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S1 Supplementary Sections
S1.1 Data: Downloading GTEx raw data
The GTEx GE data was curated using RNA-seq technology, which can be downloaded from GTEx Portal
(https://gtexportal.org/). We use data resulting from the GTEx Analysis V8, which is the latest version
that has RNA-seq GE data available. In particular, among all V8 data files in GTEx Portal, we use the RNA-
seq gene read counts data called “GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz” as
our resource to obtain GE data. The age group information about each sample in the gene read counts data
can be found from “GTEx_Analysis_v8_Annotations_SubjectPhenotypesDS.txt” in the GTEx Portal.

S1.2 Data: aging-related GO terms
The structure of GO can be viewed as a “tree-like” graph, where nodes are GO terms and edges are “loosely
hierarchical” relationships between GO terms [Ashburner et al., 2000, Gene Ontology Consortium, 2021]. It
is referred to as “loosely hierarchical” [Ashburner et al., 2000] because a “child” GO term could have more
than one “parent” GO term. “Child” GO terms are more specialized compared to their “parent” GO terms
in the graph. The root GO term of the aging process is GO:00075681. We obtain all aging-related GO
terms that are ”child” GO terms of the aging GO term (GO:0007568) tree. Moreover, because the p-values
of enrichment tests are typically greater than 0.046 if a set of size is smaller than 3 [Cao and Zhang, 2014],
it is not appropriate to question the significance of enrichment for a small sample size [Zheng and Wang,
2008]. Therefore, we only consider aging-related GO terms that annotate at least three genes in ground truth
labeled genes. As such, we obtain 13 such aging-related GO terms. We list the size and the number of genes
that are annotated by each GO term and are labeled in Supplementary Table S5. Note that gene-GO term
annotations have different evidence codes indicating their curation in accordance. That is, those annotations
with experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) are the most confident ones. So, we also
further consider aging-related GO terms and all their experimentally validated annotations (counts can be
found in the 4-th column of Supplementary Table S5 ).

We test enrichment in aging-related GO terms for the four gene groups. There are typically two options to
select aging-related GO terms. The first option is that one can consider all aging-related GO terms, regardless
of the evidence codes about how the gene-GO term annotations are obtained. As such, we obtain 13 aging-
related GO terms that each GO term annotates at least three genes in ground truth data (Supplementary
Table S5). In this case, on average each GO term annotates 13 genes in ground truth data. Because gene-GO
term annotations with experimental evidence codes are more trustworthy (confident), the second option is
that one can only consider aging-related GO terms whose annotations are experimentally validated. As such,
we obtain eight aging-related GO terms that each GO term annotates at least three genes in ground truth
data (Supplementary Table S5). In this case, on average each GO term annotates only 5.25 genes in ground
truth data. If we consider the second option, we don’t have enough data and statistical power to claim the
significance of our enrichment tests [Newaz et al., 2020, Zheng and Wang, 2008]. Therefore, we only focus
on the first option in aging-related GO term enrichment analysis.

1http://www.informatics.jax.org/vocab/gene_ontology/GO:0007568
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S1.3 Predictive models
Recall that a predictive model is a feature-classifier combination. For the classifier, we use logistic regression
for all predictive models. Intuitively, logistic regression is a binary classification algorithm that relies on a
logistic function to assign the probability of an entity being classified as the class of interest among the two
binary classes. The reasons why we do this are stated below. In particular, first, in our previous series of
studies with respect to supervised prediction of aging-related genes [Li and Milenković, 2019, 2021, Li et al.,
2021], we tested nine prominent classifiers. Of all nine prominent classifiers, logistic regression consistently
performed well, i.e., consistently being selected as the classifier component of the best predictive model for
a given (weighted or unweighted, dynamic or static) aging-specific subnetwork. Second, logistic regression is
well known for its robustness in various supervised classification tasks [Yu et al., 2011].

For the network feature, among six types of features proposed in our previous study [Li et al., 2021],
we select two types of features that consistently performed well, i.e., consistently being selected as the
feature component of the best predictive model for a given weighted dynamic aging-specific subnetwork. In
particular, for a given node, (1) the Pearson correlation of weight distribution among its up to two-hop
neighbors, and (2) the weight distribution of edges among its up to two-hop neighbors, are the two types of
features considered in this study. Within each feature type, we consider four network neighborhood types.
That is, for a node v in a given subnetwork, we count the frequencies of each weight in the subnetwork
among edges of the following four types: first, edges that are directly connected to the node v; second, edges
that are not directly connected to the node v, but are connecting any pairs of v’s direct neighbors (i.e., v’s
one-hop neighbors); third, edges that are connecting any pairs of v’s direct neighbors (one-hop neighbors)
and v’s two-hop neighbors; fourth, edges that are connecting any pairs of v’s two-hop neighbors.

Given our considered weighted dynamic aging-specific subnetwork with w unique edge weights across its
n differential snapshots, we first compute the corresponding four types of the neighborhood for a given node
v in a snapshot. The two feature types are obtained as follows.

• For feature type-(1), for each of the n∗(n−1)/2 snapshot pairs, we first calculate the Pearson correlation
of edge weights of node v across the considered two snapshots in the given pair. By this step, each
node in the subnetwork has a n ∗ (n − 1)/2-dimensional feature vector. Then, we repeat the process for
each of the four neighborhood types, which results in four type-(1) feature vectors for each node in the
subnetwork. In addition to the four type-(1) features, we consider the fifth feature by concatenating
the four type-(1) features, resulting in a 4 ∗ n ∗ (n − 1)/2. In total, we consider five type-(1) feature
vectors for each node in the subnetwork. We refer to this feature type as cor-〈i〉, where i = 1, 2, 3, 4, 5
represents each of the four neighborhood types and the concatenation of the four neighborhood types.

• For feature type-(2), given a snapshot, we count the frequency of each of the w weights among v’s given
node neighborhood type. By this step, each node has a feature vector of w. Then, we repeat the process
for each of the n snapshots, and concatenate feature vectors across all snapshots. As such, we obtain
w × n-dimensional feature vector for node v for each of the four neighborhood types. Consequently,
we obtain four types-(2) feature vectors for each node in the subnetwork. Unlike type (1), we do not
concatenate the four type-(2) features due to the computational infeasibility. We refer this feature type
to as raw-〈i〉, where i = 1, 2, 3, 4 represents each of the four neighborhood types.

In total, we consider nine features, i.e., feature types (each feature is a vector), each coupled with the
logistic regression to form a predictive model. In other words, we consider nine predictive models for each
considered weighted dynamic aging-specific subnetwork.

S1.4 Evaluation framework
S1.4.1 Evaluation in terms of 5-fold cross-validation

Given our defined 277 aging- and 4,282 non-aging-related gene labels from GenAge, we test nine predictive
models for each of the four considered weighted dynamic aging-specific subnetworks for cross-validation
proposed in our previous study [Li et al., 2021]. The evaluation process can be illustrated as the following
steps.

1. We randomly and equally split the 277 aging- and 4,282 non-aging-related genes into five subsets,
respectively. Each fold (a combination of a subset of aging-related genes and a subset of non-aging-
related genes) is considered as testing data at a time, and the remaining four folds combined are
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considered as training data. To ensure fair comparison among all four networks, we intentionally force
the randomly split five folds of aging- and non-aging-related genes the same across all four subnetworks.
As such, we perform 5-fold cross-validation for each predictive model.

2. Recall that to give each subnetwork the best case of advantage, other than varying the feature compo-
nent of a predictive model, we also perform hyperparameter training for logistic regression. That is,
we further perform 5-fold cross-validation to find the best hyperparameter for our classifier – logistic
regression during the training process. In particular, given a fold of training data, we randomly split
it into five folds, of which one fold is treated as tuning-testing data and the remaining four folds are
treated as tuning-training data. We select 10 regularization strength hyperparameter values of logistic
regression in the log space between −8 and 8. The ten values are selected using python ‘NumPy’
package, i.e., numpy.logspace(−8, 8, num = 10, base = 2.0). We select the best hyperparameter that
yields the highest average AUPR across the five-fold tuning-testing data.

3. After selecting the best hyperparameter from the tuning process for a given fold of training data, we use
the selected hyperparameter to retrain the logistic regression using the entire fold of training data, and
predict whether a gene in the corresponding fold of testing data is aging-related or not. Specifically, we
rank the list of genes in the testing data according to the predicted probability of how likely a gene is
aging-related, i.e., from high to low. Then we predict k genes on the top of the output as aging-related.
We vary k from 1 to ⌈(277 + 4282)/5⌉ = 912 with an increment of 1.

4. We repeat the above two steps five times, and calculate their average AUPR, average precision, average
recall, average F-score over the five folds. In particular, for each k, we count the corresponding true
positives (i.e., predicted as aging-related that are GenAge-based aging-related genes), false positives
(i.e., predicted as aging-related but are not GenAge-based aging-related genes), and false negatives
(i.e., not predicted as aging-related but are GenAge-based aging-related genes). With these numbers
calculated for each k across five folds, we then calculate the average AUPR, average precision, average
recall, and average F-score. Precision = true positives / (true positives + false positives); recall = true
positives / (true positives + false negatives); F-score = 2 × precision × recall / (precision + recall).
The AUPR is the area under the precision and recall curve. Finally, we sort prediction accuracy scores
in decreasing order for each k using average AUPR as primary sort index, average F-score as secondary
sort index, then average precision and recall as the third and fourth sort indices, respectively; and we
select the first k in the sorted list, referred to as k1 that yields best prediction accuracy. As such,
the given predictive model predicts k1 genes as aging-related, with the four prediction accuracy scores
obtained at threshold k1.

5. Given nine considered predictive models for a subnetwork, we select the best predictive model that
yields the highest average AUPR. If tied on average AUPR, then select the one that yields the highest
average F-score.

S1.4.2 Statistical test of prediction accuracy

To test whether a subnetwork is statistically significantly better than another subnetwork or better than
expected by chance, we use the paired Wilcoxon signed-rank test [Wilcoxon, 1992]. We do this for each
pair of two subnetworks and each pair of a subnetwork plus random approach. Because these statistical tests
reside in the same background, we apply false discovery rate correction [Benjamini and Hochberg, 1995]. Just
as typically done in literature, we set our significance level as 0.05. Note that, to get prediction accuracy that
is expected by chance, we mimic the 5-fold cross-validation, by randomly selecting k genes in the testing data
and predicting them as aging-related. We repeat such process 30 times and account for the four prediction
accuracy measures over 30 × 5 = 150 random runs.

S1.4.3 Validating the complementarity of two gene sets

To measure whether two sets of genes (X, Y ) are complementary to each other, we use the Jaccard index
(i.e., J(X, Y ) = X∩Y

X∪Y ) to measure their overlap. To test whether the overlap is random or statistically
meaningful, we use hypergeometric test [Rivals et al., 2007]. Similarly, we set the significance level as 0.05,
and use false discovery rate correction to adjust p-values. We use these measures to (1) validate whether two
subnetworks are predicting complementary aging-related genes to each other; (2) test whether our four gene
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groups (i.e., ‘Predicted-Aging’, ‘Predicted-NonAging’, ‘NotPredicted-Aging’, ‘NotPredicted-NonAging’) are
enriched in aging-related pathways and GO terms.

S1.5 Mapping feature vectors on the 2-dimensional vector space
To map the high-dimensional feature vectors into 2-dimensional (2D) vector space for visualization purposes,
we use two prominent dimensionality reduction methods, i.e., principal component analysis (PCA) and t-
distributed stochastic neighbor embedding (tSNE) [Maaten and Hinton, 2008].

PCA is a linear dimensionality reduction method, by projecting data points to principal components to
obtain lower-dimensional vector space, to preserve the data’s variation as much as possible in the top few
components. To map a feature vector into 2-D dimensional space, one can simply take the first two princi-
pal components (most important two principal components). tSNE is a nonlinear dimensionality reduction
method that reduces high-dimensional feature vector into a 2D vector space. It is commonly used for visu-
alization and dimensionality reduction purposes. tSNE is sensitive to perplexity values, which indicates the
number of nearest neighborhoods considered to balance the attention between local and global perspectives of
the data. We consider six values within the range of [5, 50] suggested by tSNE’s original publication [Maaten
and Hinton, 2008], i.e., 5, 13, 21, 30, 40, and 50.

For each subnetwork, we visualize the feature that corresponds to the best selected predictive model of the
subnetwork using both PCA and six tSNE versions. Then, we present the one with a clear separation between
our four gene groups, i.e., ‘Predicted-Aging’, ‘Predicted-NonAging’, ‘NotPredicted-Aging’, ‘NotPredicted-
NonAging’.

S1.6 GenAge selection criteria
GenAge provides information about why a gene was selected for inclusion in the database. Here, we dive
deep aiming to understand whether there is a specific group that our subnetworks are more or less successful
in predicting. We gather all such information for our 277 aging-related genes and analyze how our true
positive predictions are distributed in the different GenAge gene selection criteria groups, see Supplementary
Table S6. Moreover, we also perform hypergeometric tests on whether a subnetwork’s coverage of a selection
criterion is statistically significant. Our results show that only GTEx-HPRD and Predicted-Aging’s coverage
of downstream selection criteria are statistically significant (i.e., adjusted p-values are 0.035 and 0.013,
respectively). Other than that, our predictions are distributed roughly evenly across different selection
criteria groups along with the group sizes (i.e., adjusted p-values > 0.05).
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S2 Supplementary Tables

Supplementary Table S1: The prediction accuracy in terms of average AUPR, F-score, precision, and recall
of the nine predictive models for Berchtold-HPRD. The number in parenthesis is the corresponding standard
deviation for a given subnetwork and a given prediction accuracy measure. The highest accuracy scores and
the selected “best” predictive models are in bold. Note that we name the predictive models based on their
feature components (see Supplementary Section S1.3 for details about each feature). The “# of predictions”
in the table is the number of true positives and false positives (i.e., novel predictions). The corresponding
Figure presentation is Supplementary Fig. S1.

Predictive model # of predictions Average AUPR Average F-score Average precision Average Recall
Cor-1 265 0.38 (0.07) 0.39 (0.07) 0.40 (0.08) 0.38 (0.07)
Cor-2 215 0.45 (0.10) 0.46 (0.08) 0.52 (0.09) 0.40 (0.07)
Cor-3 215 0.48 (0.10) 0.46 (0.10) 0.52 (0.11) 0.40 (0.09)
Cor-4 205 0.48 (0.10) 0.47 (0.07) 0.55 (0.09) 0.41 (0.06)
Cor-5 180 0.49 (0.10) 0.48 (0.09) 0.61 (0.11) 0.40 (0.07)
Raw-1 190 0.49 (0.09) 0.47 (0.08) 0.58 (0.10) 0.40 (0.07)
Raw-2 215 0.49 (0.11) 0.50 (0.08) 0.57 (0.09) 0.44 (0.07)
Raw-3 175 0.49 (0.08) 0.52 (0.09) 0.67 (0.12) 0.42 (0.07)
Raw-4 185 0.43 (0.10) 0.48 (0.07) 0.61 (0.09) 0.40 (0.06)

Supplementary Table S2: The prediction accuracy in terms of average AUPR, F-score, precision, and recall of
the nine predictive models for Berchtold-BioGRID. The number in parenthesis is the corresponding standard
deviation for a given subnetwork and a given prediction accuracy measure. The highest accuracy scores and
the selected “best” predictive models are in bold. Note that we name the predictive models based on their
feature components (see Supplementary Section S1.3 for details about each feature). The “# of predictions”
in the table is the number of true positives and false positives (i.e., novel predictions). The corresponding
Figure presentation is Supplementary Fig. S2.

Predictive model # of predictions Average AUPR Average F-score Average precision Average Recall
Cor-1 210 0.20 (0.03) 0.27 (0.02) 0.31 (0.03) 0.23 (0.02)
Cor-2 220 0.44 (0.07) 0.47 (0.06) 0.53 (0.07) 0.42 (0.05)
Cor-3 270 0.37 (0.06) 0.42 (0.05) 0.43 (0.05) 0.42 (0.05)
Cor-4 265 0.24 (0.04) 0.33 (0.05) 0.34 (0.05) 0.32 (0.05)
Cor-5 235 0.43 (0.07) 0.46 (0.06) 0.50 (0.07) 0.42 (0.05)
Raw-1 245 0.30 (0.03) 0.38 (0.04) 0.40 (0.04) 0.35 (0.04)
Raw-2 160 0.31 (0.04) 0.39 (0.05) 0.53 (0.07) 0.31 (0.04)
Raw-3 160 0.14 (0.03) 0.22 (0.04) 0.29 (0.06) 0.17 (0.03)
Raw-4 170 0.32 (0.04) 0.37 (0.03) 0.48 (0.04) 0.30 (0.02)
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Supplementary Table S3: The prediction accuracy in terms of average AUPR, F-score, precision, and recall
of the nine predictive models for GTEx-HPRD. The number in parenthesis is the corresponding standard
deviation for a given subnetwork and a given prediction accuracy measure. The highest accuracy scores and
the selected “best” predictive models are in bold. Note that we name the predictive models based on their
feature components (see Supplementary Section S1.3 for details about each feature). The “# of predictions”
in the table is the number of true positives and false positives (i.e., novel predictions). The corresponding
Figure presentation is Supplementary Fig. S3.

Predictive model # of predictions Average AUPR Average F-score Average precision Average Recall
Cor-1 230 0.30 (0.07) 0.32 (0.05) 0.35 (0.06) 0.29 (0.05)
Cor-2 205 0.41 (0.10) 0.41 (0.09) 0.48 (0.10) 0.35 (0.07)
Cor-3 225 0.45 (0.11) 0.46 (0.11) 0.51 (0.13) 0.42 (0.10)
Cor-4 170 0.48 (0.11) 0.47 (0.09) 0.61 (0.11) 0.38 (0.07)
Cor-5 230 0.48 (0.10) 0.49 (0.08) 0.53 (0.09) 0.44 (0.07)
Raw-1 245 0.43 (0.10) 0.44 (0.08) 0.47 (0.08) 0.41 (0.07)
Raw-2 220 0.46 (0.10) 0.47 (0.08) 0.53 (0.10) 0.42 (0.08)
Raw-3 225 0.50 (0.09) 0.51 (0.08) 0.57 (0.09) 0.46 (0.07)
Raw-4 195 0.37 (0.09) 0.44 (0.08) 0.53 (0.10) 0.37 (0.07)

Supplementary Table S4: The prediction accuracy in terms of average AUPR, F-score, precision, and recall
of the nine predictive models for GTex-BioGRID. The number in parenthesis is the corresponding standard
deviation for a given subnetwork and a given prediction accuracy measure. The highest accuracy scores and
the selected “best” predictive models are in bold. Note that we name the predictive models based on their
feature components (see Supplementary Section S1.3 for details about each feature). The “# of predictions”
in the table is the number of true positives and false positives (i.e., novel predictions). The corresponding
Figure presentation is Supplementary Fig. S4.

Predictive model # of predictions Average AUPR Average F-score Average precision Average Recall
Cor-1 220 0.14 (0.02) 0.17 (0.04) 0.19 (0.05) 0.15 (0.04)
Cor-2 280 0.23 (0.04) 0.28 (0.04) 0.28 (0.04) 0.28 (0.04)
Cor-3 230 0.23 (0.03) 0.31 (0.06) 0.34 (0.06) 0.28 (0.05)
Cor-4 285 0.18 (0.03) 0.26 (0.05) 0.26 (0.05) 0.26 (0.05)
Cor-5 240 0.21 (0.04) 0.28 (0.05) 0.30 (0.05) 0.26 (0.04)
Raw-1 280 0.24 (0.04) 0.32 (0.03) 0.32 (0.03) 0.32 (0.03)
Raw-2 180 0.24 (0.01) 0.34 (0.02) 0.43 (0.03) 0.28 (0.02)
Raw-3 155 0.13 (0.03) 0.18 (0.03) 0.25 (0.05) 0.14 (0.03)
Raw-4 140 0.31 (0.08) 0.35 (0.08) 0.52 (0.11) 0.26 (0.06)
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Supplementary Table S5: Statistics about 13 considered aging-related GO terms. The second column shows
the number of genes (i.e.,size) annotated by a given GO term. The third column shows the number of genes
annotated by a given GO term that are also present in ground truth. The fourth column shows the number
of genes annotated by a given GO term that are experimentally validated and are present in ground truth.
The GO terms are sorted by their IDs.

GO term Size
# of annotated genes

that are present in
ground truth

# of annotated genes that are
experimentally validated and are

present in ground truth
Aging
GO:0007568 141 71 4

Cell aging
GO:0007569 25 13 4

Determination of adult lifespan
GO:0008340 18 6 1

Multicellular organism aging
GO:0010259 25 12 1

Negative regulation of cell aging
GO:0090344 8 5 3

Cellular senescence
GO:0090398 44 18 9

Replicative senescence
GO:0090399 16 13 8

Stress-induced premature senescence
GO:0090400 4 3 2

Oncogene-induced cell senescence
GO:0090402 4 3 2

Oxidative stress-induced premature senescence
GO:0090403 4 3 2

Modulation of age-related behavioral decline
GO:0090647 21 5 3

Negative regulation of cellular senescence
GO:2000773 20 12 8

Positive regulation of cellular senescence
GO:2000774 10 3 3

Supplementary Table S6: The number of genes in each GenAge selection criterion group. We include all
considered 277 GenAge aging-related genes, the true positive predictions from each of the four subnetworks,
and the union of true positive predictions of all four subnetworks (i.e., the column named “Predicted-Aging”).
From second column onward, the number following a column name in parenthesis represents the total number
of unique genes. Note that a gene can be included in GenAge due to multiple selection criteria. This is why
the total sum of the number of genes (i.e., the last row) across all GenAge selection criteria groups for a
given set is bigger than the set size represented in the first row. For example, there are 277 unique genes in
GenAge, and some of the genes belong to multiple GenAge selection criteria groups. Thus, the SUM(74, 69,
..., 3) = 344, which is greater than 277.
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S3 Supplementary Figures
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Supplementary Fig. S1: The prediction accuracy in terms of AUPR, precision, recall, and F-score of the nine
predictive models for Berchtold-HPRD. The nine predictive models are named after their feature component.
The number below the name of each predictive model represents the number of genes that are predicted as
aging-related. The blue dashed line indicates the prediction accuracy scores expected by chance, i.e., the
fraction of all genes in the ground truth data that are labeled as aging-related.
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Supplementary Fig. S2: The prediction accuracy in terms of AUPR, precision, recall, and F-score of the
nine predictive models for Berchtold-BioGRID. The nine predictive models are named after their feature
component. The number below the name of each predictive model represents the number of genes that are
predicted as aging-related. The blue dashed line indicates the prediction accuracy scores expected by chance,
i.e., the fraction of all genes in the ground truth data that are labeled as aging-related.
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Supplementary Fig. S3: The prediction accuracy in terms of AUPR, precision, recall, and F-score of the nine
predictive models for GTEx-HPRD. The nine predictive models are named after their feature component.
The number below the name of each predictive model represents the number of genes that are predicted as
aging-related. The blue dashed line indicates the prediction accuracy scores expected by chance, i.e., the
fraction of all genes in the ground truth data that are labeled as aging-related.
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Supplementary Fig. S4: The prediction accuracy in terms of AUPR, precision, recall, and F-score of the nine
predictive models for GTEx-BioGRID. The nine predictive models are named after their feature component.
The number below the name of each predictive model represents the number of genes that are predicted as
aging-related. The blue dashed line indicates the prediction accuracy scores expected by chance, i.e., the
fraction of all genes in the ground truth data that are labeled as aging-related.
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Supplementary Fig. S5: The prediction accuracy in terms of AUPR, precision, recall, and F-score of the four
weighted dynamic aging-specific subnetworks plus Berchtold-HPRD-6 and Berchtold-BioGRID-6, each under
its best predictive model. The number below each subnetwork name represents the number of genes that are
predicted as aging-related by the corresponding subnetwork. The blue dashed line indicates the prediction
accuracy scores expected by chance, i.e., the fraction of all genes in the ground truth data that are labeled
as aging-related.

Supplementary Fig. S6: Pairwise overlap in terms of Jaccard indices of novel predictions for each pair of
considered subnetworks. By novel predictions, we mean genes that are predicted as aging-related but are
not present in GenAge. The two numbers in the parenthesis below each subnetwork name represent the
number of novel predictions and the number of all predicted aging-related genes for the given subnetwork,
respectively. In a cell, corresponding to a pair of subnetworks, the three numbers represent the Jaccard
index (top), the raw number of genes in the overlap (middle), and the adjusted p-value indicating whether
the overlap is statistically significantly high. The color shades are driven by Jaccard indices, where a darker
color means a higher Jaccard index. Analogous results for true positives are shown in Fig. 3 in the main
paper.
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Supplementary Fig. S7: Enrichments of the four gene groups (x-axis) in the 13 aging-related GO terms (y-
axis). The number below a GO term name or a gene group name represents the gene count in the pathway
or gene group. In each cell, the three numbers represent the overlap size as measured by the Jaccard index
(top), the raw number of genes in the overlap (middle), and the adjusted p-value indicating whether the
overlap size is statistically significantly high, i.e., whether the given gene group is statistically significantly
enriched in the given GO term. The adjusted p-values below 0.05 are highlighted in red. Note that there
4559 genes in the ground truth data. However, the total number of genes in these four gene groups is 3590,
which does not equal to 4559. This is because for NotPredicted-Aging and NotPredicted-NonAging genes,
we only consider those genes that are not predicted as aging-related by any of the four subnetworks. Then
for these genes, we further consider whether they are labeled as aging- or non-aging-related in ground truth
data. Analogous results for aging-related pathways are shown in Fig. 4 in the main paper.
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Supplementary Fig. S8: Illustration of topological similarities between the four gene groups (Predicted-
Aging, Predicted-NonAging, NotPredicted-Aging, and NotPredicted-NonAging genes) for a given subnetwork
by embedding their feature vectors into 2-dimensional (2D) vector space. The embedding presented in
this figure corresponds to Berchtold-HPRD, similar embedding trends hold for the other three subnetworks
(Supplementary Figs. S9, S10, and S11). The number in parenthesis behind a gene group name represent
the number of genes in this gene group. For example, there are 117 genes are predicted as aging-related
by Berchtold-HPRD that are also in GenAge. Note that in Fig. 4 and Supplementary Fig. S7, we have
167 “Predicted-Aging” genes, and Berchtold-HPRD contributes 117 such genes. Similarly, Berchtold-HPRD
contributes 58 of the 222 “Predicted-NonAging” genes. For the two “NotPredicted” (i.e., “NotPredicted-
Aging” and “NotPredicted-NonAging”) gene groups, because they are not predicted by a subnetwork of
interest, we take all genes in these two groups, i.e., 54 “NotPredicted-Aging” genes and 3147 “NotPredicted-
NonAging” genes. Note that when mapping features into 2D space, we have tested tSNE and PCA and
selected the visualization with the clearest pattern. This figure is generated using PCA.
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Supplementary Fig. S9: Illustration of topological similarities between the four gene groups (Predicted-Aging,
Predicted-NonAging, NotPredicted-Aging, and NotPredicted-NonAging genes) for a given subnetwork by
embedding their feature vectors into 2-dimensional (2D) vector space. The embedding presented in this
figure corresponds to Berchtold-BioGRID, similar embedding trends hold for the other three subnetworks
(Supplementary Figs. S8, S10, and S11). The number in parenthesis behind a gene group name represent
the number of genes in this gene group. For example, there are 116 genes are predicted as aging-related by
Berchtold-BioGRID that are also in GenAge. Note that in Fig. 4 and Supplementary Fig. S7, we have 167
“Predicted-Aging” genes, and Berchtold-BioGRID contributes 116 such genes. Similarly, Berchtold-BioGRID
contributes 104 of the 222 “Predicted-NonAging” genes. For the two “NotPredicted” (i.e., “NotPredicted-
Aging” and “NotPredicted-NonAging”) gene groups, because they are not predicted by a subnetwork of
interest, we take all genes in these two groups, i.e., 54 “NotPredicted-Aging” genes and 3147 “NotPredicted-
NonAging” genes. Note that when mapping features into 2D space, we have tested tSNE and PCA and
selected the visualization with the clearest pattern. This figure is generated using tSNE.
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Supplementary Fig. S10: Illustration of topological similarities between the four gene groups (Predicted-
Aging, Predicted-NonAging, NotPredicted-Aging, and NotPredicted-NonAging genes) for a given subnetwork
by embedding their feature vectors into 2-dimensional (2D) vector space. The embedding presented in
this figure corresponds to GTEx-HPRD, similar embedding trends hold for the other three subnetworks
(Supplementary Figs. S8, S9, and S11). The number in parenthesis behind a gene group name represent
the number of genes in this gene group. For example, there are 128 genes are predicted as aging-related
by GTEx-HPRD that are also in GenAge. Note that in Fig. 4 and Supplementary Fig. S7, we have 167
“Predicted-Aging” genes, and GTEx-HPRD contributes 128 such genes. Similarly, GTEx-HPRD contributes
97 of the 222 “Predicted-NonAging” genes. For the two “NotPredicted” (i.e., “NotPredicted-Aging” and
“NotPredicted-NonAging”) gene groups, because they are not predicted by a subnetwork of interest, we take
all genes in these two groups, i.e., 54 “NotPredicted-Aging” genes and 3147 “NotPredicted-NonAging” genes.
Note that when mapping features into 2D space, we have tested tSNE and PCA and selected the visualization
with the clearest pattern. This figure is generated using tSNE.
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Supplementary Fig. S11: Illustration of topological similarities between the four gene groups (Predicted-
Aging, Predicted-NonAging, NotPredicted-Aging, and NotPredicted-NonAging genes) for a given subnetwork
by embedding their feature vectors into 2-dimensional (2D) vector space. The embedding presented in
this figure corresponds to GTEx-BioGRID, similar embedding trends hold for the other three subnetworks
(Supplementary Figs. S8, S9, and S10). The number in parenthesis behind a gene group name represent
the number of genes in this gene group. For example, there are 73 genes are predicted as aging-related
by GTEx-BioGRID that are also in GenAge. Note that in Fig. 4 and Supplementary Fig. S7, we have
167 “Predicted-Aging” genes, and GTEx-BioGRID contributes 73 such genes. Similarly, GTEx-BioGRID
contributes 67 of the 222 “Predicted-NonAging”. For the two “NotPredicted” (i.e., “NotPredicted-Aging”
and “NotPredicted-NonAging”) gene groups, because they are not predicted by a subnetwork of interest, we
take all genes in these two groups, i.e., 54 “NotPredicted-Aging” genes and 3147 “NotPredicted-NonAging”
genes. Note that when mapping features into 2D space, we have tested tSNE and PCA and selected the
visualization with the clearest pattern. This figure is generated using PCA.
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Supplementary Fig. S12: Workflow of how our weighted dynamic aging-specific subnetwork was inferred. See
Section 5.1.3 in the main paper for detail.
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