22

b v single-mitochondrion/segmentation single-cell quantification
> 8
= 3000 - < 2000
= [Te]
.QE’ zs'; @ 1500
-~ 22 £ 1o
« membrane potential % 2000 © e 2 500
S ’ T
« mito-timer ratio s - s
« hyper-mito ratio - o = 0
« morphology S S = = = c:&b 4&&
s 3 i<t 2 5] N\
§ iTMRM intensity
c &
iPSDM WT ATG7 KO PRKN KO PRKN/ATG7 DKO
S = = kK
z 2 50007 s+ 240007
> 24000 § s > !
g % 2000 L : 3000
£ £ 2000 g 2000 &
= = 1000
z 2 1000 B
E E 0 E 0
- O D
PO PPN
\@\}, < \"00,@@
NS NS
A% A%
d g pre-BAFA1 h
& o & \e
a *okk ** @'b\ K 6\& & W° 0
o ; (LB ok :>; *kk kDa 0& \)’o C)6 \)‘\\‘ \}9 Oé
LL o =4 a4 93
% 8 P % 6 s 8 5 MFN272‘ — - —— — _| > 3000 R
C6 & % ° E 3 TiM2324 5 ’—‘ ”‘
S &4 o2 O, ‘-_---"| £ 2000
o4 o ® 2 18 [ é
2 2o & = = LC3B ‘ —— o 1000
& g 3 o ___F
oY g0 Eo go ACTE 42 St ot e |~ O
= v > D S N N >\ &
0'2"\0 \2"% £ e\e; Q\f?'b é&e O@‘Z’x‘? = 0&%@%‘2 o,z}zoéo\\e’é'z}é&"
R\ & SV SN RO
v Vv ' N
vV
V ‘?(5 v{(\r
N &



Supplementary Figure 3. Supplementary data related to Figures 3. (a) Representative
segmentation strategy using Harmony software (I to IV) in iPSDM is shown to illustrate the
mitochondrial analysis pipeline using single-cell high-content imaging. Images shown are z-
stack projections. (b) Parameters measured by the high content approach and representation
of the mitochondrial heterogeneity per condition and intensity distribution in cells. (¢)
Quantification of iTMRM intensity in iPSDM WT, ATG7 KO, PRKN KO and PRKN/ATG7
DKO. Data represent the mean + SEM of three independent biological replicates. One-way
ANOVA and Tukey post-test was used for multiple comparisons. (d) iPSDM expressing
mitoTimer were treated or not with 100 uM H»O> for 2 h. The dsRed/GFP ratios were quantified
by high-content imaging. (e) iPSDM expressing Hyper-Mito (pHyPer-dMito) were treated or
not with 100 uM H>O; for 1h. The GFPuv/GFP ratios were quantified by high-content imaging.
At least 300 cells were counted per condition. An unpaired two-tail t-test test was used for
comparisons. (f) iPSDM expressing mitoTimer or Hyper-Mito were left untreated or treated
with LLOMe (0.5 mM, 1h) and incubated in the presence or absence of a protease inhibitor
(PI). (g,h) iPSDM were incubated in the presence or the absence of Bafilomycin A1 (BAFA1)
(100 nM, 2h) and treated with LLOMe (0.5 mM, 1h) or silica crystals (100 ug/mL, 3h).
Mitochondrial protein levels were evaluated by WB (g) and iTMRM (h) intensity evaluated by
high-content single-cell microscopy. Data represent mean £ SEM of three independent
biological experiments. **p <0.01; ***p < (0.001. Images shown are z-stack projections. Scale
bars, 10 um. Unprocessed blots and Source data are provided as a Source Data file.
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Supplementary Figure 4. Supplementary data related to Figure 4.

(a) iPSDM expressing GAL-3-RFP and incubated with MitoTracker Deep Red were treated
with 100ug/mL of silica crystals and imaged immediately after stimulation at 1 frame per 10 s.
A selected sequence showing a GAL-3 positive vesicle in proximity of mitochondria is shown.
(b) MitoTracker Deep Red intensity quantification of mitochondrial areas in contact with GAL-



3- positive vesicles or without interaction (GAL-3-negative), illustrated as “I” and “II”,
respectively. Bar plots show data mean values +/- SEM from one out of three independent
experiments with n = 12 events per condition. (¢) Representative electron micrographs of
iPSDM incubated with Snm gold particles and left untreated or treated with 0.5 mM of LLOMe
for 1 h. n = 88 cells examined per condition over three independent experiments. (d)
Quantification of nanogold particles detected per mitochondrion in the indicated conditions.
(e) Heatmap indicating z-score values of lysosomal cathepsins significantly increased in the
MITO-tag pulldown from iPSDM untreated or treated with LLOMe. (f) VDAC oligomerisation
evaluated by WB in iPSDM left untreated or treated with LLOMe (0.5 mM, 1h). (g) Heatmap
with z-score values showing VDAC1, VDAC2 and VDAC3 protein levels. (h) mitochondrial
protein levels of iPSDM pre-incubated with VBIT-4 (10 uM, 6h) or BAI (2 uM, 6 h). Bar plots
show the respective protein levels relative to ACTB from three independent experiments. (i)
iTMRM intensity levels in iPSDM left untreated or treated with LLOMe and incubated with
VBIT-4 or with a protease inhibitor cocktail (PI). Unprocessed blots and Source data are
provided as a Source Data file.
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Supplementary Figure 5. Supplementary data related to Figure 4.

(a) representative images of iPSC, HEK293T, HeLa cells and iPSDM incubated for 3h with
the cathepsin activity-based probe iABP (1uM), n = 3 independent experiments with at least
300 cells evaluated per condition. (b, ¢) high-content single-cell quantification of iABP
lysosomal intensity (b) and iABP puncta per area of cell (c). Results are representative of one
out of three independent experiments with at least 300 cells evaluated per condition. One-way
ANOVA and Tukey post-test was used for multiple comparisons. (d) iTMRM intensity
evaluation in the indicated cell types after 6h of LLOMe ImM (iPSC, HEK293T, HeLa) or
after 1h of LLOMe 0.5mM (iPSDM). (e) Heatmap with z-score values showing mitoproteases
protein levels. (f) YMEI1L1, LONP1 and CLpP protein levels were evaluated by WB in iPSDM,
HeLa, HEK293T and iPSC. Bar plots show protein levels relative to ACTB, n =3 independent
experiments. (g) active cathepsin B, C and L protein levels were evaluated by WB in iPSDM,
HeLa, HEK293T and iPSC (h) bar plots show protein levels relative to ACTB, n = 3
independent experiments. (i, j) iPSDM incubated in the presence or the abscence of the
selective mitochondrial protease inhibitors 1,10-phenanthroline (o-Phe) (1mM, 6 h), TPEN
(0.2 mM, 6 h) or A2-32-01 (CLpP1i) (50 um, 6 h) and treated with LLOMe (0.5mM, 1 h). The
protease inhibitor (PI) treatment was done simultaneously with LLOMe as described before.
After that, mitochondrial protein levels were evaluated by WB (i) and iTMRM intensity
analysed by high-content single-cell microscopy (j). Bar plots represent mean £ SEM of three
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independent biological experiments. Unprocessed blots and Source data are provided as a
Source Data file.
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Supplementary Figure 6. Supplementary data related mitochondria-lysosome interaction
analysis shown in Figure 4.

(a-c¢) Live-cell super-resolution imaging (30 s time frame) of iPSDM transiently expressing
RAB7 WT GFP (a), RAB(Q67L) GFP (b) or LAMPI1-mNeonGreen (c) and incubated with
MitoTracker Deep Red. Arrows indicate mitochondria (M) - lysosome (L) contacts. Scale bars:
10 pm and 1 pm for images and zoom-in, respectively. Source data are provided as a Source
Data file.
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Supplementary Figure 7. Lysosomal leakage affects macrophage metabolism.
(a) Bar graphs show the ratio LLOMe vs untreated of basal OCR and ECAR values of BMDM
WT, CtsB KO, CtsL. KO and CtsS KO stimulated with 0.5 mM of LLOMe for 1 h. (b) BMDM



were treated as in A but ECAR and OCR evaluation started after 2h of removing LLOMe
treatment. Data represent the mean £ SEM of two out of three independent biological replicates.
Values were normalised to cell number. A one-way ANOVA and Dunnett post-test were used
for multiple comparisons vs BMDM WT. (¢) Bar graphs show the basal OCR and ECAR levels
of iPSDM pre-treated with Mito-Tempo (5 uM , 1h )and left untreated or treated with 0.5 mM
of LLOMe for 1 h. A one-way ANOVA and Tukey post-test were used for multiple
comparisons. Values were normalised to cell number. (d, e) Total metabolite abundance (d)
and lipidomics (e) of iPSDM untreated or treated with 0.5 mM of LLOMe for 1 h in the
presence or absence of PI. Values indicate log, fold-change relative to untreated iPSDM. The
number of lipids per class is indicated in red. Student’s t test, n = 5 technical replicates. (f)
Gene expression analysis using NanoString of iPSDM untreated or treated with 0.5 mM
LLOMe for 1 h (g, h) Metabolism-related gene expression analysis using NanoString showing
mitochondrial respiration- (g) or glycolysis- (h) related genes of iPSDM untreated or treated
with 100 ug/mL silica crystals for 4 h or infected with Mtb WT or Mtb ARD1for 48 h. Genes
with log, fold change >1 and p < 0.05 are shown and heatmaps indicate z-score values. Data
is from one representative experiment with three technical replicates. BMP:
bis(monoacylglycero)phosphate, Cer-NDS: ceramide-NDS, Cer-NS: ceramide-NS, CL:
cardiolipin, DG: diacylglycerol, ether-LPC: ether-lysophosphatidylcholine, ether-LPE: ether-
lysophosphatidylethanolamine, ether-PC: ether-phosphatidylcholine, ether-PE: ether-
phosphatidylethanolamine,  ether-PS:  ether-phosphatidylserine,  ether-TG:  ether-
triacylglycerol, LPC: lysophosphatidylcholine, LPE: lysophosphatidylethanolamine, OxTG:
Oxidised Triacylglycerol, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PG:
phosphatidylglycerol, PI: phosphatidylinositol, PS: phosphatidylserine, SM: sphingomyelin,
TG: triacylglycerol. Source data are provided as a Source Data file. See also Supplementary
Table 3.
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Supplementary Figure 8- Single cell RNA-seq analysis of the lung macrophage subsets
after endomembrane damage. (a) Dot-plot showing expression levels of representative genes
for each cluster (b) Cell death-related pathways significantly enriched by the treatment among
the different macrophage populations. Source data are provided in Supplementary Table 5 and
6.

See also https://shiny.crick.ac.uk/033 scrnaseq airspace cells inflammation/865eb86c8ecal/
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Supplementary Figure 9. Cathepsins and M1/M2 transcript levels from the single cell
RNA-seq dataset of lung macrophage subsets after endomembrane damage. (a-e) violin
plots show transcript levels per cluster (left) and experimental condition (right) of the indicated
macrophage polarisation markers. (f-I) violin plots show transcript levels per cluster (left) and
experimental condition (right) of the indicated lysosomal cathepsins. Source data are provided
in Supplementary Table 5 and 6.

See also https://shiny.crick.ac.uk/033 scrnaseq airspace cells inflammation/865eb86c8ecal/






Supplementary Table 1. Comparative analysis of mitochondrial processes using the
iIPSDM MITO-tag dataset.

Heatmap |

Log: fold change of mitochondrial proteins involved in oxidative phosphorylation (A) and
translation in mitochondria (B) for each indicated comparison, p<0.05. Of note that
the overall mitochondrial protein decrease observed after LLOMe treatment is rescued in the
presence of a protease inhibitor (PI) (seen as a positive Log. fold change value in the
LLOMe+Pl vs LLOMe comparison). The MITO-tag data was analysed using
mitoXplorer 2.0! (http://mitoxplorer2.ibdm.univ-mrs.fr/)

Heatmap |1

Logz fold change of mitochondrial proteins involved in oxidative phosphorylation (A) and
translation in mitochondria (B) for each indicated comparison, p<0.05. Of note that
the overall mitochondrial protein decrease observed after LLOMe treatment is rescued in the
presence of a protease inhibitor (PI) (seen as a positive Logz fold change value in the
LLOMe+PI vs LLOMe, and Untreated vs LLOMe comparisons). The MITO-tag data was
analysed using mitoXplorer 2.0 (http://mitoxplorer2.ibdm.univ-mrs.fr/)

1. Marchiano, F., Haering, M. & Habermann, B.H. The mitoXplorer 2.0 update: integrating and
interpreting mitochondrial expression dynamics within a cellular context. Nucleic Acids Res
(2022).


http://mitoxplorer2.ibdm.univ-mrs.fr/
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Supplementary Table 2. References used to annotate the main clusters identified by Single
cell RNA sequencing of BAL samples.

Cluster Representative genes Reference

M1 Itgam, Ccl4, Csf1, Il1b, Arg2, Cxcr2, Cd14 13

M2 Cxcl16, Cd86, Cd74, Ccr5, Clga, Apoe, Fcgrl, Xcrl, 13
Clec9a, Cd83

M3 Cxcrl, Ctsh, Cd68, Cd36, Lipa, Ctsd, Zeb2, Cd84, Itgax, 24
Mertk, Marco

M4 MKki67, Pclaf, Top2a, SiglecF, Cdk1, Cd101, Marco 15

M5 SiglecF, Earl, Ear2, Cidec, Mrc1, Krt79, Car4, Netl, 23,5
Marco

M6 Ifitd, Ifitm3, Ifit2, Irf7, Cxcl10, Ly6e, Trim30a 2

M7 Xist, Zeb2, Mrcl 2,6-8

Alveolar Cxcl17, Mucl, Ly6a, Krt8, Cldn3, Irx2, Sfptc, Ager S

epithelial

T cells Cd3e, Cd3d, Cd27 °

1. Mould, K.J., Jackson, N.D., Henson, P.M., Seibold, M. & Janssen, W.J. Single cell
RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI
Insight 4 (2019).

2. Scott, C.L. et al. The Transcription Factor ZEB2 Is Required to Maintain the Tissue-
Specific Identities of Macrophages. Immunity 49, 312-325 e315 (2018).

3. Zilionis, R. et al. Single-Cell Transcriptomics of Human and Mouse Lung Cancers
Reveals Conserved Myeloid Populations across Individuals and Species. Immunity 50,
1317-1334 1310 (2019).

4. Huang, S.C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative
activation of macrophages. Nat Immunol 15, 846-855 (2014).

5. Travaglini, K.J. et al. A molecular cell atlas of the human lung from single-cell RNA
sequencing. Nature 587, 619-625 (2020).

6. Wang, H. et al. The Long Non-Coding RNA XIST Controls Non-Small Cell Lung
Cancer Proliferation and Invasion by Modulating miR-186-5p. Cell Physiol Biochem
41, 2221-2229 (2017).

7. Sun, Y. & Xu, J. TCF-4 Regulated INcRNA-XIST Promotes M2 Polarization Of
Macrophages And Is Associated With Lung Cancer. Onco Targets Ther 12, 8055-8062
(2019).

8. Xu, X. et al. Silencing of IncRNA XIST inhibits non-small cell lung cancer growth and

promotes chemosensitivity to cisplatin. Aging (Albany NY) 12, 4711-4726 (2020).



	Supplementary_Information
	Supplementary_Table_2
	DataS2.pdf
	Binder1.pdf
	FS5.pdf
	FS6.pdf


	Supplementary_Table_4



