Supporting Information

Development of Macrocyclic PRMT5 Adaptor Protein Interaction Inhibitors

Adrian Krzyzanowski,^[a, b] Lea Marie Esser,^[c] Anthony Willaume,^[d] Renaud Prudent,^[d] Christoph Peter,^[c] Peter 't Hart^{*[e]} and Herbert Waldmann^{*[a, b]}

[a]	A. Krzyzanowski, Prof. Dr. H. Waldmann Department of Chemical Biology Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11, 44227 Dortmund, Germany
[b]	A. Krzyzanowski, Prof. Dr. H. Waldmann Faculty of Chemistry, Chemical Biology Technical University Dortmund Otto-Hahn-Straße 6, 44221 Dortmund, Germany
[c]	L.M. Esser, Dr. C. Peter Institute of Molecular Medicine I Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf Universitätsstraße 1, 40225 Düsseldorf, Germany
[d]	Dr. A. Willaume, Dr. R. Prudent Edelris Bioserra 1, 60 Av. Rockefeller, 69008 Lyon, France
[e]	Dr. P. 't Hart Chemical Genomics Centre of the Max Planck Society Max Planck Institute of Molecular Physiology Otto-Hahn-Straße 11, 44227 Dortmund, Germany

* Corresponding Authors:

- P.t.H. Peter.t-Hart@mpi-dortmund.mpg.de
- H.W. Herbert.Waldmann@mpi-dortmund.mpg.de

Table of Contents

Supporting Tables	S3
Supporting Synthetic Schemes	S6
Supporting Figures	S8
HPLC Traces	S18

Supporting Tables

		HRMS	HRMS		
Name	Sequence	m/z calculated	m/z found		
S2	Ac- Tyr -PGQFDDADK(Fitc)-NH ₂	1585.55764 [M+H] ⁺	1585.56081		
S 3	Ac- Phe -PGQFDDADK(Fitc)-NH ₂	1569.56272 [M+H] ⁺	1569.56604		
S4	Ac- hPhe -PGQFDDADK(Fitc)-NH ₂	1583.57837 [M+H] ⁺	1583.58125		
S5	Ac- Trp -PGQFDDADK(Fitc)-NH ₂	1608.57362 [M+H] ⁺	1608.57625		
S6	Ac-Asp-PGQFDDADK(Fitc)-NH ₂	1537.52125 [M+H] ⁺	1537.52441		
S7	Ac-Glu-PGQFDDADK(Fitc)-NH ₂	1551.53690 [M+H] ⁺	1551.54015		
S8	Ac-VPG-Asn-FDDADK(Fitc)-NH2	1507.54707 [M+H] ⁺	1507.55099		
S9	Ac-VPG-Dab-FDDADK (Fitc) -NH ₂	1493.56781 [M+H] ⁺	1493.56975		
S10	Ac-VPG-Dab (Alloc) -FDDADK (Fitc) -NH2	1577.58894 [M+H] ⁺	1577.59177		
S11	Ac-VPG-Cit-FDDADK(Fitc)-NH ₂	1550.58927 [M+H] ⁺	1550.59317		
32	Ac-VPGQ- Phe (3-F) -DDADK(Fitc)-NH ₂	1539.55330 [M+H] ⁺	1539.55557		
34	Ac-VPGQ- Bip -DDADK(Fitc)-NH ₂	1597.59402 [M+H] ⁺	1597.59731		
35	Ac-VPGQ- Phe (3,4-F₂) -DDADK(Fitc)-NH ₂	1557.54388 [M+H] ⁺	1557.54775		
36	Ac-VPGQ-Phe (4-F) -DDADK (Fitc) -NH ₂	1539.55330 [M+H] ⁺	1539.55660		
37	Ac-VPGQ- Phe (4-Br) -DDADK (Fitc)-NH ₂	1599.47323 [M+H] ⁺	1599.47609		
38	Ac-VPGQ- Phe(4-I) -DDADK(Fitc)-NH ₂	1647.45936 [M+H] ⁺	1647.46158		
39	Ac-VPGQ- Phe (4-C1) -DDADK (Fitc)-NH ₂	1555.52375 [M+H] ⁺	1555.52694		
41	Ac-VPGQ-Phe (4-NO ₂) - DDADK (Fitc) - NH ₂	1566.54780 [M+H] ⁺	1566.55130		
S12	Ac-VPGQ-Phe (2-F) -DDADK (Fitc) -NH ₂	1539.55330 [M+H] ⁺	1539.55666		
S13	Ac-VPGQ- Phe (F₅) -DDADK (Fitc) -NH ₂	1611.51561 [M+H] ⁺	1611.51901		
S14	Ac-VPGQ-Phe (2-I) -DDADK (Fitc) -NH ₂	1647.45936 [M+H] ⁺	1647.46197		
S15	Ac-VPGQ-Phe (3-C1) - DDADK (Fitc) - NH2	1555.52375 [M+H] ⁺	1555.52705		
S16	Ac-VPGQ-Phe (3-CF ₃)-DDADK (Fitc)-NH ₂	1589.55011 [M+H] ⁺	1589.55440		
S17	Ac-VPGQ-2-Pal-DDADK (Fitc) -NH2	1522.55797 [M+H] ⁺	1522.56122		
S18	Ac-VPGQ- Tyr -DDADK(Fitc)-NH ₂	1537.55764 [M+H] ⁺	1537.56120		
S19	Ac-VPGQ-Phe (4-COOH) -DDADK (Fitc) -NH2	1565.55255 [M+H] ⁺	1565.55556		
S20	Ac-VPGQ- Phe (4-guanidino) -DDADK (Fitc)-NH ₂	1578.59542 [M+H] ⁺	1578.59706		
S21	Ac-VPGQ- hPhe -DDADK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58161		
S22	Ac-VPGQ-3-(2-biphenylyl)-Ala-DDADK(Fitc)-NH2	1597.59402 [M+H] ⁺	1597.59787		
S23	Ac-VPGQ- Bpa -DDADK(Fitc)-NH ₂	1625.58894 [M+H] ⁺	1625.59170		
S24	Ac-VPGQ-2-Nal-DDADK(Fitc)-NH ₂	1571.57837 [M+H] ⁺	1571.58183		
S25	Ac-VPGQ-1-Nal-DDADK(Fitc)-NH ₂	1571.57837 [M+H] ⁺	1571.58167		
S26	Ac-VPGQFD- Gla -ADK(Fitc)-NH ₂	1579.56820 [M+H] ⁺	1579.57063		
S27	Ac-VPGQFDD- Abu- DK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58199		
S28	Ac-VPGQFDD- Nva -DK(Fitc)-NH ₂	1549.59402 [M+H] ⁺	1549.59737		
S29	Ac-VPGQFDD- Nle -DK(Fitc)-NH ₂	1563.60967 [M+H] ⁺	1563.61310		
S 30	Ac-VPGQFDD- Cha -DK(Fitc)-NH ₂	1603.64097 [M+H] ⁺	1603.64485		
S31	Ac-VPGQFDD- Ser -DK(Fitc)-NH ₂	1537.55764 [M+H] ⁺	1537.56164		
33	Ac-VPGQFDDA- Glu -K(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58145		
40	Ac-VPGQFDDA- Gla -K(Fitc)-NH ₂	1579.56820 [M+H] ⁺	1579.57062		
S32	Ac-VPGQFDDA- Tyr -K(Fitc)-NH ₂	1569.59911 [M+H] ⁺	1569.60176		
S 33	Ac-VPGQFDDA- Trp -K(Fitc)-NH ₂	1592.61509 [M+H] ⁺	1592.61751		
S34	Ac-VPGQFDDA- hPhe -K(Fitc)-NH ₂	1567.61984 [M+H] ⁺	1567.62296		
42	Ac-VPGQ-Phe (4-Cl) -DDA-Gla-K (Fitc) -NH2	1613.52923 [M+H] ⁺	1613.53080		
43	Ac-VPGQ-Phe (4-NO ₂)-DDA-Gla-K(Fitc)-NH ₂	1624.55328 [M+H] ⁺	1624.55454		

Table S1. Sequences and HRMS of linear peptides with amino acid modifications.

Peptide	Sequence	K _D (μM)
44	Ac-VPGQFDDA-(N-Me)D-K(Fitc)-NH2	0.6 ± 0.1
45	Ac-VPGQFDD- (N-Me) A-DK (Fitc) -NH2	>2
46	Ac-VPGQFD-(N-Me)D -ADK(Fitc)-NH ₂	>2
47	Ac-VPGQ-(N-Me)F -DDADK(Fitc)-NH ₂	>2
48	Ac-VP-(N-Me)G -QFDDADK(Fitc)-NH ₂	>2
49	Ac- (N-Me) V-PGQFDDADK (Fitc) -NH2	>2

Table S2. Direct binding FP results for N-methylated linear peptides 44-49.

Table S3. Sequences and HRMS data of linear RioK1-derived peptides.

Name	Sequence	HRMS		
		m/z calculated	m/z found	
1	Ac-SRVVPaQFDDAD-NH ₂	1360.64917 [M+H] ⁺	1360.65083	
2	$Ac-SRVVPGQFaDAD-NH_2$	1302.64369 [M+H] ⁺	1302.64518	
3	Ac-SRVVPaQFaDAD-NH ₂	1316.65934 [M+H] ⁺	1316.66100	
4	Ac-SRVVPGQFDDAD-NH ₂	1346.63352 [M+H] ⁺	1346.63623	
28	Fitc-020c-VPGQFDDAD-NH2	1496.53109 [M+H] ⁺	1496.53270	
29	Ac-VPGQFDDADK(Fitc)-NH2	1521.56272 [M+H] ⁺	1521.56580	
31	Ac-VPGQFDDAD-NH2	1004.43197 [M+H] ⁺	1004.42952	
44	Ac-VPGQFDDA- (N-Me)D-K(Fitc)-NH2	1535.57837 [M+H] ⁺	1535.58195	
45	Ac-VPGQFDD-(N-Me)A -DK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58169	
46	Ac-VPGQFD- (N-Me)D -ADK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58178	
47	Ac-VPGQ-(N-Me)F -DDADK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58196	
48	Ac-VP-(N-Me)G- QFDDADK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58188	
49	Ac-(N-Me) V -PGQFDDADK(Fitc)-NH ₂	1535.57837 [M+H] ⁺	1535.58070	
S1	Fitc-020c-SRVVPGQFDDADSSD-NH2	1064.41546 [M+2H] ²⁺	1064.41816	
H4 peptide	Ac-SGRGKGGKGLGKGGAKRHRKV-NH2	1066.64103 [M+2H] ²⁺	1066.64198	

Table S4. HRMS	of c	yclic	peptides.
----------------	------	-------	-----------

News	HRMS		
Name	m/z ca	lculated	m/z found
5	925.37795	[M+2H] ²⁺	925.37895
6	932.38578	[M+2H] ²⁺	932.38677
7	932.38578	[M+2H] ²⁺	932.38673
8	939.39360	[M+2H] ²⁺	939.39476
9	925.37795	[M+2H] ²⁺	925.37888
10	932.38578	[M+2H] ²⁺	932.38677
11	932.38578	[M+2H] ²⁺	932.38673
12	939.39360	[M+2H] ²⁺	939.39480
13	916.88287	[M+2H] ²⁺	916.88398
14	917.89069	[M+2H] ²⁺	917.89179
15 isomer 1	916.88287	[M+2H] ²⁺	916.88396
15 isomer 2	916.88287	[M+2H] ²⁺	916.88397
16	917.89069	[M+2H] ²⁺	917.89172
17	758.29791	[M+2H] ²⁺	758.29659
18 isomer 1	765.30573	[M+2H] ²⁺	765.30446
18 isomer 2	765.30573	[M+2H] ²⁺	765.30464
19	765.30573	[M+2H] ²⁺	765.30440
20	772.31356	[M+2H] ²⁺	772.31227
21	766.31356	[M+2H] ²⁺	766.31240
22	773.32138	[M+2H] ²⁺	773.32047
23	765.30573	[M+2H] ²⁺	765.30441
24	765.30573	[M+2H] ²⁺	765.30475
25	772.31356	[M+2H] ²⁺	772.31239
26	766.31356	[M+2H] ²⁺	766.31275
27	773.32138	[M+2H] ²⁺	773.32047
30	1014.48909	[M+H] ⁺	1014.48752
50	1634.61040	[M+H] ⁺	1634.61054
51	1438.48922	[M+H] ⁺	1438.48948
52	1634.61040	[M+H] ⁺	1634.61064
53	1117.47964	[M+H] ⁺	1117.48050
54	1117.47964	[M+H] ⁺	1117.48031
55	1460.66521	[M+H] ⁺	1460.66729
56	1460.66521	[M+H] ⁺	1460.66757

Supporting Synthetic Schemes

Scheme S1. On-resin protection with Dmb and coupling of the resulting Dmb-DAD sequence to Fmoc-Asp(OAII), en route to peptides **5**, **7**, **9** and **11**.

Scheme S2. Cyclisation through RCM and reduction of the resulting double bond, followed by Mtt removal and labelling with FITC for C-terminally labelled macrocycles. For peptides with a double bond the TPSH reduction step was omitted.

Scheme S3. An exemplary synthetic scheme leading to N-terminally acetylated and C-terminally FITC-labelled linear peptide **29**.

Scheme S4. Synthesis of the covalent PRMT5 PPI inhibitor BRD0639.

Supporting Figures

Figure S1. Competitive binding FP with PRMT5-MEP50 and peptide **S1** (Table S1) used as a fluorescent tracer, for compounds **1-4**.

Figure S2. Direct binding FP with PRMT5-MEP50 for compounds 5-16.

Figure S3. Direct binding FP with PRMT5-MEP50 for compound 28 and 29.

Figure S4. Direct binding FP with PRMT5-MEP50 for compounds 17-27.

Figure S5. Competitive binding FP with PRMT5-MEP50 and fluorescent **21** used as a tracer, for compounds **30** and **31**.

Figure S6. HPLC analysis of cyclic **30** and linear **31** after incubation in the U2OS cell lysate. Presented timepoints: between 0-7 days for **30** and between 0-24 h for **31**. IS = Internal Standard.

Figure S7. Linear regression models based on the obtained stability data for **30** and **31**. $T\frac{1}{2}$ = 299 h or 12.5 days for **30** and $t\frac{1}{2}$ = 4.4 h for **31** (n=2).

Figure S8. Mtase-GloTM Methyltransfarase Assay performed on the isolated PRMT-MEP50 complex with **30** and the reference active-site methyltransferase inhibitor **EPZ015666**. Compound **EPZ015666** is able to inhibit the direct methylation of the H4 histone tail peptide by PRMT5, whereas **30** has no effect (n=3).

Figure S9. Direct binding FP with PRMT5-MEP50 for compounds 29 and 32-43.

Figure S10. Direct binding FP with PRMT5-MEP50 for compounds 29 and S3-S14.

Figure S11. Direct binding FP with PRMT5-MEP50 for compounds 29 and S14-S25.

Figure S12. Direct binding FP with PRMT5-MEP50 for compounds 29 and S26-S34.

Figure S13. Direct binding FP with PRMT5-MEP50 for compounds 29 and 44-49.

Figure S14. Structures of cyclic peptides 55 and 56, equipped with azide group.

Figure S15. A) Results of the pull-down assay with peptide **55** and scrambled peptide **56** immobilised on the DBCO beads, using MCF7 cell lysate. **B)** Western blot of the purified PRMT5-MEP50 complex analysed at a higher concentration than in A).

Figure S16. A) GFP-Immunopurification (GFP-IP) in Flp-In T-REx 293-GFP and Flp-In T-REx 293-GFP-PRMT5 overexpressing cells after testing active **53** and scrambled **54** at 50 μM and DMSO as a control. Therefore, cells were stimulated with 0.1 μg/ml doxycycline for 18 h before cytoplasm extraction (S100). GFP-IP was performed and analyzed by Tris/Glycine-SDS-PAGE and western blotting using antibodies against RioK1, PRMT5, MEP50, plCln and GFP. **B)** GFP-IP from Flp-In T-REx 293-GFP-plCln and Flp-In T-Rex 293-GFP-RioK1 cytoplasmic extract after testing active **53** and scrambled **54** at 50 μM and DMSO as a control. Induction of the overexpression, Tris/Glycine-SDS-PAGE and western blotting using antibodies against RioK1, PRMT5, MEP50 and plCln was performed as described in **A**.

HPLC Traces

Peptide 15 isomer 2 (Method A)

Peptide 37 (Method A)

Time (min)

15

20

10

5

ò

Peptide S26 (Method A)

H4 histone tail peptide(the MTase Glo substrate) (Method A)

