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1. Protein Preliminaries
Protein Sequences. Proteins are built by chaining and arbi-
trary number of one of 20 amino acids in a particular order.
When amino acids come together to form protein sequences,
they are dubbed residues. During the assembly in the cell,
constrained by physiochemical forces, the one-dimensional
chains of residues fold into unique 3D shapes based solely
on their sequence that largely determine protein function.
The ideal machine learning model would predict a protein’s
3D shape and thus function from just protein sequence (the
ordered chain of residues).

Protein Subcellular Location. Eukaryotic cells contain
different organelles/compartments. Each organelle serves a
purpose, e.g., ribosomes chain together new proteins while
mitochondria synthesize ATP. Proteins are the machinery
used to perform these functions, including transport in and
out and communication between different organelles and
a cell’s environment. For some compartments, e.g., the
nucleus, special stretches of amino acids, e.g., nuclear local-
ization signals (NLS), help identifying a protein’s location
via simple string matching. However, for many others, the
localization signal is diluted within the whole sequence,
requiring sequence-level predictions. Furthermore, some
organelles (and the cell itself) feature membranes with dif-
ferent biochemical properties than the inside or outside,
requiring protein gateways.

Homology-inference. Two highly similar protein se-
quences will most likely fold in similar 3D structures and
more likely to perform similar functions. Homology based
inference (Nair & Rost, 2002; Mahlich et al., 2018), which
transfers annotations of experimentally validated proteins
to query protein sequences, is based on this assumption
(Sander & Schneider, 1991). Practically this means search-
ing a database of annotated protein sequences for sequences
that meet both an identity threshold and a length-of-match
threshold to some query protein sequence. Sequence ho-
mology delivers good results, but its stringent requirements
render it applicable to only a fraction of proteins (Rost,
1999).

Machine learning Function Prediction. When moving
into territory where sequence similarity is less conserved
for shorter stretches of matching sequences (Mahlich et al.,
2018; Rost, 2002), one can try predicting function using

evolutionary information and machine learning (Goldberg
et al., 2012; Almagro Armenteros et al., 2017). Evolution-
ary information from protein profiles, encoding a protein’s
evolutionary path, is obtained by aligning sequences from
a protein database to a query protein sequence and com-
puting conservation metrics at the residue level. Using
profiles leads to impressively more accurate predictions for
sequences with no close homologs and has been the stan-
dard for most protein prediction tasks (Urban et al., 2020),
including subcellular localization (Goldberg et al., 2012;
Almagro Armenteros et al., 2017; Savojardo et al., 2018).
While profiles provide a strong and useful inductive bias,
their information content heavily depends on a balance of
the number of similar proteins (depth), the overall length
of the matches (sequence coverage), the diversity of the
matches (column coverage), and their generation is parame-
ter sensitive.

2. Hyperparameters
The following describes the search space used to find hy-
perparameters of our final LA and FNN models. We per-
formed random search over these parameters. The eval-
uated learning rates were in the range of [5 × 10−6 -
5 × 10−3]. For the light attention architecture, we tried
filter sizes [3, 5, 7, 9, 11, 13, 15, 21] and hidden sizes dout ∈
[32, 128, 256, 512, 1024, 1500, 2048], as well as concate-
nating outputs of convolutions with different filter sizes.
For the FNN, we searched over the hidden layer sizes
[16, 32, 64, 512, 1024], where 32 was the optimium. We
maximized batch size to fit a Quadro RTX 8000 with 48GB
vRAM, resulting in the batch size of 150. Note that the
memory requirement is dependent on the size of the longest
sequence in a batch. In the DeepLoc dataset, the longest
sequence had 13 100 residues.
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3. Additional Results
We provide results for both setDeepLoc (Table 4) and
setHARD (Table 3) in tabular form, including the Matthew’s
Correlation Coefficients (MCC) and class unweighted F1
score.

Furthermore, in Figure 1 we find that the UMAP projections
of x′ are more similar to those of the attention coefficients
pooled along the length dimension and show clear clusters.
Meanwhile, the projections of vmax in Figure 2 are less
informative even though the ablations showed that vmax is
important for the performance of our architecture.

Notable is that for both projections there are some clear
outliers with the localization Plastid that are mapped far
away from all other projections.

Figure 1. UMAP (McInnes et al., 2018) projections of x′ embed-
dings colored according to subcellular location (setDeepLoc).

Figure 2. UMAP (McInnes et al., 2018) projections of vmax em-
beddings colored according to subcellular location (setDeepLoc).

Table 1. MCC of additional baselines and ablations compared to
the LA architecture on ProtT5 embeddings (above the line) of set-
DeepLoc and setHARD averaged over 10 seeds. The best method
is bold and the second best is underlined.

METHOD SETDEEPLOC SETHARD

LA PROTT5 .831± .004 .577± .007
LA - SOFTMAX .828± .004 .570± .008
LA - MAXPOOL .816± .002 .559± .008
ATTENTION FROM V .824± .003 .571± .012
DEEPLOC LSTM .752± .010 .505± .009
CONV + ADAPOOL .785± .010 .526± .022
MEANPOOL + FFN .785± .006 .529± .010
LA ON ONEHOT .326± .012 .216± .014
LA ON PROFILES .302± .016 .195± .022

Table 2. Class unweighted F1 score of additional baselines and
ablations compared to the LA architecture on ProtT5 embeddings
(above the line) of setDeepLoc and setHARD averaged over 10
seeds. The best method is bold and the second best is underlined.

METHOD SETDEEPLOC SETHARD

LA PROTT5 .854± .004 .642± .004
LA - SOFTMAX .850± .004 .633± .008
LA - MAXPOOL .842± .002 .632± .006
ATTENTION FROM V .845± .004 .634± .011
DEEPLOC LSTM .788± .009 .590± .007
CONV + ADAPOOL .818± .010 .608± .020
MEANPOOL + FFN .814± .005 .604± .008
LA ON ONEHOT .367± .025 .262± .033
LA ON PROFILES .384± .018 .279± .019
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Table 3. Accuracy and Matthew’s correlation coefficient (MCC) on
setHard. Baseline= predict majority class; Evo= Previous methods
based on evolutionary inputs; AT= assign class based on nearest
neighbour in embedding space; FNN= predict using a Multi-Layer
Perceptron on top of embeddings; LA= predict using LA on top
of embeddings; Embedding inputs from: BB (Bepler & Berger,
2019), UniRep (Alley et al., 2019), SeqVec (Heinzinger et al.,
2019), ProtBert (Elnaggar et al., 2021), ESM-1b (Rives et al.,
2021), ProtT5 (Elnaggar et al., 2021).

Method Accuracy MCC

Baseline 24 0

Evo DeepLoc62 56.94 0.476
DeepLoc 51.36 0.410

AT

BB 25.98 0.133
UniRep 43.15 0.329
SeqVec 42.43 0.315
ProtBert 42.04 0.306
ESM-1b 48.72 0.386
ProtT5 55.01 0.454

FNN

BB 35.60± 2.34 0.247± 0.025
UniRep 49.41± 1.21 0.391± 0.013
SeqVec 51.71± 1.04 0.398± 0.013
ProtBert 53.16± 1.19 0.429± 0.014
ESM-1b 60.40± 0.94 0.518± 0.010
ProtT5 61.27± 0.97 0.529± 0.010

LA

BB 40.80± 2.44 0.293± 0.027
UniRep 54.56± 1.07 0.451± 0.011
SeqVec 57.37± 0.64 0.468± 0.013
ProtBert 58.36± 1.02 0.490± 0.012
ESM-1b 62.12± 0.5 0.537± 0.004
ProtT5 65.21± 0.61 0.577± 0.007

Table 4. Accuracy and Matthew’s correlation coefficient (MCC)
on setDeepLoc. Baseline= predict majority class; Evo= Previous
methods based on evolutionary inputs; AT= assign class based
on nearest neighbour in embedding space; FNN= predict using a
Multi-Layer Perceptron on top of embeddings; LA= predict using
LA on top of embeddings; Embedding inputs from: BB (Bepler &
Berger, 2019), UniRep (Alley et al., 2019), SeqVec (Heinzinger
et al., 2019), ProtBert (Elnaggar et al., 2021), ESM-1b (Rives et al.,
2021), ProtT5 (Elnaggar et al., 2021).

Method Accuracy MCC

Baseline 29 0

Evo

LocTree2 61.20 0.525
MultiLoc2 55.92 0.487
SherLoc2 58.15 0.511
YLoc 61.22 0.533
CELLO 55.21 0.454
iLoc-Euk 68.20 0.641
WoLF PSORT 56.71 0.479
DeepLoc62 73.60 0.683
DeepLoc 77.97 0.735

AT

BB 40.94 0.295
UniRep 60.54 0.519
SeqVec 60.97 0.508
ProtBert 64.85 0.567
ESM-1b 69.67 48.72
ProtT5 73.92 0.687

FNN

BB 48.43± 0.99 0.367± 0.011
UniRep 68.49± 1.02 0.622± 0.011
SeqVec 70.57± 0.93 0.636± 0.011
ProtBert 75.88± 0.45 0.702± 0.006
ESM-1b 80.02± 0.84 0.760± 0.009
ProtT5 82.28± 0.51 0.786± 0.006

LA

BB 55.75± 0.89 0.462± 0.010
UniRep 71.24± 0.96 0.654± 0.011
SeqVec 75.63± 0.11 0.705± 0.002
ProtBert 80.29± 0.21 0.762± 0.002
ESM-1b 83.39± 0.76 0.8013± 0.009
ProtT5 86.01± 0.34 0.832± 0.004
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Figure 3. Confusion matrix of LA predictions on ProtT5
(Elnaggar et al., 2021) embeddings for setHARD annotated
with the fraction of the true class. Vertical axis: true class,
horizontal axis: predicted class. Labels: Mem=cell Membrane;
Cyt=Cytoplasm; End=Endoplasmatic Reticulum; Gol=Golgi
apparatus; Lys=Lysosome/vacuole; Mit=Mitochondrion;
Nuc=Nucleus; Per=Peroxisome; Pla=Plastid; Ext=Extracellular
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4. Datasets
Since ESM-1b can only process sequences shorter than
1024 residues, we removed the longer ones. This resulted in
8662 sequences for the training data, 2457 for setDeepLoc,
and 431 for setHard. Table 5 shows the distribution of
subcellular localization classes in the standard setDeepLoc
and our new setHARD with all sequences included.

Table 5. Number of proteins and percentage of dataset for each
class for the DeepLoc dataset and our setHARD. ER abbreviates
Endoplasmatic Reticulum

LOCATION DEEPLOC SETHARD
# % # %

NUCLEUS 4043 28.9 99 20.2
CYTOPLASM 2542 19.3 117 23.8
EXTRACELLULAR 1973 14.0 92 18.8
MITOCHONDRION 1510 11.8 10 2.0
CELL MEMBRANE 1340 9.5 98 20.0
ER 862 6.2 34 6.9
PLASTID 757 5.4 11 2.6
GOLGI APPARATUS 356 2.6 13 2.6
LYSOSOME/VACUOLE 321 2.3 13 2.2
PEROXISOME 154 1.1 3 0.6

4.1. New test set creation

Figure 4. Screenshot of the filtering options applied to the ad-
vanced UniProt search (uniprot.org/uniprot).

In the following, we lay out the steps taken to produce
the new test set (setHARD). The starting point is a filtered
UniProt search with options as selected in Figure 4. Python
code used is available at data.bioembeddings.com/public/
data/new test set procedure code data.zip.

• Download data as FASTA & XML:

wget "https://www.uniprot.org/
uniprot/?query=taxonomy:%
22Eukaryota%20[2759]%22%
20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%
22Inferred%20from%20experiment%
20[ECO:0000269]%22)%20fragment:no%
20AND%20reviewed:yes&format=

xml&force=true&sort=score&compress=
yes"

wget "https://www.uniprot.org/
uniprot/?query=taxonomy:%
22Eukaryota%20[2759]%22%
20length:[40%20TO%20*]%
20locations:(note:*%20evidence:%
22Inferred%20from%20experiment%
20[ECO:000026%22)%20fragment:no%
20AND%20reviewed:yes&format=
fasta&force=true&sort=
score&compress=yes"

• Download deeploc data:

wget http://www.cbs.dtu.dk/services/
DeepLoc-1.0/deeploc data.fasta

• Align sequences in swissprot to deeploc that have more
than 20% PIDE:

mmseqs easy-search swissprot.fasta
deeploc data.fasta -s 7.5
--min-seq-id 0.2 --format-output
query,target,fident,alnlen,mismatch,
gapopen,qstart,qend,tstart,tend,
evalue,bits,pident,nident,qlen,tlen,
qcov,tcov alignment.m8 tmp

• Extract localizations from SwissProt XML:

python extract localizaiotns from
swissprot.py

• Map deeploc compartments on swissprot localiza-
tions & remove duplicates ([P123, Nucleus] appear-
ing twice), remove multilocated ([P123, Nucelus] and
[P123, Cytoplasm] –> remove P123) empty or not
experimental annotations:

python map and filter swissprot
annotations.py

• Create FASTA like deeploc from sequences not in
alignment:

python extract unaligned
sequences.py

• Redundancy reduce new set to 20%:

mmseqs easy-cluster --min-seq-id
0.2 new test set not redundancy
reduced.fasta new hard test set
PIDE20.fasta tmp
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