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1 Benchmarking Performances of Traditional Methods of Generat-

ing Cell Masks

To compare the accuracy of other segmentation methods, such as human annotated training data, traditional

Otsu thresholding, and cell perimeter evaluation using membrane dyes, we generated synthetic images of single

cells in phase contrast and with membrane dyes, along with accompanying ground truth. We then segmented

the cells with Otsu’s method and the membrane dye method, comparing the output masks to the ground truth.

We show in this section that these methods systematically underestimate the cell’s dimensions.

1.1 Human Drawn Masks

In order to test how accurate humans are at annotating images to generate training data, we sent 3 researchers

a set of 100 synthetic images. The researchers were asked to both label the images and time themselves. The

labelling was performed by sending each researcher a Python script which would open a napari window [1], and

allow them to manually segment cells, saving their output to a file. We then compared the length, width, and

pixelwise (IoU) accuracy of the human generated masks to the ground truth masks of the synthetic data. The

IoU output of this result is given in Figure 1i, showing that humans consistently perform poorly in segmenting

cells, especially if they are small and in stationary phase. We also observed that there was a significant bias in

the way in which humans were mis-segmenting data, based on the cell’s dimension and growth phase, shown

below in Figure 1.1
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Figure S 1.1: The human annotation error is quantified by 3 researchers who were asked to manually segment 100 synthetic

images. Their segmentations were compared against the ground truth. The worst performance was always in the width dimension

with this becoming worse when the cells were in stationary phase. There was also a systematic tendency for human segmentations

to underestimate the cell’s dimensions on average.
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1.2 Membrane Dyes for Generating Cell Contours

Next we show that using membrane dyes for estimation of cell size using diffraction limited imaging leads to

severe underestimation of cell perimeter. We simulated images of cells tagged with a membrane dye by modelling

cells as spherocylinders. We then assigned high fluorescence intensity values to the hull of the cell and performed

3D convolution of a fluorescence PSF approximated as a 3D Gaussian with appropriate X,Y and Z parameters.

We then compared the true width of the cell with what one would infer if they assumed the cell width was the

inter-peak distance of the maximal fluorescence intensities across the cell’s minor axis. The simulations and a

sample of a cell are shown below in Figure 1.2.
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Figure S 1.2:

Left: Simulation of cells tagged with membrane dyes. Red line shows the slice taken for the intensity profile in the XY plane.

Membrane dyed cells are simulated as hollow spherocylindrical hulls, with 0 intensity in the cytoplasm, and an intensity of 1 in the

membrane. 3D convolution is then done with a Gaussian approximation to the fluorescence PSF to simulate the raw microscope

image.

Right: Sample intensity trace of the intensity across the width of a cell. Blue shows the intensity of a diffraction limited image of

a membrane dye tagged cell, and orange shows the true intensity profile. The microscope’s optics corrupt the image and lead to a

decrease in the inter-peak distance which subsequently underestimates the cell width.

This error becomes increasingly large as as the cell’s width gets ever smaller. Figure 1.3 shows the error

rates for width estimations for simulated cells from 0.6 microns to 1.4 microns in width. A very narrow cell,

with a width of 0.6 microns would have a width estimation error of close to 80%. This represents a best case

scenario, as the images were convolved with an ideal point spread function, and no noise was added to the

image. In reality the estimation error will be worse.
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Figure S 1.3: Left: there is a systematic error in measuring the cell width using membrane dyes. Width is consistently under-

estimated. Right: The error in width estimation by using the inter-peak distance of membrane dye intensity is very high. A typical

cell with a width of 1 micron will suffer an estimation error of more than 30%. Additionally for very thin cells it becomes impossible

to make out the perimeter due to reaching the diffraction limit.

If membrane dyes are the only way to measure width due to experimental constraints (e.g the lack of a
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phase contrast objective), then packages such as ColiCoords [2] are recommended, as they can mitigate the

error incurred by this method by allowing the user to choose the method of perimeter estimation.

1.3 Otsu’s Method for Grayscale Thresholding

While Otsu’s method alone rarely yields good results for the segmentation of phase contrast cells, it is often

used in combination with other preprocessing steps in the generation of training data for further use in machine

learning pipelines. Thus its error must be investigated, because if it is used in the training data generation

pipeline, its error will be propagated to the learning algorithm chosen. We simulated single cells imaged under

phase contrast optics in order to quantify the error from this thresholding method compared to the ground

truth mask. The error is systematic and constant across cell widths, meaning that narrower cells suffer from

greater relative error rates in dimension estimation (Figure 1.4).
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Figure S 1.4:

Left: The error from Otsu’s method is a consistent offset for all cell sizes. While one could in theory compensate for this, the offset

will not be immediately calculable as each microscope’s PSF will slightly vary.

Right: the relative percentage error grows quickly as cells become narrow.

These data show that traditional methods of segmenting cells fail to accurately measure a cell’s dimensions.

Membrane dyes and Otsu’s method does not account for the 2D projection effects and underestimates the cell

width. These underestimation errors would be propagated to a learning based algorithm if used to generate

training data. Further segmentation methods, such as those based around local thresholding and watershed

could also suffer from errors in dimension estimation. This is because one needs to constantly tweak subjective

parameters until the segmentation “looks right”. For bioimage analysis of large objects, such as eukaryotic cells,

this is typically not a problem, but as shown, it manifests for small objects are close to the diffraction limit,

such as bacteria.

2 Details of Agent Based Model and Rigid Body Physics Simulation

Our cellular simulation is an agent based model, where each cell is defined by a number of attributes (length,

width, resolution, position, angle, growth rate constant, max length, max length var, width, width var).

Cells can grow according to the adder, sizer or timer growth model.

For the spatial component of the simulation we used Python bindings for the popular Chipmunk physics

engine, called Pymunk [3] in order to create a custom simulation environment. Cells exist as dynamic objects in

a Pymunk space and can move around. Each time-step, the lengths of the cells are updated. This causes some

cell hulls to overlap, the physics engine is then called to resolve these conflicts and move cells. While simulations

most often produce realistic cell-stacking dynamics, the nature of cell-cell and cell-trench interactions can be

varied by adjusting the number of physics iterations in each time-step, and by adding gravity to the simulation.
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Stronger gravity in the direction of the bottom of the trench will induce tighter cell stacking, and in some cases

double-loading of cells into the mother machine (which is a common occurance in experiments where the trench

is too wide for the organism of choice). Low gravity, or negative gravity results in cells seemingly repelling each

other, keeping a large distance from one another in the mother machine (often seen with motile strains which

can leave trenches mid-experiment). Due to the unpredictability of cell stacking dynamics in real experiments

(which vary due to media flow rate, cell size, trench dimensions, etc) we leave these parameters free to be

changed by the user in order to maximise the similarity of the simulation to their experiment. The simulation

can be watched in real time while it is running (Figure 2.1).

t0 t10 t20 t30 t40 t50 t60 t70 t80

Figure S 2.1: Example kymograph of cells in the trenches from a simulation run. The user can monitor this simulation in real

time and adjust parameters to achieve the desired result.

The simulation is defined by the user using the following parameters.

• sim length is the number of simulation frames to run.

• trench length is the length of the mother machine trench in microns.

• trench width is the width of the mother machine trench in microns.

• cell max length is the mean maximum length of a cell in microns.

• cell width is the mean cell width in microsn.

• gravity is a parameter which can be used to add or remove pressure of cells on one another. This is

useful if for some reason cells in the simulation are falling into each other (although you should change

phys iters first if this is happening).

• phys iters is the number of physics iterations per frame. 20 is a good starting point.

• max length var is the variance of the mean maximum cell length.

• width var is the variance of the mean cell width

• save dir is the directory to save the simulation output if it will be to analysed later, or with other code.

• do transformation is a bool that decides whether cells are given a curve after the simulation, during

rendering.

• lysis p is the probability for a cell to lyse in each timepoint. Useful if generating training data for

experiments involving antibiotics or bacteriophage.
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The pseudocode below also demonstrates the broad overview of how the agent based model is run, treating

cells as objects with properties which are modified every timestep.

Algorithm 1 Pseudocode for agent based simulation for bacterial growth

cell length var ∼ N (max cell length, length var)

cell width var ∼ N (mean cell width, width var)

angle jitter ∼ U(−0.01, 0.1)

lysis p = 0.1

initialise first cell

add cell to population

for t in sim length do

for cell in cell population do

lysis ∼ U(0, 1)

if cell.y > trench length or lysis < lysis p then

remove cell from population

else if cell.length > cell.max length then

cell.dividing = True

end if

if cell.dividing then

cell length var ∼ N (max cell length, length var)

cell width var ∼ N (mean cell width, width var)

septum pos ∼ N (0, cell.length/4)

initialise daughter cell object

daughter.max length = max cell length + cell length var

daughter.width = mean cell width + cell width var

daughter.length = cell.length - septum pos

daughter.pos x = cell.pos x - septum pos · sin(cell.angle · 2)
daughter.pos y = cell.pos y - septum pos · cos(cell.angle · 2)
daughter.angle = cell.angle + angle jitter

add daughter to population

cell.position x = cell.position x + septum pos · sin(cell.angle · 2)
cell.pos y = cell.pos y + septum pos · cos(cell.angle · 2)
cell.length = septum pos

else

I ∼ U(0, 7, 1.3)

cell.length = cell.length·(1 + growth rate · dt · I)
end if

end for

for i in phys iters do

jitter cells

apply gravity

resolve collisions

end for

end for
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3 Details of OPL Calculation and Scene Drawing

At every time-point, each cell’s location and dimensions are kept track of and recorded. This data is used to

redraw the entire scene in 3D. While the simulation itself is not performed in 3D, with all interactions restricted

to the XY plane, it is important to simulate the optics in 3D. The optical path length (OPL) of each pixel in the

image must be simulated correctly. This is the optical distance that a ray of light experiences while travelling

through the sample, and is given by a product of the geometric (real) distance travelled, and the refractive

index of the medium which the light passes through. Our simulation has 3 main objects which light can pass

through: the PDMS of the mother machine (referred to as the device), the cell growth medium, and the cell

itself (Figure 3.1). This corresponds to 3 refractive indices. PDMS and growth medium have a constant depth

in the XY plane, however the cells do not, this is the main reason for the importance of the 3D treatment of

the cells. Light has a higher optical path length down the centre-line of a cell than at its edge.

PDMS

Cell
Media

Cover slip

Figure S 3.1: The OPL value is calculated for each pixel according to geometry and relative differences in refractive index,

however the exact values of the refractive indices are left free to be optimised during the image generation step.

The 3D OPL images are then optionally modified to create curves in the cells. Each cell, being represented

by an array, can be morphed to simulate cell curvature. In order to do this we roll individual rows of the cell

image by a random number of pixels, with the transformation given by:

roll(ℓ) =


0 ℓ ≤ 0

a sin( ℓ·πb + c) 0 ≤ ℓ ≤ L

0 L ≤ ℓ

(1)

where L is the total length of the cell, l is the position down the length of the cell, and a, b, and c are randomly

chosen for each transformation, but kept constant for individual cells. An example of the transformation of an

OPL image viewed in the XY plane is shown in Figure 3.2

From the 3D OPL, masks are then generated. Two types of masks can be generated: instance masks, where

each cell’s mask is given a unique value, but no zero value pixels separate different cells, and semantic masks,

where all cell masks have the same value (1), but cells are separated from one another with zero value pixels.

Instance masks are intended for use with Star/Splinedist, while semantic masks are for use with DeLTA.
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roll(l)
+

Figure S 3.2: Left: A random transformation of a straight cell (OPL image in XY) into a curved cell allows for rendering of

more realistic images of mother machine images. The mask of the cell is then simply taken as the entire region defining the newly

transformed cell. Right: Example output from the simulation of a single frame OPL image and its corresponding instance mask

output.

After this process is completed, the trench is drawn around the cells according to the simulation input

dimensions. Two new images, the image of the mother machine trench (trench image, OPLOPLOPLt), and the space

in between the cells (media image, OPLOPLOPLm), are also derived from the simulation. The raw intensities of each

image are then matched to the intensities of the trench, cells, and media in a real image. The user selects

pixels in a real image corresponding to the cells, generating three arrays, ccc, ttt, mmm, for cells, trench, and media

respectively, with values of 1 where a pixel corresponds to that object, and 0 otherwise. The mean intensity is

then calculated as:

Ic =
1

MN

M−1∑
m=0

N−1∑
n=0

Ym,n · cm,n

It =
1

MN

M−1∑
m=0

N−1∑
n=0

Ym,n · tm,n

Im =
1

MN

M−1∑
m=0

N−1∑
n=0

Ym,n ·mm,n

(2)

Where M and N are the dimensions of the image, and YYY is the image. The three OPL images are then

summed as:

OPL = OPLc · Ic +OPLt · It +OPLm · Im (3)

We define a mask function, m as:

m(x) =

0 x = 0

1 x ̸= 0
(4)

The image for the ground truth masks, M, can then be defined as:

Mi,j = m(OPLci,j ) (5)
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4 PSF Definitions, Convolution and Image Simulation

After preparation of the OPL images, described in section 3, the PSF is prepared.

The fluorescence point spread function is modelled as a standard Airy disk, given by:

PSFfluo(x, y) =

[
2J

(
2πNA

nλ ·
√

x2 + y2
)

2πNA
nλ ·

√
x2 + y2

]2
(6)

Where J is a Bessel function of the first kind, n is the refractive index of the imaging medium, NA is the

numerical aperture of the objective, λ is the emission wavelength, and scale is the pixel-size.

The phase contrast PSF is modelled similarly to [4], as an obscured Airy disk given by

PSFphase(r) =

{[
J(ω)

ω
− (R−W )2 · J(2 · (R−W )2ω)

ω

]}
(7)

with

ω = 2 · π ·NA

nλ
· r (8)

where R and W are the dimensions of the phase ring and condenser annulus (Figure 4.1). Example PSF

images can be seen in Figure 4.2

The PSF is discretised by preparing matrix R, of size K by L:

Ri,j =
√
(i−K/2)2 + (j − L/2)2) (9)

The discretised PSF matrix is thus:

PSFi,j = PSFphase/fluo(ri,j) (10)

The phase contrast PSF is apodised using Gaussian apodisation, with the apodisation array being given by

the function:

G(r, σ1) = exp

(
−

(
r2

2σ2
1

))
(11)

The apodised PSF is therefore given by

PSFapodised = PSF⊙G(R, σ1) (12)

Where ⊙ is the matrix elementwise (Hadamard) product. The theoretical minimum value for σ1 can be

thought of as being the microscope’s diffraction limit, thus the phase contrast PSF cannot be smaller than a

pure Airy disk. We use a Gaussian approximation for the Airy disk’s [5] diameter for this estimate. Therefore

we constrain σ1:

σ1 ⪆ 0.9λ
n

2NA
(13)

Where λ is the imaging wavelength, n is the imaging refractive index, and NA is the numerical aperture of

the objective. We then simulate defocus [6] in the image by convolving PSFapodised with another Gaussian:
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PSFapo/def = PSFapodised ∗G(R, σ2) (14)

where ∗ is the matrix convolution operation. Therefore, the first order, unoptimised version of the synthetic

image can be created through the convolution:

Sunopt = PSFapo/def ∗OPL (15)

All convolution takes place with edge reflection (using CuPy), however OPL images are intentionally drawn

with large borders to avoid convolution edge effects. OPL images and kernels are rendered at at least 3x the

imaging resolution. This ensures that when the convolution takes place, a high resolution kernel is convolved,

and no details of the kernel’s concentric rings are lost to pixelation. Only after convolution has taken place is

the synthetic image then resized back to the camera’s original pixel size.

R

W

Figure S 4.1: Diagram showing the diemsions of the phase ring and condenser annulus to be used with Equation Equation 7 to

parameterise the phase contrast point spread function.

750 nm 750 nm

Figure S 4.2: Phase contrast (left) and fluorescence (right) kernels generated with λ = 0.75 micron, NA=0.97, n = 1, W = 0.8

mm, R = 5 mm. The phase contrast kernel is displayed with no apodisation or defocus. Both kernels have their intensities square

rooted to enhance contrast for the reader.

5 Comparison between 3D and 2D PSF models

Taking the 2D projection of the OPL image, and convolving with an idealised 2D PSF is a simplification of

the image generation process, trading off accuracy for performance gains in the convolution step. We sought

to test whether a full 3D PSF model would have substantial effects on the quality of the training data, and

thus on the performance of deep learning models. We generated synthetic data for 100x fluorescence images of

bacteria in the microfluidic linear colonies. To do this, we reran the simulation step of the pipeline, but at the

2D projection stage of the pipeline, instead extracted 3D arrays of cell positions, where a 0 indicates no cell, and

a 1 indicates the presence of cell material in that voxel. We generated 3D PSFs for each image using the model

given by [7]. Convolution was performed on the OPL images with the 3D PSF, and the top down projection

was taken by summing the resultant 3D synthetic image across its z axis. The same PSF parameters were then

used to generate the equivalent 2D version by taking a projection. Convolution in 2D was then applied to the

projection of the OPL image, generating a 2D synthetic image. The difference between both images was then
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taken, and it was found that the maximal difference in pixel intensities was approximately 0.01% at its peak. It

should be noted, that here, we refer to 3D convolution in a different manner than the traditional sense. Because

3D volumes are not being imaged but only projected in widefield microscopy (as the objective lens is kept at a

fixed z position), we take 3D convolution to be the sum of 2D convolutions of each layer of the 3D PSF with

the corresponding layer of the 3D OPL image. For instance, where a PSF and OPL image have Z layers, the

resultant image, S is:

S =

Z−1∑
z=0

PSFz ∗OPLz (16)

3D PSF 
Conv time = 2.47 s
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2D PSF 
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Figure S 5.1: Comparison between 2D and 3D fluorescence PSF convolution. The PSF models were generated according to [7].

a) shows the raw output of a 3D and 2D convolutions, with the corresponding time taken for the operation on an Nvidia Quadro

RTX 4000 GPU. Also the percentage absolute difference in pixel intensities between each image can be seen. b) shows how the

convolution time with the PSF changes as a function of its radius. Higher radius PSFs will simulate longer range diffraction effects,

resulting in higher accuracy at the cost of performance.

Convolution of a 3D PSF is more than an order of magnitude slower than 2D convolution, and the difference

in run times will grow if the synthetic images are rendered at higher resolutions. However, as the difference in

the image output is minimal, we expect the performances of the segmentation networks trained with 2D or 3D
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PSF models.

To test this, we generated two synthetic datasets of 500 images each which were identical except for the

convolution mode. To test the effects of 3D vs 2D PSF convolution, we used this trianing data to train Omnipose

and DeLTA to segment images of B. subtilis exiting stationary phase (100x Plan Apo oil objective, fluorescence

and phase contrast channels). We found no significant difference in the identification accuracy of Omnipose

(trained for 4000 epochs) and DeLTA (trained for 400 epochs) models trained with either 3D convolved data or

2D convolved data, nor did we find any significant difference in the mean lengths and widths of cells throughout

the experiment (0.4% identification error rate with camera noise model). This implies that such small changes

in the training data intensity do not have an effect on the quality of the model.

6 Implementation of the camera noise model

SyMBac allows for a simulation of the camera noise in the image formation process, instead of ad hoc noise

matching, if the camera parameters are available to the user. We implemented the camera noise model described

in the linear version of the EMVA1288 4.0 Standard for Measurement and Presentation of Specifications for

Machine Vision Sensors and Cameras. EMVA1288-linear describes a pixel sensor which integrates a number

of photons over time, filling a well of electrons, whose charge is converted to a voltage which is amplified and

digitised into a greyscale signal. We consider the two main sources of noise; photon noise and dark noise,

modelled as Poisson and Gaussian distributions respectively. The camera’s sensitivity, dark noise, and baseline

intensity are required to be known. If the dark noise cannot be found, or the camera’s precise mode of operation

is not known (which often affects the dark noise levels), then it can be estimated by capturing dark photos and

calculating the standard deviation of the pixel intensities. Additionally with this method the baseline intensity

can be calculated.

The advantage of a forward simulation of camera noise, is that it removes the need to use intensity, histogram,

and noise matching when generating synthetic fluorescence data. Matching these properties of a synthetic image

of cells in one orientation, to a real image of cells in another orientation is never ideal, and this can slightly

corrupt cell widths.

The camera noise is added to the image after PSF convolution, described in section 4. We assume that

the sensor is linear in ADUs vs photon count, and that each pixel has identical dark noise. We model the

image shot noise (each pixel’s charge unit variability) as a Poisson distributed random variable, with mean

and variance equal to the number of accumulated electrons in each pixel. The sensitivity (s) of the sensor (in

ADU/e−) is therefore used to convert the image first into electrons. Therefore the matrix AAA is the shot noise in

the image. The matrix BBB is the dark noise in the image. Each element is a random variable with mean equal

to the baseline value of each pixel, and standard deviation equal to the camera’s dark noise, both of which are

parameters which can be obtained from most camera specifications.

Ai,j ∼ Pois(Sunopti,j/s)

Bi,j ∼ N (µd, σ
2
d)

Snoisei,j = s · (Ai,j +Bi,j)

(17)

In some cases, the values for µd and σ2
d are not available, or the camera’s mode of operation is not known

for a particular dataset. These values can, however, be calculated from taking K M ×N dark images, DDD with

the camera:

µd =
1

sKMN

K−1∑
k=0

M−1∑
m=0

N−1∑
n=0

Dk,m,n (18)
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If we assume that the temporal noise is stationary and homogeneous, then we can get a good estimate for

σ2
d from a single image.

σ2
d =

1

sMN

M∑
m=0

N∑
N=0

(D0,m,n − µd)
2 (19)

SSSnoise is now a synthetic image with matched intensities and noise, and is a good approximation of a real

image. In some cases, however, further small modifications can be made to the image to increase similarity

even further. These include matching the rotational Fourier spectra of the real and synthetic images, as well

as matching the intensity histograms of the two images. The fourier matching algorithm is adapted from the

MATLAB SHINE toolbox, which we have rewritten and optimised for Python [8], with out implementation

detailed within the function documentation. Histogram matching uses the scikit-image implementation [9].

Estimating σ1, the apodisation, and σ2, the defocus, is difficult. Therefore these two parameters are left

floating, interactively adjustable

7 Image Optimisation

After convolution and resizing, optional image optimisation takes place. The first optimisations are fine-tuning

of the refractive index of the PDMS, media, and the cell. In order to get the correct intensity values for these

features, the users are presented with an interactive Napari [1] window (Figure 7.1). The user must label (with

any value > 0) individual layers corresponding to the cell, media, and the device. Accuracy is not needed as

only simple estimate of the mean and variance of each intensity is required.

Next, the lens apodisation (modelled as the PSF multiplied by a 2D gaussian) and defocus (modelled as

the PSF convolved with a 2D gaussian) can be specified by varying the sigma values in Equation 17. These

optimisations alone are often sufficient to produce a highly similar image, however similarity can be maximised

by the addition of noise and matching various properties to real images. Noise is modelled in two ways: either

using the camera model described in section 6, or through the addition of Gaussian noise with user-controlled

variance, and post-noise addition matching of intensity histograms with the real image. Histogram matching

can be used even if the camera model has been used, as it resolves any remaining discrepancies in image

intensity. Additionally, in some instances rotational Fourier spectrum matching can be beneficial, and this is

implemented through a python translation translation of the SHINE toolbox [8]. Fourier spectrum matching

is only recommended for high resolution and high magnification images, as its main purpose is to replicate the

intricate texture found on cells (which is typically not visible on lower magnification images). In our pipeline

we only turn on this setting for 100x oil images. All of these parameters can be adjusted interactively in an

IPython notebook using sliders, shown below in Figure 7.1. The parameters are used to minimise an objective

function:

minimise

{∣∣∣∣Ic − 1
MN

∑m−1
m=1

∑N−1
n=1 ·Snoisei,j ·m(OPLci,j )

∣∣∣∣
Ic

+

∣∣∣∣It − 1
MN

∑m−1
m=1

∑N−1
n=1 ·Snoisei,j ·m(OPLti,j )

∣∣∣∣
It

+

∣∣∣∣Im − 1
MN

∑m−1
m=1

∑N−1
n=1 ·Snoisei,j ·m(OPLmi,j

)

∣∣∣∣
Im

}
(20)

Or, simply, the objective function is minimising the sum of the three relative errors between the empirical

cell, trench, and media intensities, and those in the final synthetic image, defined as ec, et, and em.
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Real intensity estimation using 
napari

Interactive image optimisation in
IPython notebook

Figure S 7.1: Left: Labelling of a sample real image to identify image regions (cell, device, media) in order to adjust the

intensities of the conrresponding regions in the synthetic image. Right: Example of the interactive adjustment interface mid-

optimisation for a 40x image. Adjustment sliders for the media, cell and device intensities, apodisation sigma, noise and defocus

values are available. Options are also available to toggle Fourier, histogram and noise matching as well as convenient switching to

an equivalent fluorescence kernel.

The interactive notebook pictured is available as an example, along with sample images at https://github.

com/georgeoshardo/SyMBac/blob/main/examples/Drawing_Phase_Contrast_100x_oil.ipynb. As per the

documentation, the adjustable parameters are given by:

• media multiplier is the intensity multiplier for the media part of the image.

• cell multiplier is the intensity multiplier for cell parts of the image.

• device multiplier is the intensity multiplier for the device part of the image.

• sigma is the radius (in pixels) of the gaussian apodisation of the phase contrast PSF (if you are using

phase contrast).

• scene no is the index for the frame of the synthetic images you rendered.

• match fourier controls whether you are matching the rotational Fourier spectrum of the synthetic image

to the real image.

• match histogram controls whether you are matching the intensity histogram of the images with each

other.

• match noise controls whether you are matching the camera noise of the images with each other.

• noise var controls the variance of the shot noise added to the image.

• fluorescence controls whether you are rendering a fluorescence of phase contrast image.

• fluo 3D Switch to 3D convolution with fluorescence PSF

• camera noise Switch on camera noise simulation (if camera parameters have been supplied)

• defocus controls the radius of a gaussian which simulates depth of focus and out of focus effects of the

PSF.

14

https://github.com/georgeoshardo/SyMBac/blob/main/examples/Drawing_Phase_Contrast_100x_oil.ipynb
https://github.com/georgeoshardo/SyMBac/blob/main/examples/Drawing_Phase_Contrast_100x_oil.ipynb


8 Comparison of the camera noise model with ad hoc noise match-

ing

We generated two identical synthetic datasets of bacteria B. subtilis exiting stationary phase (100x Plan Apo

oil objective) in both fluorescence and phase contrast, and trained Omnipose models on each of the 4 datasets

(fluo+camera noise, phase+camera noise, fluo+noise match, phase+noise match) to segment the experiment.

We found no difference in identification error (1.0%) or cell morphology when comparing phase contrast training

data with camera noise, and with noise matching. This is likely due to the relatively high intensity values in

phase contrast images, diminishing the effects of noise.

In fluorescence however, the effects of noise are large at these low intensities. Dark noise and even photon

noise can make up a significant fraction of the image’s intensity, lowering the signal to noise ratio. We found a

significant difference in the identification error between models trained on fluo+camera noise data and fluo+noise

match data. Models trained on the former had a 0.4% cell identification error rate, whereas models trained on

the latter noise matched data had a 1.9% error rate when compared across single mother cells. The simulation

of camera noise for fluorescent synthetic images has a significantly positive effect on the segmentation error rate.

Interestingly, the difference in morphology of cells segmented with models trained on fluo+camera noise data

and fluo+noise match data was not significantly different. Length and width distributions were not significantly

different, and comparing masks across results gave a mean IoU of 0.83± 0.02.

9 Model Evaluation and Segmentation Precision

Figure 9.1 shows the error’s decrease as training progresses, but the model can overfit. Therefore automated

analysis of the segmentation errors (details in subsequent figures) is used to find the epoch which minimises the

error.
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Figure S 9.1: a) The optimal probability threshold is identified by passing synthetic validation data through the model, and the

threshold is adjusted to maximise the Jaccard index between the predicted masks and the ground truth masks, or the maximal

distribution intersection between size distributions.

b) Segmentation error of trained models are evaluated automatically epoch-by-epoch by analysing the sawtooth curves of cell length

changes over time, and the model with the lowest error is kept.

The growth profile of the individual cell lends itself well to automated detection of segmentation errors. The

log transform of the length vs time traces out a saw-tooth wave with variable amplitude and phase. By taking

the numerical derivative of this data one can find over and under-segmentation errors by simply searching for

peaks over a certain threshold and with a certain prominence. These peaks can then be mapped back to the

original length trace and the errors corrected with a variety of signal processing techniques.

15



2

4

6

8
Le

ng
th

 (
m

)

4

6

8

Le
ng

th
 (

m
)

0 100 200 300 400
Time (min)

2

4

6

Le
ng

th
 (

m
)

0 100 200 300 400
Time (min)

0 100 200 300 400
Time (min)

Figure S 9.2: A sample of cell length vs time plots, reminiscent of saw-tooth waves. (Segmented from 100x oil data, kymographs

in Figure 11.1 and Figure 11.2
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Figure S 9.3: Errors in the segmentation output’s raw length trace are identified by taking its numerical derivative. Peaks in the

numerical derivative are found and mapped back to the original data. In this case the errors are fixed simply by smoothing out

peaks by setting them to the midpoint value of the adjacent values. For errors which span more than a single frame, errors can

still be identified in this way, but require more sophisticated correction methods (for example rolling back by more than one frame,

rolling forward by more than one frame, and interpolating between the frames).

Full traces reveal good temporal coherence, and the ability to accurately resolve width over time.
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Length & Width trace: Entry to stationary phase
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Figure S 9.4: An example cell length vs time trace of a cell entering stationary phase. As can be seen from the width and length

plots during the stationary phase, there is very high temporal coherence, and the width can be studied at the sub-micron level. At

stationary phase, the variance in the width was 100nm2, and thus a precision of 10nm can be reached in the estimation of the cell

width.

We show that we can achieve a precision of as low as 6.8 nm in the estimation of a cell’s width, and a

precision of 20 nm in the estimation of a cell’s length in stationary phase (Figure 9.5). This is only possible due

to the high quality training data fed to the model. This is proven by the comparison between human-made and

synthetic training in Figure 2g.
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Figure S 9.5: In order to estimate the precision of width and length estimations in the stationary phase, we fit a quadratic

polynomial to cell lengths and widths in stationary phase over time. As an example, we show the histograms of the true lengths

and widths of this cell, along with histograms of the fit residuals. The standard deviation in the width residuals was 6.8 nm and

the standard deviation in the length residuals was 20 nm.

10 Temporal Coherence of SyMBac trained models

In order to evaluate the quality of masks generated by models trained on human generated data and computer

generated data, we compared the masks outputted by the pretrained model supplied with the DeLTA paper on

its own test data, and a model we trained on synthetic data. We first made qualitative observations of mask

quality, and then quantified these by assessing the temporal coherence of single cell width between frames. The

results of this comparison can be seen in the histogram in Figure 2d, whereby the distribution of output mask

widths is tighter for SyMBac trained models. This is further exemplified by noting that the temporal coherence

of mask widths was poor as shown below. An example trace of cell widths is shown as a comparison of the

outputs from the two types of training data in Figure 2d.
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Temporal Coherence

SyMBac

DeLTA

Figure S 10.1: Masks generated from models with SyMBac data can be seen to produce tighter mask width distributions, the

result of which is reduced artefactual fluctuations in mask width, leading to higher temporal coherence. The output masks of

models trained on the DeLTA training data show large and visible fluctuations in width from frame to frame, as exemplified.
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11 Segmentation Examples: Kymographs

11.1 Exponential growth (100x oil)

1 m

1 m

1 m

Figure S 11.1: Exponential growth in the mother machine, from Bakshi et al. [10]. Frame spacing is 3 minutes
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11.2 Entry to stationary phase (100x oil)
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Figure S 11.2: Entry to stationary phase growth, from Bakshi et al. [10]. Frame spacing is 6 minutes
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11.3 Exponential Growth (60x air)
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Figure S 11.3: Exponential growth in the mother machine, from Bakshi et al. [10]. Frame spacing is 5 minutes

12 Size regulation analysis during exit from stationary phase

Correlations between sizes (area), length, and width at the point of exit from stationary phase and at the first

division indicates cells are sizers. Irrespective of the initial size, length, width, cells only divide after reaching

a critical value.
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Figure S 12.1: The cells are sizers in every aspect, area, width and length, during exit from stationary phase.
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13 Extension to 2D growth regimes and other microfluidic geome-

tries

SyMBac works in much the same way for 2D growth as it does for 1D mother machine growth, with a few key

differences. Firstly, the cell simulator back-end was switched from our custom simulator (built only with 1D

growth in mind) to the more general CellModeller [11] (the reason for not using CellModeller for all simulations,

is that CellModeller cannot vary cell width during a simulation, whereas our simulator can, allowing us to capture

a variety of widths in the 1D growth data, where it matters most). Simulations of 2D growth (standard agar

pad experiments) and channelled 2D growth like that seen using the microfluidic device in [12] were generated,

and the cell properties saved. SyMBac was then used to redraw the scenes and apply filters to produce the

synthetic data.

13.1 2D microfluidic growth chamber (microfluidic turbedostat)

Microfluidic devices need not be restricted to 1 dimensional growth. Increasing the width of a mother machine

trench turns it into a microfluidic chemostat. Simulating cells in this geometry consists of simply adding two

constraints to side of the simulation much in the same way as mother machine growth is simulated. Cells

are then removed when they reach the horizontal nutrient flow. Due to the large halo often seen near the

flow channel making cells difficult to see, we crop the image to only include the main region of growth. The

generated data is then fed into a segmentation network, and an example montage of the output masks is shown

in Figure 13.1.

Figure S 13.1: Montage of segmentation outputs from a model trained on SyMBac data, from various sequential timepoints of

data supplied by the Elf Lab, Uppsala University.

13.2 Simulating growth of 2D colonies on agar pad

13.2.1 Typical Phase Contrast Image Features in Images of Monolayer Colonies on Agar-pad

Phase contrast images of bacterial growth on agar pads are typically relatively low contrast, with additional

texturing/patterning due to the characteristics of the solid agar medium on which the cells grow. Furthermore,
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due to the interference effects from the phase contrast point spread function, the cells at the colony’s perimeter

are darker, surrounded by a bright halo at the interface between the medium and the cell. Another phase

contrast artefact is the shade-off, which bleeds into the centre of the sample causing internal cells to be lighter

in colour. While these artefacts are not easily seen in images of cells in linear colonies (e.g. mother machine

images), they are very visible in almost all agar pad experiments. Our phase contrast image generation pipeline

(described in Equation 7) was augmented with the addition of a very small offset to the PSF (dependent on

the size of the kernel) which can be used to precisely modulate the amount of halo and shade-off in any given

synthetic image. We found that a rough initial guess with random sampling around it was sufficient to generate

very high quality training data capable of training highly accurate U-net models.

Shade-off & Halo = 0.0 Shade-off & Halo = 5e-08 Shade-off & Halo = 1e-07

Shade-off & Halo = 1.5e-07 Shade-off & Halo = 2e-07 Shade-off & Halo = 2.5e-07

Shade-off & Halo = 3e-07 Shade-off & Halo = 3.5e-07 Shade-off & Halo = 4e-07

Figure S 13.2: Increasing shade-off and halo phase effects with increasing PSF offset.

Additionally, phase contrast agar pad images typically have some form of texturing in the background due

to anisotropy in the agar and the pad drying over time. Perlin noise [13] is often used to generate natural

looking surfaces and terrain height-maps in computer graphics. For this reason we used Perlin noise with a

variety of randomised parameters to simulate the defects seen in phase contrast images of agar pads. Examples

of this can be seen in Figure 13.3. The addition of this noise greatly increases training accuracy, as without it

background noise is often positively segmented, creating spurious phantom masks.
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Perlin sample 1 Perlin sample 2 Perlin sample 3

Perlin sample 4 Perlin sample 5 Perlin sample 6

Perlin sample 7 Perlin sample 8 Perlin sample 9

Figure S 13.3: Random sample of Perlin noise (shown on the left with enhanced contrast) made to mimic agar pad phase defects

can be incorporated with synthetic images to create more realistic agar backgrounds.

To test the efficacy of this training data, we analysed bacteria growing in a monolayer on agar pads. An

example montage of the segmentation is shown below. The performance on this data is very good considering

no post-processing is done other than a simple threshold on the U-net probability output.

2 m 2 m

2 m 2 m

2 m 2 m

Figure S 13.4: Montage of E. coli growing on an agar pad, segmented using a U-net trained on SyMBac synthetic data.

24



13.2.2 Fluorescence Images of Monolayer Colonies on Agar Pad

Generating fluorescent data is almost identical to the generation of phase contrast data (described above),

except we use a fluorescence PSF, and do not add any pseudorandom noise to the image background. The

only noise added to the image is shot noise, which simulates the camera’s noise (used in all image generation

schemes). Additionally, a large variability was added in the brightness of each cell to account for real changes

in fluorescent intensity due to stochastic gene expression. To test the ability of our synthetic data to train a

model, we streaked a dense culture of stationary phase E. coli expressing YFP onto an agar pad and imaged a

large field of view with a 60x air objective. These images were very large (1200x1200 pixels), and so synthetic

training data of size 400x400 was generated (shown in Figure 13.5), and the image was segmented patch by

patch. Examples of segmented FOVs are shown below in Figure 13.6.

Figure S 13.5: Synthetic fluorescence training samples with accompanying masks.
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Figure S 13.6: Whole FOVs segmented patch by patch on a model trained on synthetic fluorescence data.
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