Genomic basis of the giga-chromosomes and giga-genome of tree

peony Paeonia ostii

Yuan *et al*.

Supplementary Fig. 1. Genome assembly of *P. ostii.* **a**, Estimation of *P. ostii* genome size by flow cytometry analysis. **b**, K-mer analysis of *P. ostii* genome by GenomeScope. The heterozygosity was estimated to be 1.5%. **c**, The genome assembly pipeline of *P. ostii*by a combination of sequencing data. **d**, Overview of the Hi-C heatmap of the *P. ostii* genome showing genome-wide all-by-all interactions with in 750 kb. **e**, GC ratio in relation to sequencing depth. Source data are provided as a Source Data file.

Supplementary Fig. 2. Genome annotation and organelle assembly of *P. ostii.* **a**, The annotation pipeline of the tree peony genome. **b**, The assembly pipeline of the *P. ostii* chloroplast. **c**, The assembly pipeline of *P. ostii* mitochondrial sequence.

Supplementary Fig. 3. Circos view of *P. ostii* chloroplast. Source data are provided as a Source Data file.

Supplementary Fig. 4. Circos view of the *P. ostii* **mitochondrial genome.** Source data are provided as a Source Data file.

Supplementary Fig. 5. Gene families of P. ostii. a, Phylogenetic relationships and gene family expansion/contraction on each evolutionary branch. A total of 1327 gene families were substantially expanded, and 3044 gene families were contracted, in peony compared with other plant genomes. The corresponding proportions among the total changes are shown as pie charts. Blue portions of the pie charts represent conserved gene families. Genomes of Amborella trichopoda, Aquilegia coerulea, Carica papaya, Vitis vinifera, Solanum lycopersicum, Nelumbo nucifera, Jatropha curcas, Actinidia chinensis, Kalanchoe fedtschenkoi, Helianthus annuus and Rhodiola crenulate were used for the evolutionary analysis. b, Multispecies coalescent tree of their chloroplast genes. c, Gene numbers in each gene family category in 13 land plant species. d, Venn diagram showing shared orthologous groups among tree peony, grape, K. fedtschenkoi and A. thaliana. Numbers in circles indicate the number of genes in each cluster. e, KEGG pathway functional enrichment of tree peony unique gene families. The statistics for the top 20 pathways are shown. Q values represent the significance of enrichment. Circles indicate the target genes, and the size is proportional to the number of genes. f, The KEGG pathway functional enrichment of tree peony showed significant results related to expanded gene families. The statistics for the top 20 pathways are shown. Q values represent the significance of enrichment. Circles indicate the target genes, and the size is proportional to the number of genes. Source data are provided as a Source Data file.

Supplementary Fig. 6. Phylogenetics of *P. ostii.* **a**, Estimation of *P. ostii* divergence time. The blue numbers on the nodes are divergence times from present, MYA. Red dots represent the calibration time. **b**, Multispecies coalescent tree of CDSs by the ASTRAL-based method. **c**, Multispecies coalescent tree of protein sequences by the ASTRAL-based method. **d**, Multispecies coalescent tree of CDSs by the MrBayes method. **e**, Ks distribution of tree peony, grape, *Arabidopsis* and wheat A genome. The Ks value is from reciprocal best gene pairs. **f**, The length distribution of gene elements of tree peony and three other species. **g**, ChIP-seq analysis of the average depth of gene and TE elements, as well as expressed and non-expressed genes in the peony intergenic region and the 2k bp external region.

AIT FIY

тјн ASIL

Supplementary Fig. 7. Genetic and genomic analysis of histones. Phylogenetic analysis of histones H1(**a**), H2A(**b**), H2B(**c**), H3(**d**), and H4(**e**). The subfamilies of H2A and H3 are annotated. **f**, distributions of histones on the five giga-chromosomes of *P. ostii.* **g**, Variation of four amino acids from H3.1 and H3.3 in *P. ostii, A. thaliana, Z. mays* and *G. biloba*. Source data are provided as a Source Data file.

b

Expected $-\log_{10}(P)$

Supplementary Fig. 8. GWAS analysis of *P. ostii* **traits. a**, Distribution of the collected tree peony samples. The samples were mainly collected from five locations: 'Bozhou', 'Heze', 'Luoyang', 'Shaoyang' and 'Tongling'. **b**, Quantile-quantile plot of the -log10(p) of the markers for the trait C18:0/C18:1^{Δ 9}. **c**, Phylogenetic analysis of *SAD* genes in *P. ostii* and representative plants. **d**, Diversity distribution of genes in a 6 Mb region of chromosome 3. **e**, Quantile-quantile plot of the -log10(p) of the markers for the trait C18:1^{Δ 9}/C18:2^{Δ 9,12}. **f**, Phylogenetic analysis of *FAD2* genes in *P. ostii* and representative plants. Source data are provided as a Source Data file.

d

С

f

D

Supplementary Fig. 9. Real-time qPCR validation of the expression of fatty acid biosynthesis-related genes (a-f), at varying scales. Three replicates for each gene were performed. Data are presented as mean values +/- SEM.

b

Supplementary Fig. 10. Validation of omega-3 desaturase *FAD3* expression. a, Expression of GFP-tagged *FAD3* protein *in vitro*. Subnuclear localization confirmed its high expression in the ER. Scale bar for all micrographs, 10 µm. Three times of each experiment was repeated independently. b, GC-MS analysis of fatty acid accumulation in the yeast expression products. From top left to bottom right: transgenic yeast pY31, transgenic yeast pY33, transgenic yeast pY34, GFP-transgenic yeast pYgfp, yeast empty vector INVSc1, structure of the new product. The individual peaks are labelled as 1, C16:0, 2, C16:1, 3, C18:0, 4, C18:1^{Δ9}, 5, IS, 6, C18:2^{Δ9,12} and 7, C18:3^{Δ9,12,15}.

Flower primordia satge

Bracts primordial stage

Sepal

stage

Stamen Petal primordial primordial . stage stage

Squaring stage

Pos.gene61586 Pos.gene62577 psu.T.00019156.1 Pos.gene21576 psu.T.00029581.1 psu.T.00018021.1 Pos.gene21574 D

В

Supplementary Fig. 11. Petaloid-stamens of *P. ostii.* **a**, Flowering differentiation and development in *P. suffruticosa*. **b**, Phylogenetic tree of genes in the ABCE model identified from *P. suffruticosa* transcriptomic data based on Bayesian methods. **c**, Phylogenetic analysis of *MADS-box* genes in *P. ostii* with RAxML methods. **d**, The rate of evolution of ABCE genes in *P. ostii* and *P. suffruticosa*. Source data are provided as a Source Data file.

Supplementary Fig. 12. Cloning PoAP1 and PoAG from *P. suffruticosa.* **a**, Agarose gel electrophoresis analysis of *PoAP1* (lanes 13-16). Three times of each experiment was repeated independently. **b**, Agarose gel electrophoresis analysis of *PoAG* (lanes 10-12). Three times of each experiment was repeated independently. **c**, Bacterial liquid PCR screening of positive clones of *PoAP1* and *PoAG*. Three times of each experiment was repeated independently. **d**, Domain analysis of the *PoAP1* cloning fragment. **e**, Domain analysis of the *PoAG* cloning fragment. M, DNA marker DL1000.

Clean reads length(bp)	Clean data(bp)	Depth(X)
100	74,390,370,000	6.19
125	257,499,996,500	21.44
125	246,291,814,500	20.51
125	165,689,612,000	13.79
230	469,803,490,302	39.12
230	451,138,298,378	37.56
49	305,980,362,212	25.48
49	398,447,818,076	33.18
49	195,335,363,902	16.26
49	241,475,980,466	20.1
49	168,412,894,650	14.02
	2,974,466,000,986	247

Supplementary Table 1. Statistics of Illumina sequencing data.

PacBio SMRT seq	Total bases (Gb)	Average read length (bp)	N50 length	Quality	Depth (X)
RSII	277.64	9,122	11,882	85%	23.12
Sequel	366.03	11,114	17,315	85%	30.48
Total	643.67	10,118	14,598	85%	53.6

Supplementary Table 2. Statistics of PacBio SMRT sequencing data.

Library	Reads	Bases(Gb)
MuDan1	493,949,008	148.18
MuDan14	501,130,687	150.34
MuDan15	493,013,302	147.9
MuDan2	500,858,291	150.26
MuDan22	491,109,060	147.33
MuDan22	883,333,067	265
MuDan22	3,577,983,239	1073.39
MuDan3	499,220,075	149.77
Total	8,323,929,796	2497.18

Supplementary Table 3. Statistics of Hi-C sequencing data.

	Contig		Scaff	old
	Size(bp)	Number	Size(bp)	Number
N90	953	3,499,042	1,719	831,674
N80	1,487	2,449,365	6,583	370,597
N70	2,139	1,744,777	14,165	212,051
N60	2,971	1,247,300	25,234	131,571
N50	3,923	880,475	40,128	83,430
Longest	74,358	-	859,102	-
Total length	12,531,002,549	-	15,273,082,638	-
Total number(>=100bp)	-	5,621,609	-	2,512,319
Total number(>=2000bp)	-	1,861,113	-	734,024
GC rate	0.444	-	0.291	-

Supplementary Table 4. Statistics of assembly results with only Illumina data.

	Contig		Scaffe	old
	Size(bp)	Number	Size(bp)	Number
N90	41,010	80,832	41,010	80,832
N80	79,429	55,382	79,429	55,382
N70	116,779	40,027	116,779	40,027
N60	157,008	29,048	157,008	29,048
N50	202,017	20,692	202,017	20,692
Longest	2,255,483	-	2,255,483	-
Total length	14,887,887,589	-	14,887,887,589	-
Total number(>=100bp)	-	173,510	-	173,510
Total number(>=2000bp)	-	173,510	-	173,510
GC rate	0.325	-	0.325	-

Supplementary Table 5. Statistics of assembly results with only PacBio data.

	Conti	g	Scaffol	d
	Size(bp)	Number	Size(bp)	Number
N90	52,999	56,804	537,246	8,294
N80	95,741	39,886	794,418	6,392
N70	137,070	29,204	1,018,147	5,002
N60	181,553	21,434	1,208,328	3,870
N50	230,474	15,430	1,411,215	2,908
Longest	2,235,459	-	8,263,262	-
Total length	12,276,358,983	-	12,553,866,585	-
Total number(>=100bp)	-	117,510	-	12,779
Total number(>=2000bp)	-	117,206	-	12,779
GC rate	0.328	-	0.321	-

Supplementary Table 6. Statistics of assembly results with Illumina data and PacBio data.

	Contig	Ţ	Scaffol	d
	Size(bp)	Number	Size(bp)	Number
N90	52,842	57,224	1,784,695,063	5
N80	95,212	40,237	1,784,695,063	5
N70	136,089	29,494	2,248,995,167	4
N60	180,049	21,667	2,432,486,241	3
N50	228,382	15,612	2,432,486,241	3
Longest	2,235,459	-	2,562,065,589	-
Total length	12,276,358,983	-	12,332,046,983	-
Total number(>=100bp)	-	117,978		6,602
Total number(>=2000bp)	-	117,674		6,315
GC rate	0.328	-	0.326	

Supplementary Table 7. Statistics of assembly results incorporated with Hi-C data.

	Complete BUSCOs	Fragmented BUSCOs	Missing BUSCOs
Hybrid corrected scaffolds	1298 (90.1%)	62 (4.3%)	80 (5.6%)

Supplementary Table 8. Genome completion evaluation using Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis.

	-		8	11 8
PE library	Lane	Mapped reads	Total reads	Mapped reads percent (%)
180bp	DES00030_L1	116,282,738	130,875,722	88.85
300bp	DES00033_L6	66,871,214	75,913,650	88.09
500bp	DES00015_L4	80,661,596	93,691,966	86.09
Total		263,815,548	300,481,338	87.8

Supplementary Table 9. Genome completion evaluation using Illumina read mapping rates.

	•		-			
Sample	Total raw reads (Mb)	Total clean reads (Mb)	Total clean bases (Gb)	Clean reads Q20 (%)	Clean reads Q30 (%)	Clean reads ratio (%)
Apical	70.47	70.34	10.55	87.72	73.84	99.82
Carpel	67.78	67.61	10.14	86.95	72.93	99.75
Leaf	65.54	65.45	9.82	90.55	78.45	99.85
Petal	67.4	67.25	10.09	88.34	75.55	99.78
Pistil	60.93	60.79	9.12	88.34	75.64	99.76
Seed	74.27	74.14	11.12	87.8	74.09	99.82
Stamen	69.96	69.81	10.47	89.45	77.19	99.79
Stem	70.26	70.1	10.52	88.85	76.41	99.77

Supplementary Table 10. Statistics of Illumina transcriptome sequencing data.

Resource type	Tissue	Insert size	Number of reads pairs (Mb)	Percent aligned
Illumina, PE	Apical	446	76.65	78.73%
Illumina, PE	Carpel	502	57.56	79.45%
Illumina, PE	Leaf	474	49.15	80.58%
Illumina, PE	Petal	485	41.31	80.52%
Illumina, PE	Pistil	489	45.02	79.72%
Illumina, PE	Seed	464	68.6	78.50%
Illumina, PE	Stamen	471	47.43	80.14%
Illumina, PE	Stem	480	45.4	80.89%

Supplementary Table 11. Genome completion evaluation using mapping coverage of the transcriptome.

Chromosome	Length (bp)
Chr01	2,562,065,589
Chr02	2,248,995,167
Chr03	1,784,695,063
Chr04	2,46,5308,516
Chr05	2,432,486,241

Supplementary Table 12. Statistics of the five assembled chromosomes of *P. ostü*.

Gene set	Number of genes	Average gene length (bp)	Average CDS length (bp)	Average exon per gene	Average exon length (bp)	Average intron length (bp)
Arabidopsis thaliana	62,725	5858.23	671.78	2.18	307.99	4390.82
Carica papaya	62,613	5726.6	555.06	2.29	241.87	3993.76
Malus x domestica	58,511	6827.31	607.62	2.49	243.71	4165.23
Kalanchoe fedtschenkoi	61,539	5735.25	560.98	2.33	241.21	3903.11
Vitis viniferea	57,794	6804.56	597.93	2.7	221.26	3645.91
RNA-Seq	57,566	11334.86	1707.76	4.62	369.84	2661.19
Iso-Seq	27,576	11484.47	1895.76	5.05	375.14	2365.54
Final gene set	73,177	8222.43	794.61	4.63	203.68	2001.82
High confidence genes	55,998	8195.43	858.22	4.71	218.4	1927.52
Low confidence genes	17,179	8310.4	587.26	4.37	151.91	2268.98
High confidence genes anchored to the chromosome	54,451	7760.1	852.17	4.65	220.54	1843.81
Low confidence genes anchored to the chromosome	16,244	7466.19	569.16	4.25	151.73	2100.67

Supplementary Table 13. Statistics of gene annotation of *P. ostii*.

		Number	Percent (%)
Total genes anchored to chromosome		70,695	/
	InterPro	53,256	75.33%
	GO	33,541	47.44%
Annotated	KEGG	45,399	64.22%
	Swissprot	46,857	66%
	TrEMBL	58,258	82.41%
	Nr	58,844	83.24%
	KOG	46,376	65.60%
Total annotated		59,768	84.54%

Supplementary Table 14. Statistics of gene functional annotation of *P. ostii*.

Туре	Number	Ratio
Complete BUSCOs (C)	1,231	85.50%
Complete and single-copy BUSCOs (S)	1,138	79.00%
Complete and duplicated BUSCOs (D)	93	6.50%
Fragmented BUSCOs (F)	91	6.30%
Missing BUSCOs (M)	118	8.20%
Total BUSCO groups searched	1,440	/

Supplementary Table 15. Evaluation of gene set using BUSCO single-copy orthologs.

Dethmor	Sample	Background	D voluo	0 valua	Dethway ID
ramway	11,586	42,764	<i>r</i> -value	Q-value	Falliway ID
Ribosome biogenesis in eukaryotes	257	595	3.62E-23	4.52E-21	ko03008
Ubiquitin mediated proteolysis	332	856	3.77E-20	2.36E-18	ko04120
ABC transporters	206	508	2.57E-15	9.18E-14	ko02010
Other types of O-glycan biosynthesis	78	139	2.94E-15	9.18E-14	ko00514
Ribosome	791	2583	1.78E-12	4.46E-11	ko03010
Isoflavonoid biosynthesis	48	87	1.29E-09	2.68E-08	ko00943
Flavonoid biosynthesis	109	263	1.93E-09	3.45E-08	ko00941
Biotin metabolism	58	115	2.62E-09	4.09E-08	ko00780
Fatty acid biosynthesis	111	275	8.11E-09	1.13E-07	ko00061
Fatty acid degradation	99	260	1.27E-06	1.59E-05	ko00071
Benzoxazinoid biosynthesis	36	71	2.20E-06	2.50E-05	ko00402
Fatty acid metabolism	152	440	2.48E-06	2.58E-05	ko01212
Glycolysis / Gluconeogenesis	209	661	3.51959E-05	3.38E-04	ko00010
Alpha-linolenic acid metabolism	98	298	0.000938886	8.38E-03	ko00592

Supplementary Table 16. Significantly enriched KEGG pathway of *P. ostii* unique gene families (Q value < 0.01).

	Sample	Background		0	
Pathway	1,391	42,764	<i>P</i> -value	Q-value	Pathway ID
Pyrimidine metabolism	96	834	7.65E-27	6.04E-25	ko00240
RNA polymerase	66	467	1.18E-23	4.64E-22	ko03020
Sulfur metabolism	29	115	5.00E-18	1.32E-16	ko00920
Metabolic pathways	472	10264	1.33E-17	2.62E-16	ko01100
Tryptophan metabolism	39	234	5.37E-17	8.48E-16	ko00380
Photosynthesis	68	697	1.25E-15	1.65E-14	ko00195
Oxidative phosphorylation	107	1501	3.69E-14	4.17E-13	ko00190
Linoleic acid metabolism	26	126	4.62E-14	4.56E-13	ko00591
RNA degradation	62	693	1.06E-12	9.30E-12	ko03018
Caffeine metabolism	10	17	2.03E-11	1.60E-10	ko00232
Purine metabolism	67	847	3.26E-11	2.34E-10	ko00230
Protein processing in endoplasmic reticulum	89	1390	1.35E-09	8.86E-09	ko04141
Arachidonic acid metabolism	16	124	2.89E-06	1.76E-05	ko00590
DNA replication	26	307	1.03E-05	5.80E-05	ko03030
Fatty acid elongation	14	118	3.11E-05	1.64E-04	ko00062
Mismatch repair	16	166	0.00011221	5.54E-04	ko03430
Glyoxylate and dicarboxylate metabolism	31	480	0.000271767	1.26E-03	ko00630

Supplementary Table 17. Significantly enriched KEGG pathway of *P. ostii* expanded gene families (*Q* value < 0.01).

Carbon fixation in photosynthetic organisms	34	554	0.000360454	1.58E-03	ko00710
N-Glycan biosynthesis	13	135	0.000481597	2.00E-03	ko00510
Spliceosome	52	990	0.000564423	2.18E-03	ko03040
Phenylalanine metabolism	18	230	0.000580427	2.18E-03	ko00360
Ubiquitin mediated proteolysis	44	856	0.002165832	7.78E-03	ko04120

	Type Copy Average lengt		Average length(bp)	Total length(bp)	% of genome	
J	miRNA	122	126.51	15,434	0.000123	
	tRNA	3,381	74.47	251,784	0.002006	
	rRNA	17,284	105.25	1,819,163	0.014491	
	18S	481	1009.19	485,419	0.003867	
rRNA	28 S	1,005	130.05	130,701	0.001041	
	5.8 S	276	148.84	41,081	0.000327	
	5 S	15,522	74.86	1,161,962	0.009256	
	snRNA	2,030	130.94	265,803	0.002117	
	CD-box	724	104	75,293	0.0006	
SIIKINA	HACA-box	94	126.7	11,910	0.000095	
	splicing	1,212	147.36	178,600	0.001423	

Supplementary Table 18. Statistics of Non-coding RNA annotation of *P. ostii*.

Species	Number of genes	Genes in families	Unclustered genes	Number of gene families	Unique families	Average genes per family
Paeonia ostii	54432	34798	19634	15238	3098	2.28
Arabidopsis thaliana	27342	23659	3683	12602	612	1.88
Vitis vinifera	29385	22991	6394	13747	661	1.67
Kalanchoe fedtschenkoi	30964	25386	5578	13992	528	1.81
Amborella trichopoda	25628	19183	6445	12340	869	1.55
Aquilegia coerulea	30023	24326	5697	13469	917	1.81
Carica papaya	27681	20839	6842	13529	563	1.54
Jatropha curcas	43885	37548	6337	14210	1221	2.64
Solanum lycopersicum	34726	26596	8130	13881	896	1.92
Nelumbo nucifera	40348	28743	11605	14606	1242	1.97
Actinidia chinensis	39040	27330	11710	13226	1059	2.07
Rhodiolacrenulata	31517	24225	7292	13281	775	1.82
Helianthus annuus	52213	39851	12362	14744	2148	2.7

Supplementary Table 19. Comparison of gene families clustered by OrthoMCL in 13 species.

Note: Un-clustered genes refer to special gene of current species; Unique families refer to special gene families of current species.

Class	Latin name	Common name	Genome size (Mb)	WGD event	Reference
coniferophyt	Pinus lambertiana	Sugar pine	31000	No information	1
coniferophyt	Pinus taeda	Loblolly pine	21600	No information	2
coniferophyt	Picea abies	Norway spruce	19700	No recent WGD	3
coniferophyt	Abies alba	European silver fir	17360	No information	4
monocotyledon	Triticum aestivum	Bread wheat, AABBDD- genome	17000	No information	5
monocotyledon	Triticum aestivum	Bread wheat, AABBDD- genome	Bread wheat, AABBDD- genome 17000		6
monocotyledon	Triticum aestivum	Bread wheat, AABBDD- genome	17000	No information	7

Supplementary Table 20. List of sequenced plant species with megagenome over 10G.

coniferophyt	Pseudotsuga menziesii	Douglas-fir	16100	No information	8
monocotyledon	Allium sativum	Garlic	16000	Three WGD events	9
monocotyledon	Aloe vera	True aloe 14000		No information	10
rosid	Paeonia suffruticosa	Moutan peony	13800	No information	11
monocotyledon	Triticum turgidum	Wild emmer, AABB- genome	12000	No information	12
monocotyledon	Triticum turgidum	Wild emmer, AABB- genome	12000	No information	13
monocotyledon	Triticum turgidum	Wild emmer, AABB- genome	12000	No information	14
coniferophyt	Ginkgo biloba	Ginkgo tree	11750	An ancient WGD & a recent WGD	15
charophyt	Ceratopteris richardii	Triangle waterfern	11250	Three WGD events	16

Types	Sub-types	Number	Percentage
Total gene pairs	/	5,294	100%
Exon number	One single vs One multiple	347	13.11%
Flanking sequence similarity	Both 5' and 3' flanking similar	187	7.06%
	Only 5' flanking similar	316	11.94%
	Only 3' flanking similar	388	14.66%
	Total	891	33.66%
	Both 5' and 3' flanking overlapped	2,515 (genes)	47.51%
Flanking acquance evenlar with TF	Only 5' flanking overlapped	1,054 (genes)	19.91%
Flanking sequence overlap with TE	Only 3' flanking overlapped	1,011 (genes)	19.10%
	Total	4,580 (genes)	86.51%
Total	/	4,944 (genes)	93.39%

Supplementary Table 21. Statistics of recently duplicated gene pairs (Ks<0.2).

Dothwoy	Sample	Background	D voluo	0 voluo	Pathway ID	
Ташwау	4,710	44,028	I -value	Q-value		
Glutathione metabolism	78	410	3.53E-07	3.74E-05	ko00480	
Isoquinoline alkaloid biosynthesis	31	113	5.93E-07	3.74E-05	ko00950	
Tyrosine metabolism	50	260	3.04E-05	1.27E-03	ko00350	

Supplementary Table 22. Significantly enriched KEGG pathway of *P. ostii* recently duplicated gene pairs with Ks<0.2 (*Q* value < 0.01).

		Number	Length (bp)	% of repeats	% of genome
Class I : Retroelement	t				
	LTR Retrotransposon	5,305,122	5,397,346,348	64.08%	42.99%
	Ty1/Copia	488,008	447,924,151	5.32%	3.57%
	Ty3/Gypsy	4,736,657	4,852,220,121	57.61%	38.65%
	Others	80,457	97,202,076	1.15%	0.77%
	Non-LTR Retrotransposon	1,164,287	1,297,371,684	15.40%	10.33%
	LINE	1,158,633	1,289,849,060	15.31%	10.27%
	SINE	5,654	7,522,624	0.09%	0.06%
Class II: DNA transpo	Class II: DNA transposon		1,441,833,555	17.12%	11.49%
	CMC	1,074,409	1,252,447,289	14.87%	9.98%
	Helitron	54,410	67,916,038	0.81%	0.54%
	MULE	56,381	43,574,750	0.52%	0.35%
	DNA	38,354	21,985,718	0.26%	0.18%
	hAT	35,977	21,840,392	0.26%	0.17%
	TcMar	27,456	13,694,386	0.16%	0.11%
	Others	52,219	20,374,982	0.24%	0.16%
Tandem repeats		1,382,437	282,282,662	3.35%	2.25%
Unknown		2,513	3,541,817	0.04%	0.03%
Total repeat		9,193,565	8,422,376,066	100.00%	67.09%

Supplementary Table 23. Statistics of TE content in P. ostii.

Mya	All	Gypsy (RLG)	Copia (RLC)	Other (RLX)	All%	Gypsy (RLG)%	Copia (RLC)%	Other (RLX)%
0	298	194	100	6	0.002960108	0.002096663	0.01304121	0.010526316
0.5	6615	6001	516	99	0.065708439	0.064856044	0.067292645	0.173684211
1	14958	13846	951	159	0.148581532	0.14964119	0.124021909	0.278947368
1.5	17148	15984	1083	117	0.170335346	0.172747709	0.141236307	0.205263158
2	16653	15467	1167	83	0.165418388	0.167160211	0.152190923	0.145614035
2.5	12928	11912	986	38	0.128417038	0.128739409	0.128586333	0.066666667
3	10268	9419	827	26	0.101994596	0.101796213	0.107850809	0.045614035
3.5	7717	7025	672	19	0.076654879	0.075922964	0.087636933	0.033333333
4	5751	5217	515	15	0.057126113	0.056382933	0.067162233	0.026315789
4.5	3833	3478	344	3	0.038074142	0.037588622	0.044861763	0.005263158
5	2385	2116	261	3	0.023690798	0.022868753	0.034037559	0.005263158
5.5	1249	1101	146	2	0.012406627	0.011899101	0.019040167	0.003508772
6	625	559	66	0	0.00620828	0.006041414	0.008607199	0
6.5	221	187	33	0	0.002195248	0.00202101	0.004303599	0
7	23	22	1	0	0.000228465	0.000237766	0.000130412	0

Supplementary Table 24. Estimated insertion time of LTR superfamilies.

Gene	TE type					
Pos.gene35945						
Pos.gene69301						
Pos.gene69409	LTR					
Pos.gene54975	LTR					
Pos.gene9181	LTR					
Pos.gene62825	LTR					
Pos.gene61792	LTR					
Pos.gene32751	LTR					
Pos.gene3371	LINE					
Pos.gene25399	LINE					
Pos.gene40934	DNA					
Pos.gene43908	DNA					
Pos.gene20873	DNA					
Pos.gene33719	LTR	DNA				
Pos.gene13446	LTR	DNA				
Pos.gene3374	LTR	DNA				
Pos.gene47467	LTR	DNA				
Pos.gene20246	LTR	DNA				
Pos.gene5247	LTR	DNA				
Pos.gene28058	LTR	DNA				
Pos.gene83610	LTR	DNA				
Pos.gene8253	LTR	DNA				
Pos.gene47462	LTR	LINE				
Pos.gene24155	LTR	DNA	LINE			
Pos.gene36610	LTR	DNA	LINE			
Pos.gene71337	LTR	DNA	LINE			
Pos.gene79909	LTR	DNA	LINE			
Pos.gene32755	LTR	DNA	LINE			
Pos.gene69412	LTR	DNA	LINE			
Pos.gene35983	LTR	DNA	LINE			
Pos.gene8807	LTR	DNA	LINE			
Pos.gene55478	LTR	DNA	LINE			
Pos.gene54974	LTR	DNA	LINE			
Pos.gene61791	LTR	DNA	LINE			
Pos.gene69414	RC	DNA	LINE			
Pos.gene46122	LTR	RC	LINE			
Pos.gene30188	LTR	DNA	LINE	RC		
Pos.gene27552	LTR	DNA	LINE	RC		

Supplementary Table 25. Statistics of flanking regions of H3.1 genes overlapping with TEs.

Supplementary	Table 26.	Statistics of	` <i>P.ostii</i> traits	in in	dividual	years.
						-/

Trait name	Short name	2016	2017	2018	2019	Mean
Content of alpha-linolenic acid (C18:3 ^{△9,12,15})	ALA	114.2±25.89	128.52±39.64	67.48±21.42	133.99±57.88	$109.24{\pm}19.8$
Content of linoleic acid (C18:2 ^{Δ9,12})	LA	74.31±18.95	62.96±17.04	42.44±15.14	68.08±28.73	59.71±10.82
Content of oleic acid (C18:1 ^{△9})	OA	55.62±11.41	44.25±8.43	34.33±10.79	48.14±17.34	44.21±5.96
Content of steric acid (C18:0)	SA	2.95±0.77	3.55±0.9	3.34±1.09	2.86±1.17	3.14±0.57
Content of palmitic acid (C16:0)	PA	11.71 ± 4.09	9.81±1.62	10.59±4.19	10.62 ± 3.47	10.42 ± 1.48
Content of multiple fatty acids (PA±SA±OA±LA±ALA)	MFA	258.77±53.66	249.09±54.05	144.26±44.83	263.67±100.53	226.02±36.85
Content of total fatty acids	TFA	261.99 ± 54.38	249.09 ± 54.05	159.32 ± 48.34	263.67±100.53	230.75±37.23
Proportion of C18:2∆9,12/C18:3∆9,12,15	LAALA	0.6616 ± 0.1574	$0.5155 {\pm} 0.1678$	0.636 ± 0.1228	0.5361 ± 0.1517	0.5574±0.1249
C18:1 ^{Δ9} /C18:2 ^{Δ9,12}	C1819C182912	$0.7709 {\pm} 0.1457$	$0.7368 {\pm} 0.1855$	0.828 ± 0.1385	0.746 ± 0.1698	0.7717±0.1227
C18:0/C18:1 ^{Δ9}	C180C1819	$0.0542{\pm}0.0137$	0.083 ± 0.0266	$0.1003 {\pm} 0.0306$	$0.0637 {\pm} 0.0266$	0.0812±0.0332
C16:0/C18:0	C160C180	4.07±1.42	-	3.87±6.83	-	3.51±0.91
Content of Unsaturated fatty acids (OA±LA±ALA)	UFA	243.97±49.57	235.74±53.03	144.26±44.83	250.2±97.44	216.12±35.89
Content of Saturated fatty acids (PA±SA)	SFA	14.65 ± 4.44	13.36±2.12	13.93±4.63	13.47±4.32	13.76±2.14
Proportion of Unsaturated fatty acids/ Saturated fatty acids	US	17.21±2.23	17.81±3.64	10.54±2	18.66±5.71	15.83±2.3

Supprementally Tuble 27. Entrened pathway of anterental expressed ge	nes auring endosp	
Pathway	Pathway ID	Gene number
Alpha-linolenic acid metabolism	ko00592	17
Fatty acid biosynthesis	ko00061	34
Fatty acid metabolism	ko00071	56
Biosynthesis of unsaturated fatty acids	ko01040	44
Glycerolipid metabolism	ko00561	50
Glycerophospholipid metabolism	ko00564	65
Fatty acid elongation in mitochondria	ko00062	3
Inositol phosphate metabolism	ko00562	55
Glycosyl phosphatidylinositol(GPI)-anchor biosynthesis	ko00563	14
Ether lipid metabolism	ko00565	22
Arachidonic acid metabolism	ko00590	11
Sphingolipid metabolism	ko00600	24
Glycosphingolipid biosynthesis - globo series	ko00603	10
Glycosphingolipid biosynthesis - ganglio series	ko00604	4
Steroid biosynthesis	ko00100	27

Supplementary Table 27. Enriched pathway of differential expressed genes during endosperm maturation.

Veest	T/°C							
reast		16:0	16:1 ^{∆9}	18:0	18:1 ^{∆9}	18:2 ^(9,12)	18:3 ^(9,12,15)	% Conversion
	28	19.30±0.09	16.46±0.14	6.39±0.14	11.21±0.06	39.73±0.06	_	—
	25	10.29±0.06	39.28±0.22	6.88 ± 0.02	32.33±0.21	7.04 ± 0.48	_	—
pY31	20	10.39±0.50	43.84±0.58	5.82 ± 0.26	29.52±0.23	5.06±0.23	1.20 ± 0.02	19.24±0.83
(PoFAD3_1)	15	10.98±0.60	49.63±0.68	3.91±0.22	27.25±0.43	3.05±0.25	2.86 ± 0.25	48.38±3.85
	10	14.38±0.28	41.29±0.11	4.42±0.15	22.99±0.36	11.15±0.19	0.93 ± 0.04	7.71±0.34
	5	15.02±0.17	41.72±0.04	4.23±0.06	20.16±0.01	13.34±0.22	0.92 ± 0.03	6.47±0.11
	28	23.21±0.38	5.51±0.21	7.23±0.35	3.55±0.27	51.95±0.13	_	_
	25	9.93±0.05	38.49±0.16	6.25±0.18	32.52±0.29	8.30±0.28	_	_
Py33	20	8.52±0.05	43.87±0.56	5.54 ± 0.09	32.05±0.39	4.78 ± 0.08	0.61 ± 0.08	11.33±1.53
(PoFAD3_3)	15	11.54±0.25	49.27±1.49	3.54 ± 0.21	28.52 ± 0.76	$2.94{\pm}0.05$	1.51 ± 0.05	34.04±0.71
	10	14.47±0.42	42.48±1.18	4.37±0.32	22.32±1.13	11.16±0.32	0.76 ± 0.01	6.36±0.18
	5	16.43±0.19	39.13±0.37	4.55 ± 0.28	20.97±0.12	14.10±0.19	0.46 ± 0.04	3.16±0.25
	28	21.08±0.29	10.15±0.15	6.66±0.32	7.19±0.21	49.42±1.00	_	_
	25	9.89±0.17	38.14±0.73	6.45±0.34	33.02±0.38	7.03±0.30	1.31±0.03	15.73±0.65
Py34 (PoFAD3_4)	20	9.15±0.27	43.26±0.65	5.56±0.29	31.30±0.47	2.47±0.15	3.47 ± 0.06	58.47±1.09
	15	12.33±0.32	48.69±0.82	3.67±0.17	27.08 ± 0.62	2.33±0.06	3.01 ± 0.08	56.39±0.27
	10	14.67±0.46	39.27±0.71	5.07±0.12	20.95±0.16	13.77±0.26	1.11±0.05	7.45 ± 0.42
	5	13.41±0.98	41.86±0.16	3.97±0.24	23.38±0.21	11.97±0.65	1.26 ± 0.08	9.51±0.13

Supplementary Table 28. Contents of fatty acids in transgenic yeast grown at different temperature with linoleic acid (LA) added as a substrate at 72 h.

Supplementary references

- Stevens, K. A. *et al.* Sequence of the sugar pine megagenome. *Genetics* 204, 1613–1626 (2016).
- Neale, D. B. *et al.* Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. *Genome Biology* 15, 1–13 (2014).
- 3. Nystedt, B. *et al.* The Norway spruce genome sequence and conifer genome evolution. *Nature* **497**, 579–584 (2013).
- Mosca, E. *et al.* A reference genome sequence for the European silver fir (*Abies alba* Mill.): A community-generated genomic resource. *G3 Genes/Genomes/Genetics* 9, 2039–2049 (2019).
- 5. Lukaszewski, A. J. *et al.* A chromosome-based draft sequence of the hexaploid bread wheat (*Triticum aestivum*) genome. *Science* **345**, (2014).
- 6. Appels, R. *et al.* Shifting the limits in wheat research and breeding using a fully annotated reference genome. *Science* **361**, (2018).
- Walkowiak, S. *et al.* Multiple wheat genomes reveal global variation in modern breeding. *Nature* 588, 277–283 (2020).
- Neale, D. B. *et al.* The Douglas-Fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. *G3: Genes, Genomes, Genetics* 7, 3157–3167 (2017).
- Sun, X. *et al.* A chromosome-level genome assembly of garlic (*Allium sativum*) provides insights into genome evolution and allicin biosynthesis. *Molecular Plant* 13, 1328–1339 (2020).

- Jaiswal, S. K., Mahajan, S., Chakraborty, A., Kumar, S. & Sharma, V. K. The genome sequence of *Aloe vera* reveals adaptive evolution of drought tolerance mechanisms. *iScience* 24, (2021).
- Lv, S. *et al.* Draft genome of the famous ornamental plant *Paeonia suffruticosa*.
 Ecology and Evolution 10, 4518–4530 (2020).
- 12. Avni, R. *et al.* Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. *Science* **357**, 93–97 (2017).
- 13. Zhu, T. *et al.* Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. *G3 Genes/Genomes/Genetics* **9**, 619–624 (2019).
- 14. Maccaferri, M. *et al.* Durum wheat genome highlights past domestication signatures and future improvement targets. *Nature Genetics* **51**, 885–895 (2019).
- 15. Guan, R. *et al.* Draft genome of the living fossil *Ginkgo biloba*. *GigaScience* 5, 1–14 (2016).
- Marchant, D. B. *et al.* The C-Fern (*Ceratopteris richardii*) genome: insights into plant genome evolution with the first partial homosporous fern genome assembly. *Scientific Reports* 9, 1–14 (2019).