
1 Appendix

1.1 Definitions

The preliminary definitions are described below.

Definition 1.1 Balanced Sign Graph. A signed graph G is “balanced” if and only if for every two nodes

of G, all paths joining them have the same sign (Chartrand (1977), Ch. 8; Harary (1953)).

Definition 1.2 Balanced Functional Network (G∪Y ). G ∪ Y is a “balanced functional module” when

the following are satisfied.

1. G is balanced.

2. G is connected: at least one path connecting each pair of elements within G exists.

3. Every node of G is connected to Y by a semi-directed path with at least one directed edge.

4. For a given node i ∈ G, all i− Y paths have the same sign.

1.2 Theorems and Lemmas

The proofs for the theorems and lemmas are described below.

Theorem 1.1 For balanced functional network G ∪ Y , let α ∪ Y equal a semi-directed i→ Y path, γ equal

an i− j path in G, and τ ∪ Y equal a semi-directed j → Y path. Then wα∪Y · wγ · wτ∪Y > 0.

Proof 1.1 Note that wγ ·βY |j.X/j equals the weight of an i−Y path, so sign(wα∪Y ) = sign(wγ ·βY |j.X/j) =

sign(wγ) · sign(βY |j.X/j). However, βY |j.X/j equals the weight of the directed j → Y edge which is also

a j − Y path. Hence, sign(βY |j.X/j) = sign(wτ∪Y ). Now, sign(wα∪Y ) = sign(wγ) · sign(wτ∪Y ), and the

product of the three terms wα∪Y , wγ , wτ∪Y must be positive.

Lemma 1.2 For a balanced graph G, the sign of an i− j walk is the sign of every i− j path in G.
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Proof 1.2 Let γ be an i− j walk in G. If γ is not a path then there exists a cycle where a repeated node is

connected by a path within γ. Since every cycle in a balanced graph is positive (Harary (1953); Chartrand

(1977), Theorem 8.2), the cycle can be excised from the walk without changing the sign of the walk. This

process can be continued until ultimately an i− j path with the same sign as γ remains.

Theorem 1.3 For a balanced graph G and corresponding covariance matrix Σ = (σij), if we assume mod-

erate conditional dependence then the sign of σij is equivalent to the sign of every i− j path in G.

Proof 1.3 The sign of σij equals the sign of the summed i − j walk weights in G, and each i − j path

contains the same sign as the i− j walks.

Theorem 1.4 For a balanced functional network G ∪ Y with G satisying the conditions of Theorem 1.3:

1. Cov(i, Y ) is a positively weighted sum of all i− Y walk weights

2. The sign of Cov(i, Y ) equals the sign of every i− Y path.

3. Cov(i, Y ) 6= 0.

Proof 1.4 By Proposition 5.5.1 of (Whittaker (2009)):

Cov(Y, i) = Cov(Y, i|X/i) + Cov(Y,X/i)V ar(X/i)−1Cov(X/i, i)

= β(Y |i.X/i)d−1i + Σj 6=iβ(Y |j.X/i, j)Cov(i, j)

= β(Y |i.X/i)d−1i + Σj 6=iβ(Y |j.X/i, j)d−1/2i d
−1/2
j w∗(i, j)

= β(Y |i.X/i)d−1i + Σj 6=iψ(i, j)d
−1/2
i d

−1/2
j w∗(i, j)β(Y |j.X/j),

where ψ(i, j) = β(Y |j.X/i, j)/β(Y |j.X/j) corresponds to the ratio of the partial regression coefficient for

xj in the regression model with predictor set X/i to the coefficient for xj in the model including xi as

a predictor. The dk weights are positive since they are variances. ψ(i, j) is positive if adding xi to the

predictors does not change the sign of the regression coefficient for xj . We take the condition of moderate
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conditional dependence required for Theorem 1.3 to imply that such sign change of coefficients will not occur.

The first term of the last equation is proportional to the direct i → Y edge, and the summation in that

equation is a positively weighted sum of indirect i→ Y walks passing through other nodes in G. This proves

the first statement of the theorem. By Lemma 1.2, w∗(i, j) equals the sum of walk weights with the same

sign as every i − j path, so the sign of w∗(i, j)β(Y |j.X/j) equals the sign of any i − Y path with weight

w(i, j)β(Y |j.X/j). This proves the second statement. The third statement immediately follows because

Cov(i, Y ) = 0 implies that the sign of every i− Y path is zero, contradicting statement 3 of Definition 1.2.

Theorem 1.5 If the graph G ∪ Y within X is a balanced functional module, then

M = diag(Cov(X,Y ))V ar(X)diag(Cov(X,Y )) (1)

is a positive matrix (i.e. all elements of M are > 0).

Proof 1.5 By Theorems 1.3 and 1.4, sign(Cov(xi, Y )) equals the sign of any i−Y path α, sign(Cov(xj , Y ))

equals the sign of any j − Y path τ , and sign(Cov(i, j)) equals the sign of any i− j path γ in G. Thus, for

every i, j pair, sign(Cov(xi, Y )Cov(i, j)Cov(xp, Y )) = sign(wαiY · w
γ
ij · wτjY ) > 0 by Theorem 1.1.

Lemma 1.6 With balanced A and B as defined above, all paths in the signed graph G connecting nodes in

the same set are positive and all paths connecting a node in A to a node in B are negative.

Proof 1.6 If a path in G connects nodes in A, then it must have zero or an even number of negative edges

from A to B. Since all edges in A are positive, the path must be positive. Likewise for B. If a path in G

connects a node in A to a node in B, then it must have zero or an odd number of negative edges from A to

B. Since edges within A and B are positive, the path must be negative.

Theorem 1.7 For a balanced functional network G∪Y , G can be partitioned into two sets of variables A and

B such that elements of A are positively correlated, elements of B are positively correlated, and correlations

between A and B are negative. All elements of the same set have correlations with Y of the same sign, which

is opposite for the two sets.
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Proof 1.7 By Lemma 1.6, the balanced graph G can be partitioned into sets A and B with positive paths

connecting the nodes in the same set, and negative paths from one set to the other. By Theorem 1.3,

variables in A are positively correlated, variables in B are positively correlated, and correlations between

A and B are negative, proving the first statement. To prove the final statement, note that for a functional

module G∪ Y there must be at least one variable j in G with an edge e : j → Y . Arbitrarily assume j ∈ A.

By property 2 of Definition 1.2, for each i ∈ A there is an i − j path. By Lemma 1.6, the i − j path is

positive and so the i − j → Y path has the sign of e. By property 4 of Definition 1.2, all i − Y paths for

i ∈ A have the same sign as e, and by Theorem 1.4, Cov(i, Y ) has the sign of e for all i ∈ A. Since G is

connected, if k ∈ B then there exists a negative path to j by Lemma 1.6, and hence the k− j → Y path has

an opposite sign from e. Thus, by Theorem 1.4, all variables in B have correlation with Y of sign opposite

from e, proving the second statement of the theorem.

1.3 Tuning for Sparse Principal Component Analysis

The sparse principal component method from Sigg and Buhmann (2008) specifies sparsity by inputting the

number of nonzero elements, k. We calculate the positive eigenvector for all feasible k (e.g. module sizes),

and we select the sparsity setting k resulting in the optimally balanced solution. Balance may be quantified

through the balance density M(k) = Σi 6=jmij/Σi,jabs(mij) for a matrix in the form of (1). This can be

motivated by an example where the matrix elements corresponding to the module of size p have values r > 0,

and the non-module elements have values of 0. Thus, an effective sparse positive eigenvector algorithm will

provide solutions

M(k) = k(k − 1)r/(k(k − 1)r + k), k ≤ p

= p(p− 1)r/(p(p− 1)r + k), k > p.

It then follows that M(k + 1) −M(k) = r
(1+(k−1)r)(1+kr) > 0 when k ≤ p, and M(k + 1) −M(k) < 0

when k > p. This suggests that M(k) increases with respect to k for effective values of k. The decrease
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enlarges when negative elements are included. Thus, the maximum balance density may be used to tune the

module size k in the Sigg-Buhmann algorithm for sparse principal component analysis.

1.4 Details on Simulation

We consider a SIM represented by the linear model for gene expression

xi = πiβx0 + εi, i = 1, . . . , t

x0 = ε0

where β > 0, πi ∈ {−1, 1} and the εi, i = 0, 1, . . . , t are independent errors with mean 0 and variance

σ2
ε . The covariance of all pairs of genes in this system are nonzero. The covariation among the t observed

module genes are driven by a latent unobserved hub, x0. Letting xi and xj be two observed (non-hub)

module genes, Cov(xi, xj) = πiπjβ
2σ2
εand Cov(xi, x0) = πiβσ

2
ε . The non-hub variances equal σ2

ε(1 + β2),

and the correlation between observed module genes xi and xj is rxi,xj =
πiπjβ

2

1+β2 .

We model the functional aspect of the pathway by letting the hub x0 determine an outcome variable y

by the regression function

y = αx0 + δ,

where α > 0 without loss of generality. Letting the variance of the error term δ in (1.4) be σ2
δ , Cov(y, xi) =

πiαβσ
2
ε for a non-hub gene xi, Cov(y, x0) = ασ2

ε , V ar(y) = α2V ar(x0) + σ2
δ = α2σ2

ε + σ2
δ , and cor(y, xi) =

α√
α2σ2

ε+σ
2
δ

πiβσ
2
ε√

σ2
ε(1+β

2)
.

1.5 Hamming Distance Calculation

Hamming distance is computed by defining q to be the binary vector which indicates selected variables by

a procedure, and let q0 indicate the true module variables. The raw Hamming distance is the number of

positions in disagreement across the two vectors. We report the distance normalized by the length of the
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vectors and express the proportion as a percentage, where 0 means perfect concordance and 100 means

complete discordance. Hamming distance increases with both missed variables and false inclusions, making

it a natural measure for the similarity between the computed module and the true module.

1.6 TCGA Data Extraction

Upon initial query of the TCGA-UCEC data, the clinical dataset (containing the information on percent

tumor invasion) had 596 records and the gene expression dataset had 587 records. To clean the data,

variable values within the gene expression dataset were averaged across any duplicate subject records, only

the intersecting subject IDs across both the clinical and gene expression datasets were considered, and any

subjects with missing information on percent tumor invasion were excluded. Subsequently, only the genes

from chromosome 2 were considered and any genes with 0 variance were excluded. Furthermore, since the

percent tumor invasion should range from 0 to 100, any patients with values outside of this range will be

removed.
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