Supporting Information

Discovery of Novel Thioquinazoline-N-aryl-acetamide/N-arylacetohydrazide Hybrids as Anti-SARS-CoV-2 Agents: Synthesis, *In vitro* Biological Evaluation, and Molecular Docking Studies

Heba T. Abdel-Mohsen^{**a*}, Mohamed A. Omar^{*a*}, Omnia Kutkat^{*b*}, Ahmed M. El Kerdawy^{*c*}, Alaa A. Osman^{*d*}, Mohamed GabAllah^{*b*}, Ahmed Mostafa^{**b*}, Mohamed A. Ali^{*b*}, Hoda I. El Diwani^{*a*}

^aDepartment of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El-Buhouth St., Dokki, P.O. Box 12622, Cairo, Egypt

^bCenter of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt.

^cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt.

^dDepartment of Pharmaceutical Chemistry, School of Pharmacy, NewGiza University (NGU), NewGiza, km 22 Cairo–Alexandria Desert Road, Cairo, Egypt

* Corresponding authors. Email address: <u>ht.abdel-mohsen@nrc.sci.eg</u> and <u>hebabdelmohsen@gmail.com</u> (Heba T. Abdel-Mohsen); A.M. (<u>ahmed_elsayed@daad-alumni.de</u>)

Contents

- 1. NMR spectra of thioquinazoline-*N*-aryl-acetamide / *N*-arylacetohydrazide 3 hybrids (Fig. 1-38).
- 2. Dose-inhibition curves of the synthesized derivatives against NRC-03-nhCoV 41 and Vero-E6 cells (Fig. 39).
- 3. 2D diagrams of the synthesized compounds showing their interactions in M^{pro} 42 active site (PDB ID: 7LTJ) (Fig. 40-59).

NMR spectra of thioquinazoline-*N*-aryl-acetamide / *N*-arylacetohydrazide hybrids (Fig. 1-20).

2-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetamido)benzoic acid (11a)

Fig. 1. ¹H (500 MHz) NMR spectrum of **11a** in DMSO- d_6

2-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetamido)benzoic acid (11a)

Fig. 2. ¹³C (125 MHz) NMR spectrum of 11a in DMSO- d_6

3-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetamido)benzoic acid (11b)

Fig. 3. ¹H (400 MHz) NMR spectrum of **11b** in DMSO- d_6

3-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetamido)benzoic acid (11b)

Fig. 4. ¹³C (100 MHz) NMR spectrum of 11b in DMSO- d_6

4-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetamido)benzoic acid (11c)

Fig. 5. ¹H (500 MHz) NMR spectrum of **11c** in DMSO- d_6

2-(2-((4-Oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetamido)benzoic acid (12a)

Fig. 6. ¹H (500 MHz) NMR spectrum of **12a** in DMSO- d_6

2-(2-((4-Oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetamido)benzoic acid (12a)

Fig. 7. ¹³C (125 MHz) NMR spectrum of 12a in DMSO- d_6

3-(2-((4-Oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetamido)benzoic acid (12b)

Fig. 8. ¹H (400 MHz) NMR spectrum of **12b** in DMSO- d_6

Fig. 9. ¹³C (100 MHz) NMR spectrum of 12b in DMSO- d_6

4-(2-((4-Oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetamido)benzoic acid (**12c**)

Fig. 10. ¹H (500 MHz) NMR spectrum of **12c** in DMSO- d_6

4-(2-((4-Oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetamido)benzoic acid (12c)

Fig. 11. ¹³C (125 MHz) NMR spectrum of **12c** in DMSO- d_6

N-(2-((4-Oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17a)

Fig. 12. ¹H (500 MHz) NMR spectrum of **17a** in DMSO- d_6

4-Methyl-*N*'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**17b**)

Fig. 13. ¹H (500 MHz) NMR spectrum of 17b in DMSO- d_6

4-Methyl-*N*'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**17b**)

Fig. 14. ¹³C (125 MHz) NMR spectrum of 17b in DMSO- d_6

4-Nitro-*N*-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**17c**)

Fig. 15. ¹H (500 MHz) NMR spectrum of 17c in DMSO- d_6

4-Nitro-*N*'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**17c**)

Fig. 16. ¹³C (125 MHz) NMR spectrum of 17c in DMSO- d_6

2-Methoxy-N-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17d)

Fig. 17. ¹H (500 MHz) NMR spectrum of **17d** in DMSO- d_6

2-Methoxy-N-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17d)

Fig. 18. 13 C (125 MHz) NMR spectrum of **17d** in DMSO- d_6

2-Chloro-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17e)

Fig. 19 ¹H (500 MHz) NMR spectrum of **17e** in DMSO- d_6

2-Chloro-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17e)

Fig. 20 13 C (125 MHz) NMR spectrum of **17e** in DMSO- d_6

4-Chloro-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17f)

Fig. 21 ¹H (500 MHz) NMR spectrum of **17f** in DMSO- d_6

4-Chloro-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17f)

Fig. 22. ¹³C (125 MHz) NMR spectrum of **17f** in DMSO- d_6

2-Bromo-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17g)

Fig. 23. ¹H (500 MHz) NMR spectrum of 17g in DMSO- d_6

2-Bromo-N'-(2-((4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)benzohydrazide (17g)

Fig. 24. ¹³C (125 MHz) NMR spectrum of 17g in DMSO- d_6

N-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18a)

Fig. 25. ¹³C (125 MHz) NMR spectrum of 18a in DMSO- d_6

N-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18a)

Fig. 26. ¹³C (125 MHz) NMR spectrum of 18a in DMSO- d_6

4-Methyl-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18b**)

Fig. 27. ¹H (500 MHz) NMR spectrum of **18b** in DMSO- d_6

4-Methyl-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18b**)

Fig. 28. ¹³C (125 MHz) NMR spectrum of **18b** in DMSO- d_6

 $\label{eq:linear} 4-Nitro-\textit{N}-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio) acetyl) benzohydrazide~(18c)$

Fig. 29. ¹H (500 MHz) NMR spectrum of 18c in DMSO- d_6

4-Nitro-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18c**)

Fig. 30. ¹³C (125 MHz) NMR spectrum of 18c in DMSO- d_6

2-Methoxy-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18d**)

Fig. 31. ¹H (500 MHz) NMR spectrum of **18d** in DMSO- d_6

2-Methoxy-N'-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18d)

Fig. 32. ¹³C (125 MHz) NMR spectrum of **18d** in DMSO- d_6

2-Chloro-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18e**)

Fig. 33. ¹H (500 MHz) NMR spectrum of **18e** in DMSO- d_6

2-Chloro-*N*-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (**18e**)

Fig. 34. ¹³C (125 MHz) NMR spectrum of 18e in DMSO- d_6

4-Chloro-N'-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18f)

Fig. 35. ¹H (500 MHz) NMR spectrum of **18f** in DMSO- d_6

4-Chloro-N'-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18f)

Fig. 36 13 C (125 MHz) NMR spectrum of **18f** in DMSO- d_6

2-Bromo-N'-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18g)

Fig. 37. ¹H (500 MHz) NMR spectrum of 18g in DMSO- d_6

2-Bromo-N'-(2-((4-oxo-3,4,5,6,7,8-hexahydroquinazolin-2-yl)thio)acetyl)benzohydrazide (18g)

Fig. 38. 13 C (125 MHz) NMR spectrum of 18g in DMSO- d_6

2. Dose-inhibition curves of the synthesized derivatives against NRC-03-nhCoV and Vero-E6 cells (Fig. 39)

Fig. 39. Dose-inhibition curves of the synthesized derivatives against NRC-03-nhCoV and Vero-E6 cells

3. 2D diagrams of the synthesized compounds showing their interactions in M^{pro} active site (PDB ID: 7LTJ) (Fig. 40-59).

Fig. 40. 2D diagram 11a showing its interaction in M^{pro} active site

Fig. 41. 2D diagram 11b showing its interaction in M^{pro} active site

Fig. 42. 2D diagram 11c showing its interaction in M^{pro} active site

Fig. 43. 2D diagram 12a showing its interaction in M^{pro} active site

Fig. 44. 2D diagram 12b showing its interaction in M^{pro} active site

Fig. 45. 2D diagram 12c showing its interaction in M^{pro} active site

Fig. 46. 2D diagram 17a showing its interaction in M^{pro} active site

Fig. 47. 2D diagram 17b showing its interaction in M^{pro} active site

Fig. 48. 2D diagram 17c showing its interaction in M^{pro} active site

Fig. 49. 2D diagram 17d showing its interaction in M^{pro} active site

Fig. 50. 2D diagram 17e showing its interaction in M^{pro} active site

Fig. 51. 2D diagram 17f showing its interaction in M^{pro} active site

Fig. 52. 2D diagram 17g showing its interaction in M^{pro} active site

Fig. 53. 2D diagram 18a showing its interaction in M^{pro} active site

Fig. 54. 2D diagram 18b showing its interaction in M^{pro} active site

Fig. 55. 2D diagram 18c showing its interaction in M^{pro} active site

Fig. 56. 2D diagram 18d showing its interaction in M^{pro} active site

Fig. 57. 2D diagram 18e showing its interaction in M^{pro} active site

Fig. 58. 2D diagram 18f showing its interaction in M^{pro} active site

Fig. 59. 2D diagram 18g showing its interaction in M^{pro} active site