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1. First-principles calculations of band diagram for a pristine InSe slab and InSe with 
a selenium vacancy 

One of the goals in this section is to calculate the position of defect energy levels in a multilayer 

InSe. First-principles calculations of a 6L-InSe slab with a selenium (Se) vacancy utilizing 

either hybrid or meta-GGA functionals to obtain correct band gap are computationally very 

expensive due the large size of the supercell. Therefore, as a representative example, we 

consider the Se vacancy in the thinnest multi-layer system, 2L-InSe.  

Figure S1a & b depicts a calculated band diagram and density of states (DOS) for a pristine 

2L-InSe slab. The valence band maximum (VBM) is about 30 meV higher than the Γ point, in 

good agreement with literature1. The Mexican-hat dispersion induces a peak in DOS, referred 
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to as the van Hove singularity2, as shown in Figure S1b. The energy offset between the VBM 

and the valence band energy at the Γ point can be regarded as the bandwidth of the flat band 

dispersion. As the thickness increases, the bandwidth decreases. When the thickness of InSe is 

higher than seven layers, the Mexican-hat dispersion almost vanishes1. In experiments, we use 

a 6L-InSe whose VBM is only about 5 meV higher than the Γ point in the valence band (Figure 

1b).  

To calculate the position of defect energy levels, we applied the modified Becke-Johnson 

(MBJ) functional on a 4×4 supercell with a Se vacancy located on the top atomic surface. 

Figure S1c shows the bands induced by localized states are about 100-150 meV lower than the 

conduction band minimum. This is consistent with the energy difference between the 𝐷଴ and 

𝑋଴
ᇱ  emissions. We argue that our calculation results for a 2L-InSe can be extended to the case 

of 6 layers, since we assume the Se vacancy is on the top atomic surface.  

We extract the effective mass of electrons and holes from the calculated band diagram by fitting 

it to a parabola. Due to the band inversion near the VBM, the effective mass of holes in thin 

InSe is heavier and more complicated. For example, an electronlike effective mass at the Γ 

point with ห𝑚௛,௰ห ൎ 0.9 𝑚଴ and a holelike effective mass at the VBM with ห𝑚௛,௏஻ெห ൎ 1.9 𝑚଴ 

is predicted for InSe monolayer3. Since the radiative recombination of excitons is more related 

to the holes near the band edge, we use the value of the holelike effective mass at the VBM. 

Figure S1d presents the effective mass as a function of the layer number. The results are in 

good agreement with literature3,4.  
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Figure S1. (a) Calculated band diagram for a pristine 2L-InSe slab. CB: conduction band; VB: valence band; VBM: valence 

band maximum. The Mexican-hat dispersion appears near the Γ point. (b) Calculated density of states (DOS) for a pristine 

2L-InSe slab. The sharp feature near the VBM in the DOS spectra is a van Hove singularity. (c) Calculated band diagram 

for 2L-InSe slab with a Selenium (Se) vacancy located on the top atomic surface. (d) Effective mass of electrons and holes 

as a function of the layer number, extracted from the band diagram calculations. Red: electron mass; blue: hole mass. 

 

2. Experimental setup 

All optical measurements are performed in a helium flow cryostat at 4.5 K in a setup 

schematically presented in Figure S2. A confocal microscope is used to excite excitons 

optically and collect the emitted photons through the same objective with a working distance 

(WD) of ~ 4.5 mm and NA = 0.65. The excitation light sources are coupled into a single-mode 

fiber linked to the excitation arm of the confocal microscope setup. Long-pass (LP) filters are 

located at the collection arm in front of a spectrometer or avalanche photodiode (APD) to block 

the excitation laser. A charge-coupled device (CCD) camera is used to image the surface of the 

heterostructure.  
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In the time-resolved PL (TRPL) measurements, an APD (Excelitas Technologies, SPCM-

AQRH-16) shielded from stray light is used to collect the PL photons. The output of the APD 

is connected to a time-correlated photon counting module (TCPCM) with a resolution of 12 ps 

r.m.s. (PicoQuant, PicoHarp 300), which measures the arrival time of each photon. The single-

photon timing resolution of the APD is about ~ 300 ps, which is the time limitation for the 

whole setup. In TRPL measurements, a tunable Ti:Sapphire laser (Coherent Chameleon), 

which generates sub-picosecond (ps) pulses with a repetition rate of 80 MHz, is used to excite 

the sample. The wavelength is set to 720 nm.  

In the PL excitation (PLE) measurements, a narrow-linewidth tunable continuous-wave laser 

(MSquared) is used. A long pass 900 nm (LP900) filter is inserted in the collection arm to 

monitor the intensity from the 𝐷଴ peak.   

 

Figure S2. Sketch of the confocal microscope setup. Red: excitation laser and laser reflection; blue: PL photons.  

 

3. Photoluminescence linewidth 

Figure S3 summarizes the PL peak energy and linewidth of InSe excitons in literature. In our 

work, the exciton peak at 1.48 eV has a linewidth of 15 meV, which so far is among the 

narrowest for excitons in a thin InSe. The narrow linewidth allows us to resolve previously 

unresolved spectral features.  
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Figure S3. Summary of PL peak energy and linewidth of InSe excitons in literature.  

 

4. Device A: reproducibility of spectral features 

Figure S4b presents a spatial map of PL intensity for device A. In the middle of device A, the 

PL intensity is quenched due to the graphene contact on the flake. In Figure S4c-e, we plot the 

PL intensity, acquired on position A, B & C, as a function of the emission energy and gate 

voltage using P = 50 μW. All the features presented in Figure 2a are reproducible. In addition, 

the redshift energy in the p-doped regime as a function of the Fermi energy shown in Figure 5a 

is extracted from Figure S4c-e.  

Figure S4f shows PL emission spectra under gate voltages 𝑉௚ from െ5 V to 5 V using a laser 

power P = 50 μW, measured on position A. In the n-doped regime (𝑉௚ ൐ 0 V), the peak energy 

of 𝑋ି almost remains constant before it vanishes, contrary to the strong redshift observed in 

the p-doped regime (𝑉௚ ൏ െ5.8 V). 
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Figure S4. (a) Optical microscope image of device A. The orange contour encloses the region of InSe flake. The dashed line 

indicates the position of the few-layer graphene contact on the flake. Scale bar, 10 μm. (b) Spatial map of PL intensity for 

device A at 𝑉௚ ൌ 0 V. (c), (d) & (e) PL count rate as a function of the emission energy and gate voltage using P = 50 μW, 

measured on position A, B & C. (f) PL emission spectra under gate voltages 𝑉௚ from െ5 V to 5 V using a laser power P = 50 

μW, measured on position A. 

 

5. Device B: electrical transport and photoluminescence 

To correlate the spectral features with the charge configurations, we fabricated another device 

(device B) with two graphene contacts on the flake to measure its d.c. electrical responses. Our 

device B consists of a 7L.-InSe flake separated from the graphene bottom gate by a hBN spacer 

of 20 nm. We observed similar spectral features by performing PL spectroscopy on device B, 

as shown in Figure S5b. Figure S5a exhibits the source-drain current (𝐼௦ௗ) as a function of the 

source-drain bias (𝑉ௌ஽) and gate voltage (𝑉௚). We identify that the InSe flake is in the n-doped 

regime when 𝑉௚ ൐ െ0.4 𝑉  and the p-doped regime when 𝑉௚ ൏ െ3.5 𝑉 . By comparing PL 
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spectrums from devices A and B, we conclude that the 𝐷଴ emission only appear in the undoped 

regime, and the exciton peak tends to redshift as the sample enters the p-doped regime. We 

notice that the p-type current is about five orders of magnitude lower than the n-type current, 

mainly due to the large effective mass of holes in the valence band. 

 

Figure S5. (a) Source-drain current 𝐼ௌ஽ as a function of the source-drain bias 𝑉ௌ஽ and gate voltage 𝑉௚. To show the n- and p-

doped regime clearly, the upper and lower part of the 2D scan is plotted using two different color scales. (b) PL intensity as 

a function of the emission energy and gate voltage 𝑉௚ using P = 10 μW.  

 

6. Out-of-plane photocurrent - an alternative approach for determining charge 
configurations 

We also acquired the out-of-plane photocurrent (𝐼௚ in Figure 1c) as a function of 𝑉௚, at the same 

time when we performed the 𝑉௚-dependent PL measurements. The red curve in Figure S6a, for 

instance, shows that the 𝐼௚  ̶  𝑉௚ relation has three regimes. For 𝑉௚ ൐ 0 𝑉, 𝐼௚ is almost the same 

as the value in the absence of laser (black curve in Figure S6a). 𝐼௚ is enhanced when െ5.8 V ൏

𝑉௚ ൏ 0 𝑉, which corresponds to the undoped regime. As the gate voltage is tuned to 𝑉௚ ൏

െ5.8 V, 𝐼௚ starts to increase with a higher slope. The three stages of 𝐼௚ match perfectly with the 

three charging regimes determined by in-plane electrical transport and PL measurements. This 

is also true for the data acquired using both devices A and B. We conclude that the out-of-plane 

photocurrent is an alternative to determine charge configurations. The out-of-plane 

photocurrent in the undoped and p-doped regime is characterized by different power 

dependences, as shown in Figure S6b. In the p-doped regime (𝑉௚ ൌ െ7 𝑉), 𝐼௚ grows linearly 

with power, while 𝐼௚ in the undoped regime (𝑉௚ ൌ െ3 𝑉) increases sublinearly.  
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Figure S6. (a) Out-of-plane photocurrent 𝐼௚ measured together with the gate voltage dependent PL measurements in Figure 

S4 and Figure S5. Red: Figure S4c; blue: Figure S4d; green: Figure S4e; yellow: Figure S5b; black: 𝐼௚ in the absence of 

laser. (b) 𝐼௚  as a function of excitation power for 𝑉௚ ൌ െ3 V (red) and 𝑉௚ ൌ െ7 V (blue). (c) Calculated band alignment 

between a 6L-InSe and hBN. (d) Schematic of the out-of-plane photocurrent generation. Red ball: electron; blue ball: hole. 

 

The enhanced out-of-plane photocurrent in the p-doped regime has been observed in a 

monolayer WSe2 embedded in a field-effect structure5, and can be interpreted as the 

consequence of the Auger recombination of a single exciton. An exciton has a probability to 

recombine non-radiatively, leading to an energy transfer to a free carrier. Suppose the band 

offset between the semiconductor and hBN is much smaller than the exciton energy (~1.48 

eV). In this case, it is energetically possible for the free carriers to go through the hBN spacer 

forming an out-of-plane current flow. In Figure S6c, our first-principles calculation of band 

alignment between a 6L-InSe and hBN indeed shows a slight offset in the valence band (~0.48 

eV). In the p-doped regime, positively charged trions are formed. Auger recombination of one 

electron and hole creates energy that can excite the additional hole to become a hot carrier 

(Figure S6d). However, this process does not happen in the n-doped regime because of the 
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large band offset in the conduction band (~ 4.07 eV). One evidence of this mechanism is the 

linear power dependence of 𝐼௚ in the p-doped regime, as the process involves only one exciton. 

The out-of-plane photocurrent in the undoped regime, which does not strictly satisfy the linear 

power dependence, might be related to the exciton-exciton annihilation associated with ionized 

donors6. The mechanism of the out-of-plane photocurrent is out of the scope of this work and 

requires further discussions in the future.  

 

7. Time-resolved photoluminescence 

To determine the lifetime of the 𝐷଴ (~ 920 nm) and 𝑋଴
ᇱ  (~ 845 nm) emissions at 𝑉௚ ൌ െ3 V, 

besides inserting a LP800 filter in the collection arm, we use either a LP900 or a SP900 filter 

to select the PL photons further. Figure S7a presents normalized PL intensity of the 𝐷଴ (red 

circles) and 𝑋଴
ᇱ  (blue circles) emissions as a function of time. The PL intensity has been 

normalized using the highest intensity of the time trace. By fitting the data using a biexponential 

curve, we extract that for the 𝐷଴ emission, the decay is characterized by two time scales: 1 ns 

and 7.4 ns. For the 𝑋଴
ᇱ  emission, the longer time scale is 1.6 ns. The time scale of the fast-decay 

component is shorter than our time resolution, which is about 300 ps. Therefore, we can clearly 

see that the lifetime of the 𝐷଴ photons is much longer than that of the 𝑋଴
ᇱ  photons.  

At positive gate voltages, since the emissions of 𝑋ି (~ 860 nm) and 𝐷ି (~ 845 nm) are very 

close in energy, it is difficult to isolate the two parts of photons completely. We send all photons 

to the APD and measure the time trace as a function of the gate voltage, as shown in Figure 

S7c. When the 𝑋଴ peak is pronounced in the range 𝑉௚ ∈ ሾെ0.5 V, 0 Vሿ, both the 𝐷଴  and 𝐷ି 

emissions become much weaker. 𝐼௑బ clearly shows a faster decay compared with the decay of 

𝐼஽బ ൅ 𝐼௑బᇲ  and 𝐼௑ష ൅ 𝐼஽ష. This reveals that both the 𝐷଴ and 𝐷ି emissions have a longer lifetime, 

indicating that both originate from bound exciton complexes.    
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Figure S7. (a) Normalized PL intensity of the 𝐷଴ (red circles) and 𝑋଴
ᇱ  (blue circles) emissions as a function of time at 𝑉௚ ൌ

െ3 V. The red and blue solid curves are biexponential fittings to the data. (b) PL intensity as a function of the emission 

energy and gate voltage 𝑉௚ using P = 100 μW. (c) Normalized intensity of all PL photons at each gate voltage 𝑉௚ as a function 

of time using P = 100 μW. Logarithmic scale.   

 

8. White light reflectance measurement 

The experimental setup for the reflectance measurement is almost the same as the setup for PL 

measurements. Instead of using a laser, we couple a broadband white light into a fiber and 

connect it to the excitation arm of the confocal microscope setup. In the collection setup, we 

remove all spectral filters. The differential reflectance spectrum (𝑑𝑅) is acquired using 𝑑𝑅 ൌ

ሺ𝑅ு் െ 𝑅௛஻ேሻ/𝑅௛஻ே, where 𝑅𝐻𝑇 is the reflectance spectrum on the heterostructure consisting 

of a 6L. InSe with the top and bottom hBN and 𝑅ℎ𝐵𝑁 is the reflectance spectrum taken from a 

position where there is only the top and bottom hBN.  

Figure S8 depicts the 𝑑𝑅 signal as a function of the gate voltage and energy. The PL emission 

energy of excitons is around 1.48 eV, whereas the 𝑑𝑅 spectrum shows a broad peak at about 

1.7 eV. Moreover, the peak in the 𝑑𝑅 spectrum does not change with the gate voltage. We 

performed the same measurement on another sample with an InSe flake of different thicknesses 

to understand this. Unlike the emission energy, which is sensitive to flake thickness, we found 

the peak in the reflectance spectrum always located at about 1.7 eV. The 𝑑𝑅 contrast is smaller 
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for a thinner InSe. Therefore, we conclude that the peak shown in the 𝑑𝑅 spectrum might come 

from the surface reflection, which is irrelevant to the exciton resonance.  

 

Figure S8. (a) Differential reflectance as a function of the gate voltage and energy. (b) differential reflectance as a function 

of the gate voltage at 𝑉௚ ൌ 0 V.  

 

9. Extraction of the binding energy using Elliott’s theory 

To extract the exciton binding energy from the PLE spectrums (absorption spectrums), we use 

the 2D Elliott model, which takes the form7,8:  

𝛼ሺℏ𝜔ሻ ∝ 

෍
4𝐸ோ

ቀ𝑚 െ 1
2ቁ

ଷ 𝛿 ൮ℏ𝜔 െ 𝐸௚ ൅
𝐸ோ

ቀ𝑚 െ 1
2ቁ

ଶ൲

ஶ

௠ୀଵ

൅
2

1 ൅ 𝑒𝑥𝑝ቌെ2𝜋ඨ
𝐸ோ

ℏ𝜔 െ 𝐸௚
ቍ

𝛩ሺℏ𝜔 െ 𝐸௚ሻ 

where 𝛼ሺℏ𝜔ሻ is the absorption coefficient as a function of the photon energy, 𝐸௚ is the single 

particle band gap, 𝛿ሺ𝑥ሻ is a Dirac delta function, and 𝛩ሺ𝑥ሻ is a Heaviside function. The first 

term describes the absorption caused by the discrete excitonic transitions, and the second term 

represents the unbound continuum absorption. The binding energy of m-th exciton resonance 

is 𝐸௕
௠ ൌ ாೃ

ቀ௠ିభ
మቁ
మ (𝑚 ൌ 1, 2 …). Here, 𝐸ோ is the Rydberg energy which has the form of 𝐸ோ ൌ

௠ೝ௘ర

ଶఢ೐೑೑
మ ℏమ

. Considering the finite linewidth of the exciton and the continuum part, we replace 

𝛿 ቆℏ𝜔 െ 𝐸௚ ൅
ாೃ

ቀ௠ି
భ
మቁ
మቇ with a hyperbolic secant function 𝑠𝑒𝑐ℎ ቆ

ℏఠିா೒ାாೃ/ቀ௠ିభ
మቁ
మ

௰೐ೣ
ቇ, where 𝛤௘௫ 

is the linewidth of the exciton resonance9. Similarly, 𝛩൫ℏ𝜔 െ 𝐸௚൯  is replaced by 
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׬ 𝑠𝑒𝑐ℎ ቀ
ℏఠିఌ

௰೎
ቁ  𝑑𝜀

ஶ
ா೒

, where 𝛤௖  is the linewidth of the electron-hole continuum. We use the 

following expression to fit:  

𝛼ሺℏ𝜔ሻ ∝ 

∑ ସாೃ

ቀ௠ିభ
మቁ
య 𝑠𝑒𝑐ℎ ቆ

ℏఠିா೒ାாೃ/ቀ௠ି
భ
మቁ
మ

௰೐ೣ
ቇஶ

௠ୀଵ ൅
ଶ

ଵା௘௫௣൬ିଶగට
ಶೃ

ℏഘషಶ೒
൰
׬ 𝑠𝑒𝑐ℎ ቀ

ℏఠିఌ

௰೎
ቁ ൈ

ଵ

ଵିఈሺఌିா೒ሻ
 𝑑𝜀

ஶ
ா೒

.  

ଵ

ଵିఈሺఌିா೒ሻ
 is a factor to account for the non-parabolicity of the bands, as it becomes important 

for 𝜀 ≫ 𝐸௚.  

We calculate the absorption spectrum as a function of 𝐸௕ using the above expression, as shown 

in Figure S9a. The relative amplitude between the first term and the second term directly 

reflects the value of 𝐸௕ . Therefore, the higher the contrast of the exciton resonance in the 

absorption spectrum, the higher the binding energy.  

In the fittings in Figure 3c and Figure S9b, we use 𝛤௘௫ ൌ 4.5 meV and 𝛤௖ ൌ 10 meV. For 𝑋଴ at 

𝑉௚ ൌ െ0.2 V , the fitting parameters are 𝐸௚ ൌ 1.493 eV  and 𝐸௕ ൌ 12 meV ; For 𝑋଴
ᇱ  at 𝑉௚ ൌ

െ3 V, the fitting parameters are 𝐸௚ ൌ 1.478 eV and 𝐸௕ ൌ 6 meV; For 𝑋ା at 𝑉௚ ൌ െ6 V, the 

fitting parameters are 𝐸௚ ൌ 1.472 eV and 𝐸௕ ൌ 4.5 meV. The fitting for 𝑋ା agrees with the 

band gap renormalization picture which we use to explain its redshift. In the presence of a 

Fermi reservoir, dynamical screening of the electron-hole interactions leads to a lower binding 

energy 𝐸௕
ᇱ ൌ 𝐸௕ െ 𝛿𝐸௕  ( 𝛿𝐸௕ ൐ 0 ). Meanwhile, the many-body screening effect also 

renormalizes the particle self-energies and results in a reduced band gap 𝐸௚ᇱ ൌ 𝐸௚ െ 𝛿𝐸௚ 

(𝛿𝐸௚ ൐ 0). 𝛿𝐸௕ is smaller than 𝛿𝐸௚ since its value is limited by 𝐸௕. The energy of PL emission 

𝐸௉௅ can be described as 𝐸௉௅ ൌ 𝐸௚ െ 𝐸௕. Therefore, as we increase the carrier density, the 𝑋ା 

emission exhibits an overall redshift. For excitons in TMDCs, due to the large 𝐸௕, 𝛿𝐸௕ and 𝛿𝐸௚ 

can compensate each other, therefore making 𝐸௉௅ unchanged. 
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Figure S9. (a) Calculation of the absorption spectrum as a function of the exciton binding energy using the 2D Elliot model. 

(b) Integrated PL intensity of 𝐷଴ as a function of excitation energy (PLE spectrum, blue shaded area) and PL intensity as a 

function of emission energy (orange shaded area) at 𝑉௚ ൌ െ3 V and െ0.2 V. The red solid lines are fittings using the 2D 

Elliott model. For 𝑋଴ (𝑉௚ ൌ െ0.2 V), the fitting parameters are 𝐸௚ ൌ 1.493 eV and 𝐸௕ ൌ 12 meV; For 𝑋଴
ᇱ  (𝑉௚ ൌ െ3 V), the 

fitting parameters are 𝐸௚ ൌ 1.478 eV and 𝐸௕ ൌ 6 meV; For 𝑋ା (𝑉௚ ൌ െ6 V), the fitting parameters are 𝐸௚ ൌ 1.472 eV and 

𝐸௕ ൌ 4.5 meV.  

 

10. Analysis on bound exciton complexes 

 
In this section, we present more detailed considerations to support the picture of donor 

ionization in the main text.  

A. Energy shift between 𝑋଴ and 𝑋଴
ᇱ  as a function of excitation power 

We extract the peak energy of 𝑋଴  and 𝑋଴
ᇱ  at 𝑉௚ ൌ െ0.2 V and 𝑉௚ ൌ െ3 V. The red curve in 

Figure 4c depicts the energy shift Δ𝐸 ൌ 𝐸௑బ െ 𝐸௑బᇲ  as a function of the excitation power. The 

energy shift vanishes when 𝑃 ≳ 800 μW. As a comparison, we also plot the PL intensity of 𝐷଴ 

at 𝑉௚ ൌ െ3 V as a function of the laser power (blue curve in Figure 4c), after removing the 

linear background. The PL intensity of 𝐷଴ saturates at a similar laser power (𝑃௦௔௧ ൌ 400 μW). 

The energy shift that vanishes at large powers constitutes solid evidence for our interpretation.   
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B. Gate voltage range and energy level diagram 

The gate voltage range for the sharp peak 𝑋଴  is 𝑉௚ ∈ ሾെ0.5 V, 0 Vሿ . This range should 

correspond to the situation of 𝐸ௗ ൏ 𝐸ி ൏ 𝐸௖ , where 𝐸௖  (𝐸௩ ) denotes the energy of the 

conduction (valence) band edge. According to the energy splitting between 𝑋଴
ᇱ  and 𝐷଴ , we 

estimate 𝐸௖ െ 𝐸ௗ ൎ 0.12 eV. Meanwhile, the gate voltage range for the undoped regime is 𝑉௚ ∈

ሾെ5.8 V, 0 Vሿ, which directly relates to the band gap energy 𝐸௚ ൌ 𝐸௖ െ 𝐸௩ ൎ 1.49 eV. The ratio 

of the 𝑉௚  range matches well the ratio of the energy range: 0.5 V/5.8 V ൌ 0.086  and 

0.12 eV/1.49 eV ൌ 0.081. Therefore, the proportion of the gate voltage range matches well 

the energy level diagram. 

 

C. Estimation of donor density 

We estimate the donor density 𝑛஽  from the power-dependent data presented in Figure 4c. 

Based on the analysis in the main text, the power at which 𝐼஽బ saturates and the energy shift 

between 𝑋଴ and 𝑋଴
ᇱ  becomes vanished should roughly correspond to 𝑛஽ ൎ 𝑛௑, where 𝑛௑ is the 

free exciton density. Therefore, by estimating 𝑛௑ at P ~ 500 μW, we can also estimate 𝑛஽. 

Consider a 𝑓௥௘௣ = 80 MHz pulse laser with an average power of P = 500 μW. The energy per 

pulse is 𝑃/𝑓௥௘௣ = 6.25 × 10-12 J / pulse. The wavelength of the excitation laser is 720 nm, and 

thus the number of photons per pulse is 2.3 × 107. The laser is focused on a spot with an area 

of 𝜋𝑤ଶ (𝑤 = 1 μm). The photon density is calculated to be around 7.2 × 1014 photon / cm2. The 

exciton density 𝑛௑ should be on the order of 10ଵଶ െ 10ଵଷ cmିଶ, if we assume the absorptance 

of InSe is about 0.01െ0.1 (according to the white light reflection data, the surface of InSe is 

highly reflective at 1.72 eV. Hence, we expect the absorptance is low). As a result, we expect 

that the donor density is on the order of 𝑛஽ ~ 10ଵଶ െ 10ଵଷ cmିଶ . 

 

D. Energy difference between spectral lines 

The energy difference between 𝐷଴ and 𝑋଴ (or 𝑋଴
ᇱ ) should correspond to the binding energy of 

electrons to donors 𝐸௕
௘. 𝐸௕

௘ is larger than the binding energy of quasi-particles to donors 𝐸௕
ொ, in 

compliance with Hayne’s rule10. Typically, the ratio 𝐸௕
ொ/𝐸௕

௘ is a constant coefficient on the 

order of 0.1, depending only on material parameters such as the effective masses11,12. For the 

|𝐷𝑒;𝑋⟩ complex, the emission energy is 30 meV lower than 𝑋ି, thus revealing that the Hayne’s 
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coefficient is about 0.25. Further theoretical efforts are required to provide a microscopic 

picture for this energy difference13.  

 

E. Exclusion of the acceptor 

We exclude that the acceptors are responsible for the spectral features based on the following 

reasons: 

I). In principle, the 𝐷଴ emission could also result from excitons bound to ionized acceptors 

|𝐴ℎ; 𝑒⟩. Here, |𝐴⟩ is used to express the ionized acceptor. However, in theory the stability of 

|𝐷𝑒;ℎ⟩ and |𝐴ℎ; 𝑒⟩ relies on the mass ratio 𝑚௘/𝑚௛. When 𝑚௘/𝑚௛ is small, excitons are more 

likely to be bound with an ionized donor11,14.  

II). In the p-doped regime, we did not observe broad PL emissions. The formation of a 

positively charged defect-bound trion |𝐴ℎ;𝑋⟩ requires acceptor energy levels near the valence 

band7,12,15. 

III). In the metal chalcogenide semiconductors like MoS2 and WSe2, chalcogen vacancies are 

the most commonly observed defects due to their lower formation energy16,17. Chalcogen 

vacancies behave as electron donors due to unsaturated bonds, whereas metal vacancies usually 

lead to electron acceptors resulting in the p-type doping.  

 

11. Theoretical model of band gap renormalization 

In order to directly compare our experimental results with the theoretical model, we first 

quantify the redshift in the p-doped regime as a function of the Fermi energy 𝐸ி. Based on the 

thickness (𝑡 ) and dielectric constant (𝜀௛஻ே ) of hBN, we could estimate the geometrical 

capacitance per unit area:   𝐶௚ ൌ  𝜖଴𝜖௛஻ே/𝑡 ൌ  𝑒 𝑑𝑛௛/𝑑𝑉௚ ൌ 0.0012 𝐹/𝑚ଶ, where 𝑛௛ is the 

carrier density of holes. The density of states (DOS) in the valence band 𝑑𝑛௛/𝑑𝐸ி  can be 

expressed using 𝑑𝑛௛/𝑑𝐸ி ൌ 𝑚௛/𝜋ℏଶ ൌ 4.2 ൈ 10ଵସ cmିଶeVିଵ. Combining the two equations, 

we obtain 𝑑𝐸ி/𝑑𝑉௚ ൌ 0.0018 𝑒. We extract the relation between the redshift energy (𝐸௥௘ௗ) 

and gate voltage to be 𝑑𝐸௥௘ௗ/𝑑𝑉௚ ൌ െ0.017 𝑒. Here, the minus sign denotes the redshift of the 

PL energy. Therefore, we find 𝐸௥௘ௗ  is about one order of magnitude larger than the Fermi 

energy 𝑑𝐸௥௘ௗ/𝑑𝐸ி ൎ െ10, as shown in Figure 5a in the main text. 

 

The model presented in this section is derived based on Ref. [7,18,19]. 

A. 2D model 
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We begin with a Coulomb potential in real space 𝑉௥ ൌ  ௘మ

ସగఢೝఢబ௥
ൌ  ௘

మ

ఢ௥
, where 𝜖௥ is the dielectric 

constant of the semiconducting material and 𝜖଴ is the vacuum permittivity.  

By applying a 2D Fourier transform 𝑉௤ ൌ  𝑑ଶ𝑟 𝑉௥ 𝑒ି௜𝒒∙𝒓, we obtain the Coulomb potential in׬ 

k-space 

                                                          𝑉௤ ൌ  
௘మ

ଶఢೝఢబ௤
ൌ

ଶగ௘మ

ఢ௤
.                                                     (X.1) 

We introduce a 𝑊௤ as the dynamically screened Coulomb potential, which is related to 𝑉௤ via 

the dynamical dielectric function 

                                                              𝜖ሺ𝑞, 𝜔ሻ ൌ
௏೜
ௐ೜

.                                                          (X.2) 

Using random phase approximation, 𝜖ሺ𝑞, 𝜔ሻ can be expressed as 

                                               𝜖ሺ𝑞, 𝜔ሻ ൌ 1 െ 𝑉௤ ∑
௙ೖష೜ି௙ೖ

ℏఠାாೖష೜ିாೖ
𝒌 ,                                          (X.3) 

where 𝐸௞ ൌ  
ℏమ௞మ

ଶ௠
 and 𝑓௞  is the Fermi-Dirac distribution (𝑓௞ ൌ

ଵ

௘ഁሺಶೖషഋሻାଵ
, where 𝜇  is the 

chemical potential and 𝛽 ൌ 𝑘஻𝑇 is the product of the Boltzmann constant and temperature). 

In the static limit 𝜔 ൌ 0,  𝜖ሺ𝑞, 𝜔ሻ yields 

                                                         𝜖ሺ𝑞, 0ሻ ൌ 1 ൅ 𝑉௤
డ௡

డఓ
,                                                    (X.4) 

where 𝑛 is the carrier density, and thus 
డ௡

డఓ
 is the density of states (DOS).  

By introducing a screening wave number 𝜅 ൌ  
ଶగ௘మ

ఢ

డ௡

డఓ
, the dynamical dielectric function takes 

the form of 

                                                             𝜖ሺ𝑞, 0ሻ ൌ 1 ൅ ఑

௤
.                                                        (X.5) 

For the chemical potential of a 2DEG, we have 
ఓ

௞ಳ்
ൌ ln ሺ𝑒

ഁℏమഏ೙
೘ െ 1ሻ. Therefore, the 2D 

screening wave number has a simple form of 

                                                              𝜅 ൌ  ଶ௠௘మ

ఢℏమ
𝑓௞ୀ଴.                                                          (X.6) 

For a degenerate 2DEG at low temperatures, 𝑛 ൌ
௠

గℏమ
𝐸ி.  

The carrier-induced BGR is dominated by the Coulomb-hole term (Σ஼ு). The Coulomb-hole 

term can be calculated using  

                                                       Σ஼ு ൌ  ଵ
ଶ
∑ ሺ𝑊௤௤ െ 𝑉௤ሻ.                                                   (X.7) 

In 2D, the summation in k-space can be expressed using an integral and therefore we get 

                                            Σ஼ு ൌ  െ௘మ

ଶఢ
׬ ቀ1 ൅ ௤

఑
൅ 𝑐ሺ𝑞ሻቁ

ିଵ
𝑑𝑞.  

௤೎
଴                                      (X.8) 
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The integral is divergent, if 𝑞௖ → ∞. However, the plasma of the Fermi gas whose energy is 

much larger than the Fermi energy experience Landau damping. This sets an upper bound for 

ℏమ௤೎మ

ଶ௠
. Based on Ref. [18], we simply set this value to 

ℏమ௤೎మ

ଶ௠
 = 0.05 eV. 𝑐ሺ𝑞ሻ is a term that 

compensates the static approximation which leads to an overestimation of Σ஼ு . In the 

calculations presented in Figure 5c, we set 𝑐 ൌ 0, 𝜖௥ ൌ 10 [1] and T = 5 K as parameters. 

Figure S10 depicts the screening wave number 𝜅 as a function of the carrier density for 𝑚 ൌ

0.1 𝑚଴  and 𝑚 ൌ 𝑚଴ , where 𝑚଴  is the bare electron mass. For 𝑚 ൌ 𝑚଴ , at high carrier 

densities, the inverse of 𝜅 is about 0.3 nm. The inverse of the screening wave number can be 

regarded as the effective screening length. If the flake thickness is much higher than the 2D 

effective screening length, the third dimension needs to be considered. Therefore, a 3D model 

is derived to describe the dynamical screening in 3D.  

 

Figure S10. Calculated screening wave number 𝜅 as a function of the carrier density for 𝑚 ൌ 0.1 𝑚଴ (blue curve) and 𝑚 ൌ

𝑚଴ (red curve). 

 

B. 3D model 

Similar to the 2D model, we could rewrite the Coulomb potential in k-space using a 3D Fourier 

transform 

                                                𝑉௤ ൌ 𝑑ଷ𝑟 𝑉௥׬  𝑒ି௜𝒒∙𝒓 ൌ ௘మ

ఢೝఢబ௤
ൌ ସగ௘మ

ఢ௤మ
.                                     (X.9) 

Therefore, 

                                                𝜖ሺ𝑞, 0ሻ ൌ 1 ൅ 𝑉௤
డ௡

డఓ
 ൌ 1 ൅ ସగ௘మ

ఢ௤మ
డ௡

డఓ
.                                     (X.10) 
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We again introduce a 3D screening wave number 𝜅 ൌ ට
ସగ௘మ

ఢ

డ௡

డఓ
, such that 𝜖ሺ𝑞, 0ሻ takes the 

form of 

                                                              𝜖ሺ𝑞, 0ሻ ൌ 1 ൅ ఑మ

௤మ
.                                                    (X.11) 

In 3D, the relation between 𝑛 and 𝜇 has a form of  

                                              𝑛 ൌ
ଵ

ଶగమ
ቀ
ଶ௠

ℏమ
ቁ
ଷ/ଶ

׬ √𝐸
ஶ
଴  

ଵ

௘ഁሺಶషഋሻାଵ
 𝑑𝐸.                                  (X.12) 

డ௡

డఓ
 cannot be expressed analytically. Here, for simplicity, we use the Boltzmann distribution to 

replace the Fermi-Dirac distribution. We obtain an analytical expression of 𝜅  at a finite 

temperature 

                                                               𝜅 ൌ ටସగ௘మ௡ఉ

ఢ
.                                                        (X.13) 

For a degenerate 3DEG at low temperatures,  

                                                        𝑛 ൌ
ଵ

ଶగమ
ቀ
ଶ௠

ℏమ
ቁ
ଷ/ଶ ଶ

ଷ
𝐸ி
ଷ/ଶ.                                              (X.14) 

We again using (X.7) and derive the Coulomb-hole energy shift Σ஼ு in 3D 

                                           𝛴஼ு ൌ  െ ௘మ

గఢ
׬ ቀ1 ൅ ௤మ

఑మ
൅ 𝑐ሺ𝑞ሻቁ

ିଵ
 𝑑𝑞

௤೎
଴ .                                       (X.15) 

If we assume 𝑞௖ → ∞, (X.15) simply becomes Σ஼ு ൌ  െ௘మ

ଶఢ
𝜅. Here, we still set 

ℏమ௤೎మ

ଶ௠
 = 0.05 eV 

to describe a cut-off energy for the Landau damping of plasma.  

 

The discrepancy between our data and theoretical model comes from two aspects: (i) using a 

parallel capacitor model to estimate the carrier density neglects the electrostatic screening 

leading to an overestimation, especially if the semiconducting flake is thicker than a monolayer. 

As a result, the Fermi energy (x-axis of Figure 5a) is overcalculated; (ii) as mentioned above, 

in the static approximation, the calculated Coulomb-hole term (y-axis of Figure 5b) is 

overestimated. 

 

12. Discussion on the Fermi-polaron picture 

In our work, we do not use Fermi-polarons to explain the redshift in the p-doped regime. The 

neutral exciton and trion in monolayer TMDCs are sometimes considered as repulsive and 

attractive Fermi-polarons which are quasi-particles formed by excitons coupling to a Fermi 

reservoir20,21. The polaron effects are usually observed in the reflectance spectrum for 

monolayer TMDCs. The spectral peak in an emission spectrum usually locates at the lowest 
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energy where the population is largest, while the contrast in a reflectance spectrum quantifies 

the oscillator strength of a specific many-body state. The state with high oscillator strength 

does not necessarily show intense PL emissions because the energy is not the lowest. However, 

the state with high oscillator strength can couple with a cavity mode to form polaritons that 

exhibits anti-crossing features in the spectrum. This has been reported by Sidler et al.20 The 

underlying reasons are as follows. The coupling strength of a trion to the radiative field is 

proportional to ൫𝑘௣௛𝑎்൯
ଶ
, where 𝑘௣௛ is the momentum of the radiative field that is on the order 

of the light-cone size 𝑘௣௛~𝐸௚/ℏ𝑐 ൎ 7.6 ൈ 10ିସ Åିଵ, and 𝑎் is the trion Bohr radius. Due to 

the coupling to the Fermi reservoir, the polaron has a much larger oscillator strength that is 

proportional to ሺ𝑘ி𝑎்ሻଶ, where 𝑘ி ൌ ඥ2𝑚௛𝐸ி/ℏ is the momentum at the Fermi surface22. In 

our experiment, we tune the chemical potential by about 5 meV. We estimate 

𝑘ி~3.6 ൈ 10ିଶ Åିଵ. As all spectral features reported in our work are shown in the PL emission 

spectra, we tend to use the BGR picture to explain the redshift. Different from the polaron 

picture where the exciton is directly coupled with the Fermi reservoir forming new quasi-

particles, the BGR picture can be considered as using exciton (or trion) to probe the change of 

band gap due to the many-body screening effect in the Fermi reservoir.   
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