Supporting Information:

Sulfated Alginate as an Effective Polymer Binder for High-Voltage LiNi_{0.5}Mn_{1.5}O₄ Electrodes in Lithium-Ion Batteries

Asako Oishi,[†] Ryoichi Tatara,[†] Eiichi Togo,[‡] Hiroshi Inoue,[‡] Satoshi Yasuno,[¶] Shinichi Komaba^{†*}

[†]Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan [‡]Tosoh Corp., 1-8 Kasumi, Yokkaichi-Shi, Mie 510-8540, Japan [¶]Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-gun, Hyogo, 679-5198, Japan

*Email: komaba@rs.tus.ac.jp

Calculation to obtain sulfation efficiency in Table 1:

Unit mass of ALG: 176.06 [g/mol] Unit mass of ALG-SO₃ with x% sulfation efficiency: 176.06+160.13x [g/mol] As we have relationship as follows: (64.13 $x/(176.06+160.13x)) \times 100 =$ sulfur content [wt%, elemental analysis] Through solving above equation for x, we obtain sulfation efficiency.

Unit mass of ester-ALG: 234.09 [g/mol]

Unit mass of ester-ALG-SO₃ with x% sulfation efficiency: 234.09+240.195x [g/mol] As we have relationship as follows:

 $(234.09x/(234.09+240.195x)) \times 100 =$ sulfur content [wt%, elemental analysis] Through solving above equation for *x*, we obtain sulfation efficiency.

Figure S1. Variation of the capacities and Coulombic efficiencies of LNMO//Li half cells with SO₃-ALG binders, with and without electrolyte vacuum impregnation process. The cells were cycled in the voltage range of 3.5-5.0 V at 20 mA g⁻¹ at 25 °C using 1 M LiPF₆ in EC/DMC as an electrolyte.

Figure S2. Variation of the capacities and Coulombic efficiencies of LNMO//Li half cells with (a) ALG, (b) SO₃-ALG, (c) ester-ALG, and (d) ester-SO₃-ALG binders, at different binder polymer contents in the composite electrodes. The cells were cycled in the voltage range of 3.5-5.0 V at 20 mA g⁻¹ at 25 °C using 1 M LiPF₆ in EC/DMC as an electrolyte.

Figure S3. Cyclic voltammograms of the LNMO-free composite electrode containing 80% AB and 20% binders cycled in the voltage range of 3.0-5.0 V at 0.25 mV s⁻¹ at 25 °C using 1 M LiPF₆ in EC/DMC as an electrolyte.

Figure S4. XRD patterns of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes with (a) PVdF, (b) ALG, and (c) SO₃-ALG binders recorded before and after cycling.

Figure S5. O 1s HAXPES profiles of pristine and electrolyte (1 M LiPF₆ in EC/DMC)-

soaked $LiNi_{0.5}Mn_{1.5}O_4$ electrodes with (a) PVdF, (b) ALG, and (c) SO₃-ALG binders.

Figure S6. C 1s SOXPES profiles of LiNi_{0.5}Mn_{1.5}O₄ electrodes with (a) PVdF, (b) ALG, and (c) SO₃-ALG binders recorded before and after cycling.

Figure S7. C 1s HAXPES profiles of LiNi_{0.5}Mn_{1.5}O₄ electrodes with (a) PVdF, (b) ALG,

and (c) SO₃-ALG binders recorded before and after cycling.

Figure S8. Effects of cycling on the irreversible capacity of LiNi_{0.5}Mn_{1.5}O₄//Li half cells with PVdF, ALG, and SO₃-ALG binders.

Figure S9. F 1s HAXPES profiles of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes with (a) PVdF, (b) ALG,

and (c) SO₃-ALG binders recorded before and after cycling.

Figure S10. (a) Coulombic efficiencies and (b) eleventh-cycle charge–discharge curves obtained during the self-discharge testing of $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ electrodes. The cells were cycled at 20 mA g⁻¹ in 1 M LiPF₆ in EC/DMC as an electrolyte, stored at 25°C for 7 d after the 10th charge, and cycled again.

Binder 11 th coulombic efficie	
PVdF	82.7
ALG	80.5
SO ₃ -ALG	86.0
ester-ALG	67.0
ester-SO ₃ -ALG	82.4

Table S1. Eleventh-cycle coulombic efficiencies of $LiNi_{0.5}Mn_{1.5}O_4$ electrodes withvarious binders obtained after self-discharge.

Figure S11. Charge–discharge curves of LiNi_{0.5}Mn_{1.5}O₄//graphite full cells with (a) PVdF, (b) ALG, and (c) SO₃-ALG. (d) Cycling performances and Coulombic efficiencies of LNMO//graphite full cells with PVdF and alginate binders. The cells were cycled at 20 mA g^{-1} in 1 M LiPF₆ in EC/DMC at room temperature within the voltage range of 3.5–4.9 V.

Figure S12. SEM-EDS profiles of graphite electrodes after 50 cycles in LNMO//graphite full cells.

 Table S2. Surface atomic ratios estimated from the EDS profiles of graphite electrodes

 after 50 cycles in LNMO//graphite full cells with different binders.

Element -	Positive electrode binder		
	PVdF	ALG	SO ₃ -ALG
С	77.1	88.8	56.6
Ο	1.97	0.66	1.96
F	9.95	3.63	24.2
Р	10.4	6.77	17.1
Mn	0.57	0.12	0.16
Total	100	100	100