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Section S1: Electromagnetic simulation of microwave dielectric resonators 

The dielectric resonator supporting the |X⟩↔|Z⟩ transition among the pentacene’s triplet 

sublevels was designed using COMSOL Multiphysics with a 2D axisymmetric model(60). The 

aim of the simulation is to determine the geometry of the dielectric material, i.e. strontium 

titanate (STO) for generating a TE01d electromagnetic mode resonant around 1.45 GHz (i.e. close 

to the pentacene’s |X⟩↔|Z⟩ transition frequency at zero field). A TE01d mode of a STO resonator 

has been proven, so far, to be the most suitable for pentacene-doped-p-terphenyl masers, which 

simultaneously provides a relatively high magnetic filling factor (~ 0.3)(33, 35) and a high 

Purcell factor (3.6×107)(27). The overall composition of the resonator (see Fig. S1), including a 

STO hollow cylinder, a support made of Rexolite, a copper tuning screw, loop antennas and an 

oxygen-free copper cavity with a hole drilled on the wall for optical pumping, is similar to that 

employed in the previous studies(21, 27, 33, 35, 48). But because the dielectric constant of STO 

varies with suppliers, which may arise from different impurities contained in STO, the exact 

dimensions of the STO hollow cylinder needs to be determined by the simulation. 

Prior to the simulation, we manufactured prototypes (with arbitrarily chosen dimensions) 

of the STO hollow cylinder, the Rexolite support and the oxygen-free copper cavity with a 

cooper tuning screw. After assembly of the prototype dielectric resonator, the resonance 

frequency of its TE01d mode was measured with a microwave analyzer (Keysight N9917A). We 

then inputted the known geometries of all prototype components in the COMSOL model and 

adjusted the dielectric constant of STO to fit with the experimentally determined resonance 

frequency. By fitting, the dielectric constant of the STO raw material used in our work was 

determined to be 318. It is worth noting that for simplicity of the simulation, loop antennas 

were not included in the model. Moreover, because the Rexolite support and the pentacene-

doped p-terphenyl crystal shown in Fig. S1 have been verified not to change the resonance 



frequency significantly, only the dielectric material (i.e. STO), the copper cavity and air were 

constructed in the model. The height of the copper cavity was set to be a flexible parameter 

since it can be adjusted by the tuning screw in experiments. 

Following the determination of the dielectric constant of STO, we adjusted the geometries 

of the prototype STO hollow cylinder and copper cavity in the model to achieve a 1.45-GHz 

TE01d mode (shown in Fig. S1) with a tunable range about 20 MHz (by adjusting the height of 

the copper cavity). The geometries of the crucial parts of the dielectric resonator were thus 

finalized. 

Figure. S1. A two-dimensional (2D) axisymmetric simulation of the strontium titanate 
(STO) microwave resonator. The heat map and red arrows represent the magnetic energy 
density and magnetic field vector of the TE01d mode of the STO microwave resonator. The main 
components used to construct the resonator, the sample position and the optical pump path 
through the cavity wall are labelled. 

Section S2: Configuration of a regenerative microwave oscillator 



The block diagram of the regenerative microwave oscillator is shown in Fig. 2(C) of the 

main text. The key microwave components and equipment used are summarized in Table. S1. 

Table. S1. List of the key microwave components/equipment used for the setup of the 

regenerative microwave oscillator 

Type Brand Model 

Isolator TDK 11GRZO3 

Amplifier 
MITEQ 124758 

Qorvo SPF5189Z 

Band-pass filter Unbranded/Generic FBP-1420s 

Power splitter Talent Microwave RS2DC180-S 

Limiter Mini Circuits ZFLM-252-1WL-S+ 

Directional coupler 
Narda 25017 

Narda-ATM C122E-10 

Variable attenuator MERRIMAC AUM-25A 

Phase shifter SAGE 6718-2 

Logarithmic detector ADI AD8317 

Microwave analyzer Keysight N9917A 

Oscilloscope Tektronix MSO64 

To measure the quality of the microwave oscillator, a transmission (S21) measurement was 

conducted at the coupling ports of the two directional couplers shown in Fig. 2(C). To protect 

the microwave analyzer (Keysight N9917A) from the oscillating signals generated in the circuit, 

two isolators were added at the input and output ports of the analyzers. The obtained transmission 

spectrum is rescaled and shown in Fig. S2. The transmission linewidth was measured to be about 



8 kHz which corresponds to a boosted quality factor of ~180000. The similar ‘Q-boosting’ 

strategy has also been used to achieve room-temperature strong coupling of a spin ensemble with 

microwave photons(61) and explore gain media of room-temperature solid-state masers(36). 

Figure. S2. Measured quality factor (Q) of the regenerative microwave oscillator. The 
linewidth was determined by the frequency difference of the two -3-dB points straddling the 
central frequency. The quality factor is the ratio of the central frequency to the linewidth. 
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