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Introduction  

We describe the methods in more details in Section 1, including the accumulative 

anomaly methodology, model evaluation statistics, WRF-Chem model set up with an 

in-depth simulation evaluation and uncertainty analysis, as well as a monthly-scale 

glacial mass balance model. Next, we discuss precipitation and incoming moisture 

variations over the Tibetan Plateau, including precipitation trends over the Tibetan 

Plateau and changes in incoming moisture from South Asia to the southern Tibetan 

Plateau (Section 2). South Asian black carbon emissions, loadings, and atmospheric 

heating, are described in Section 3. To better explain mechanistically the relationship 

between black carbon and the change in the water vapor transport to the Tibetan 

Plateau, we have added a calculation of moisture flux and its divergence from 1989 to 

201 (Section 4). Lastly, in Section 5, we have added additional analyses to support the 

key conclusions with respect to glacial retreat over the Tibetan Plateau; this includes (i) 

a reconstruction time series of reference-surface mass balance from 1979 to 2014 

using an empirical model, (ii) calculated contributions of summer precipitation and 

temperature change to glacier mass change, as well as (iii) its spatial heterogeneity. 

An itemized summary of the datasets used in this study is provided in Section 6.  

 

1. Methods 

1.1 The accumulative anomaly method 

The accumulative anomaly method was used to reveal the inflexion point (year) 

where the change in precipitation occurred “due to” black carbon emission 

accumulation. The accumulative anomaly is an index to distinguish the changing 

tendency of discrete data1. For a discrete series, the accumulative anomaly (Xt) for 

data point can be expressed as: 

𝑋𝑡 =  ∑ (𝑥𝑖 − �̅�)𝑡
𝑖=1  t =1, 2, …, n (1)                           

where 𝑥 is the mean value of the series xi, and n is the number of discrete points. 

A positive accumulative anomaly indicates that the corresponding data point is higher 

than the average, otherwise lower than the average. If the relation curve is composed of 

least two parts as noted, then the inflexion point/year can be identified. Here, the 

variable x represents summer precipitation, or black carbon emission.  

1.2 Model evaluation statistics 

We examined the skill of model performance utilizing in-situ observations, 



4 

 

satellite data, and a reanalysis dataset vs. model output. Point-based propagation was 

assessed for precipitation and black carbon. The following statistical metrics2,3 were 

used in the study to evaluate the suitability of different physics and chemical schemes 

for a wide range of scenarios and applications. 

The bias was calculated as the difference between the WRF-Chem simulations, 

the observed precipitation, and black carbon. The mean error (ME, equation (2)) was 

derived using all sites in the study area.  

𝑀𝐸 =  
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

𝑛
𝑖=1   (2) 

Mean absolute error (MAE, equation (3)) was calculated to quantify the difference 

between the simulations and the observational data while negating the effect of 

cancelling positive and negative errors seen in the bias. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑦𝑖|

𝑛
𝑖=1   (3) 

Root mean square error (RMSE, equation (4)), which is a measure of the combination 

of systematic and random error, was calculated from the simulated results.   

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2𝑛

𝑖=1   (4) 

Pearson’s correlation coefficient (R, equation (5)) was calculated to identify the linear 

dependence between the simulations and the observations with a value between –1 

and 1. A value of 1 implies that there is a perfect equation to describe the relationship 

between the simulations and observations, i.e., all data points lie on a line. The value 

of –1 implies a decreasing linear relationship, i.e., the simulated values decrease with 

increasing observed values. The values between the two imply the degree of linear 

relationship between the simulations and observations. 

𝑅 =
1

𝑛
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 (𝑦𝑖−�̅�)2

  (5) 

Slope/linear regression (equation (6)) goes one step beyond the correlation coefficient 

in identifying the linear relationship between the simulations and observations. This 

statistic metric is utilized to further calculate the total model performance (TMP).  

𝑠𝑙𝑜𝑝e =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

(𝑥𝑖−�̅�)2   (6) 

TMP (equation (7)) is a combined index derived from MAE, RESM, and the slope to 
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quantify the overall performance so that each simulation ensemble member could be 

compared individually.  

𝑇𝑀𝑃 = (
𝑀𝐴𝐸+𝑅𝑀𝑆𝐸

�̅�
+ (1 + R)) +

|1+𝑠𝑙𝑜𝑝𝑒|

4
  (7) 

Here, the metric was calculated, where n, yi and xi are the number of observations, 

simulation value, and observation value, respectively. 𝑥 is the mean of observed 

values and 𝑦 is the mean from the simulations.  

 

1.3 WRF-Chem setup and evaluation 

1.3.1 WRF-Chem setup 

The WRF-Chem model is a newly developed regional dynamic/chemical 

transport model4 which simulates gas-phase chemical and aerosol microphysical 

processes, along with numerous meteorological fields5. In this study, the WRF-Chem 

simulations were conducted at 25 km horizontal resolution, covering the study domain, 

with 190 grid cells in the west-east direction and 160 in the north-south direction. The 

detailed model setup is listed in Supplementary Table 1. The initial and boundary 

conditions for the meteorological fields were obtained from the 6-h National Centers 

for Environmental Prediction final analysis data (NCEP FNL) with a horizontal 

resolution of 1° × 1°. The default (initial) use of anthropogenic emissions were 

obtained from the Intercontinental Chemical Transport Experiment Phase B 

(INTEX-B); these included CO, SO2, NOX, VOC, BC, OC, PM2.5 and PM10 and, were 

subsequently replaced by the real-time output of Model for OZone and Related 

chemical Tracers (MOZART)6 at 6-h resolution. Successive initial chemical 

conditions were updated by the real-time MOZART results. Biogenic emissions were 

centered upon the Model of Emission of Gases and Aerosol from Nature (MEGAN)7. 

Fire emissions were obtained from the Fire INventory from NCAR (FINN)8. Details 

on the emission datasets used in the WRF-Chem simulations are summarized in 

Supplementary Table 2 here. 
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Supplementary Table 1 Detailed setup information of WRF-Chem simulations. 

Map and grids  

Map projection Lambert 

Central point of study domain 26°N, 80°E 

Vertical layers 35 eta levels up to 50 hPa 

Horizontal grid spacing 25 Km 

Initial and boundary meteorological 

conditions 

6-hour National Centers for 

Environmental Prediction (NCEP) FNL 

analysis data 

Updated initial and boundary 

condition   

MOZART-4/GEOS-5 

Physics Options  

Microphysics Lin et al. scheme 

Cumulus parameterization Kain-Fritsch scheme 

Shortwave radiation RRTMG scheme 

Longwave radiation RRTMG scheme 

Land surface  Unified Noah land surface model 

Planetary boundary layer YSU scheme 

Chemical scheme Options  

Gas-phase chemistry CBMZ scheme 

Aerosol reactions scheme MOSAIC scheme 

 

 

Supplementary Table 2 Summary of different emission datasets used in WRF-Chem 

simulations as well as their changed in different experiment. 

Emission datasets Resolutions Changes in experiments 

 Spatial Temporal Control  Sensitivity 

MEGAN  

biogenic emissions 
0.03° Month 

Original 

values 

Set to zero over 

South Asia 

FINN  

fire emissions 
500m Hour 

Original 

values 

Set to zero over 

South Asia 

MOZART used for 

anthropogenic emissions     
1° 6hour 

Original 

values 

Set to zero over 

South Asia 
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There are the two generic combination optional chemical schemes for the 

WRF-Chem model, i.e., the CBMZ (Carbon Bond Mechanism version Z)9 gas-phase 

chemical mechanism and, the MOSAIC (Model for Simulating Aerosol Interactions 

and Chemistry)10 aerosol module. Additional modules include the RADM2 (Regional 

Acid Deposition Model v2)11 gas-phase chemical mechanism and the 

MADE/SORGAM (Modal Aerosol Dynamics Model for Europe/Secondary Organic 

Aerosol Model)12 aerosol scheme. In a previous study, we found the CBMZ gas-phase 

chemical mechanism and the MOSAIC aerosol module were more suitable for the 

reconstruction of aerosols concentrations over the Tibetan Plateau and adjacent 

regions13. The CBMZ gas-phase mechanism contains 67 species and 164 reactions in 

a lumped structure approach that classifies organic compounds according to their 

internal bond types14. Rates for photolytic reactions are modified as described in 

DeMore et al15. The MOSAIC aerosol module includes sulfate, nitrate, ammonium, 

sodium, calcium, chloride, black carbon, primary organic mass, liquid water, and 

other inorganic mass with 4 Bin size ranges: (1) 0.04–0.156 µm; (2) 0.156–0.625 µm; 

(3) 0.625–2.5 µm; and (4) 2.5–10.0 µm. This mechanism simulates major aerosol 

processes such as thermodynamic equilibrium, condensation, binary nucleation, and 

coagulation.  

The selection of physical schemes was based on the performance of 12 

WRF-Chem model configurations, created using different physical scheme 

combinations. As listed in Supplementary Table 3, three different treatments of 

cumulus parameterizations (Kain-Fritsch, Betts-Miller-Janjic, and Grell-Devenyi (GD) 

Ensemble Schemes), two different microphysical options (Morrison 2-moment and 

Lin et al. schemes), and two different planetary boundary layer options (Yonsei 

University (YSU) and Mellor-Yamada-Janjic (MYJ) Schemes ) were evaluated. 

Although none of the configurations were 100% in agreement with the observations, a 

combination of Lin et al. microphysical scheme16, Kain-Fritsch cumulus scheme17, 

YSU planetary boundary layer scheme18, as well as CBMZ gas-phase and MOSAIC 

aerosol options had the highest simulation accuracy. Therefore, we selected the model 

configuration #3 (Supplementary Table 1). We present the evaluation of the 

performance of these 12 WRF-Chem model configurations in Sections 1.3.2 and 

Section 1.3.3.  
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  Supplementary Table 3 Model configuration used in the physical and chemical schemes.  

Ensemble 

ID 

Cumulus scheme Microphysical scheme Boundary 

layer scheme 

Chemical scheme 

1 Kain-Fritsch Lin et al. MYJ CBMZ and MOSAIC 

2 Kain-Fritsch Morrison 2-moment MYJ CBMZ and MOSAIC 

3 Kain-Fritsch Lin et al. YSU CBMZ and MOSAIC 

4 Kain-Fritsch Morrison 2-moment YSU CBMZ and MOSAIC 

5 Betts-Miller-Janjic Lin et al. MYJ CBMZ and MOSAIC 

6 Betts-Miller-Janjic Morrison 2-moment MYJ CBMZ and MOSAIC 

7 Betts-Miller-Janjic Lin et al. YSU CBMZ and MOSAIC 

8 Betts-Miller-Janjic Morrison 2-moment YSU CBMZ and MOSAIC 

9 GD Ensemble Lin et al. MYJ CBMZ and MOSAIC 

10 GD Ensemble Morrison 2-moment MYJ CBMZ and MOSAIC 

11 GD Ensemble Lin et al. YSU CBMZ and MOSAIC 

12 GD Ensemble Morrison 2-moment YSU CBMZ and MOSAIC 

 

1.3.2 Evaluation of precipitation 

To assess the ability of the WRF-Chem model to reproduce the summer 

precipitation spatial distribution, we compared simulated output with other gridded 

datasets including GPCP (Global Precipitation Climatology Project)19, CRU (Climatic 

Research Units)20, and ERA5 (ECMWF Reanalysis 5th Generation)21. As shown in 

Supplementary Figs. 1 and 2, the model can simulates the basic position of the rain 

band over South Asia and the Tibetan Plateau. Owing to the significant topographic 

effects of the Tibetan Plateau, high precipitation is located along the windward slopes 

of the Himalayas. Precipitation is observed and simulated decreasing from south to 

north. Compared with the reanalysis datasets, the simulated precipitation showed the 

effects of the terrain, such as high precipitation along the Himalayas; such are not 

captured in the interpolated gridded datasets as the in-situ observations, on which they 

rely, are sparse. As noted by Ji et al22., gridded observation data may be unreliable in 

unpopulated regions. For instance, it is well known that precipitation is heavy on the 

northern slopes of the Kunlun Mountains, but the gridded precipitation products 

underestimate the precipitation as the interpolation schemes use stations that lie in the 

arid and semi-arid areas (e.g., the Tarim Basin and Taklimakan Desert)23. 
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Supplementary Fig. 1 Comparisons between WRF-Chem simulations and reanalysis 

datasets. a WRF-Chem simulated 2016 summer precipitation (mm), as well as b CRU, c 

GPCP, and (d) ERA5 observations of summer precipitation (mm) in 2016.  

 

Supplementary Fig. 2 shows the impact of the cumulus parameterization schemes 

on summer precipitation is significant. The three panels in Supplementary Fig. 2 

represent the Kain-Fritsch, the Betts-Miller-Janjic, and the GD ensemble cumulus 

schemes, respectively. Compared with the Kain-Fritsch scheme (Supplementary Fig. 

2a–d), the simulation ensemble with Betts-Miller-Janjic scheme (BM, Supplementary 

Fig. 2e–f) predicts larger summer precipitation over the Tibetan Plateau, especially 

over the northern part. However, the simulations of the GD ensemble cumulus scheme 

(Supplementary Fig. 2i–l) have a spatial precipitation pattern similar to the 

simulations of the Kain-Fritsch scheme (Supplementary Fig. 2a–d), except with less 

precipitation over South Asia (Supplementary Figs. 2i and 2l) after the combination of 
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YSU planetary boundary layer scheme. The impact of planetary boundary layer 

schemes on precipitation is smaller than that of the cumulus parameterizations, and 

the impact is mainly concentrated over South Asia. South Asian summer precipitation 

prediction using the YSU boundary layer scheme (the first and last rows in 

Supplementary Fig. 2) is clearly different from that produced by the MYJ boundary 

layer scheme (the second and third rows in Supplementary Fig. 2). The least impact 

on summer precipitation is caused by the choice of the microphysical scheme. The 

intensity and spatial pattern of precipitation are consistent, by comparing the first row 

vs. the last row, and second row vs. third row in Supplementary Fig. 2, respectively.     
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Supplementary Fig. 2 WRF-Chem simulated spatial summer precipitation in 2016 for 

differing physical parameterization. a–d Kain-Fritsch, e–h Betts-Miller-Janjic, and i–l 

GD ensemble cumulus parameterization, microphysical options (Lin et al. scheme (first and 

second rows) vs. Morrison 2-moment (third and last rows)), and planetary boundary layer 

option (YSU (first and last rows) vs. MYJ (second and third rows)). 



12 

 

In order to validate WRF-Chem simulation performance, summer precipitation 

observations from 117 stations in South Asia and 87 stations (Supplementary Fig. 3) 

were compared with WRF-Chem precipitation estimates. 

 

 

Supplementary Fig. 3 The terrain height and location of in-situ observations for 

summer precipitation observations (mark with black dots) in the study area. 

 

As listed in Supplementary Table 4, the performance of the ensemble members 

of WRF-Chem configuration indicate variability: in South Asia, the ensemble 

members that used the Kain-Fritsch cumulus scheme demonstrated lower ME and 

RMSE, hence lower bias when compared to the members that used the other two 

types of cumulus schemes. The Betts-Miller-Janjic cumulus scheme has the greatest 

bias. Summer precipitation over the Tibetan Plateau was improved by the ensemble 

members that used the Kain-Fritsch scheme and had greater correlation and lower 

RMSE when compared to members that used the Betts-Miller-Janjic and the Grell–
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Devenyi ensemble cumulus schemes. The Kain-Fristch scheme demonstrated better 

performance because it considers the scale-aware parameterized cloud dynamics, 

including subgrid-scale cloud–radiation interactions, a dynamic adjustment time 

scale, impacts of cloud updraft mass fluxes on grid-scale vertical velocity, and lifting 

condensation levels based entrainment methodology24. Moreover, the 

aerosol-cloud-radiation interaction is included in WRF-Chem. Therefore, the 

ensemble members using the Kain-Fristch scheme represent better the formation of 

precipitation under atmospheric aerosol loading. 

 

Supplementary Table 4 Evaluation metrics for summer precipitation for the various 

WRF-Chem configurations with in-situ observations at 204 stations in the study area. 

 Model setup R ME MAE RMSE TMP 

   (mm) (mm) (mm)  

 KF-MYJ-Lin 0.80 61.7 208.7 274.3 2.91 

 KF-MYJ-Mor 0.79 33.7 202.8 267.9 2.89 

 KF-YSU-Lin 0.82 16.6 212.3 283.5 3.11 

 KF-YSU-Mor 0.83 12.5 210.1 251.6 3.01 

South BM-MYJ-Lin 0.71 −69.9 241.9 364.2 3.02 

Asia BM-MYJ-Mor 0.69 −101.8 261.3 428.3 3.15 

 BM-YSU-Lin 0.72 –66.3 276.6 432.9 3.29 

 BM-YSU-Mor 0.73 −58.5 270.6  429.3 3.21 

 GD-MYJ-Lin 0.61 110.7 298.3 442.8 2.81 

 GD-MYJ-Mor 0.71 108.3 284.6 425.1 2.87 

 GD-YSU-Lin 0.64 71.4 295.1 439.8 2.93 

 GD-YSU-Mor 0.68 65.9 292.1 433.2 2.97 

 KF-MYJ-Lin 0.79 93.5 131.9 391.8 3.87 

 KF-MYJ-Mor 0.83 83.1 125.8 213.7 3.24 

 KF-YSU-Lin 0.88 10.8 105.1 143.7 2.91 

 KF-YSU-Mor 0.86 22.9 109.5 155.6 2.87 

Tibetan BM-MYJ-Lin 0.74 198.0 230.7 361.2 4.28 

Plateau BM-MYJ-Mor 0.72 207.1 242.3 376.6 4.31 

 BM-YSU-Lin 0.69 185.0 224.5 352.7 4.03 

 BM-YSU-Mor 0.70 198.0 230.7 361.2 4.09 

 GD-MYJ-Lin 0.69 117.8 153.3 203.3 3.02 

 GD-MYJ-Mor 0.68 103.0 145.5 194.7 2.95 

 GD-YSU-Lin 0.65 16.3 108.7 146.6 2.63 

 GD-YSU-Mor 0.65 30.1 114.5 160.7 2.68 

*KF and BM represent Kain-Fritsch and Betts-Miller-Janjic cumulus parameterizations, 

respectively. Lin and Mor represent Morrison 2-moment and Lin et al. microphysical options, 

respectively. 
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Next, we investigated the sensitivity of each physics scheme to scrutinize bias in 

the simulated results; this was done by grouping all ensemble members together with 

a common physical option and comparing their respective bias range using box and 

whisker plots (Supplementary Fig. 4). The analysis was conducted in the study area 

using the summer precipitation results from the WRF-Chem simulation along with 

station observations. The ensemble members with the Kain-Fristch scheme gave the 

least bias over both South Asia (Supplementary Fig. 4a) and the Tibetan Plateau 

(Supplementary Fig. 4b). In contrast, the Grell–Devenyi ensemble and 

Betts-Miller-Janjic cumulus options produced the highest bias. The YSU option 

when used as the planetary boundary layer scheme tends to produce relatively low 

levels of bias for both South Asia (Supplementary Fig. 4c) and the Tibetan Plateau 

(Supplementary Fig. 4d). The Morrison 2-moment scheme as the microphysical 

option produced the lower bias, compared to the Lin et al. scheme over South Asia 

(Supplementary Fig. 4e) but, exhibited somewhat higher bias over the Tibetan 

Plateau (Supplementary Fig. 4f).  

  
Supplementary Fig. 4 Box and whisker plots representing simulation bias in summer 

precipitation (mm) for physic schemes. (a) vs. (b) compare the performance for different 
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cumulus schemes. (c) vs. (d) and (e) vs. (f) compare the performance respectively for each 

of the planetary boundary layer schemes and microphysics. KF and BMJ demote the 

Kain-Fritsch and Betts–Miller–Janjic cumulus schemes. The five data points are used to 

construct the box and whisker plot: the least and greatest values (the whiskers), the median 

(the middle line), and the quartiles (the ends of the boxes). 

 

The optimal physics scheme combination was identified by considering the 

correlation coefficient, standard deviation, and RMSE. The combination 

(Kain-Fritsch cumulus scheme, YSU planetary boundary layer scheme, Lin et al. 

microphysics scheme) performed best for summer precipitation over South Asia 

(Supplementary Fig. 5a), while the ensemble member using the Kain-Fritsch 

cumulus scheme, YSU planetary boundary layer scheme, and Morrison 2–moment 

microphysics scheme performed the best over the Tibetan Plateau (Supplementary 

Fig. 5b). In the whole study area, the ensemble member that used the Kain-Fritsch 

cumulus scheme, YSU planetary boundary layer scheme, Lin et al. microphysical 

scheme performed the best (Supplementary Fig. 5c). By using the Kain-Fritsch 

cumulus scheme and the YSU planetary boundary layer, the ensemble members 

performed equally well for both South Asia and the Tibetan Plateau and the whole 

study region with correlation values of more than 0.75. Although both the Lin et al. 

and Morrison 2–moment microphysical scheme are able to represent the aerosol 

indirect effect (chemistry-chemistry interactions), the ensemble member that used the 

Lin et al. microphysics scheme with the YSU and Kain-Fritsch cumulus schemes had 

the highest simulation accuracy, hence this combination was selected.  
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Supplementary Fig. 5 Taylor diagrams with standard deviations and correlation 

coefficients for summer precipitation for each ensemble member used to evaluate the 

model performance. (a) South Asia, (b) Tibetan Plateau, and (c) Study area. The ensemble 

member 1 to 12 represent different configurations, i.e., 1: KF-MYJ-Lin, 2: KF-MYJ-Mor, 3: 

KF-YSU-Lin, 4: KF-YSU-Mor, 5: BM-MYJ-Lin, 6: BM-MYJ-Mor, 7: BM-YSU-Lin, 8: 

BM-YSU-Mor, 9: GD-MYJ-Lin, 10:GD-MYJ-Mor, 11: GD-YSU-Lin, 12: GD-YSU-Mor. 

KF and BM represent Kain-Fritsch and Betts-Miller-Janjic cumulus parameterizations, 

respectively. Lin and Mor represent Lin et al. and Morrison 2-moment microphysical options, 

respectively. 

 

Finally, we compared the simulation biases to observations of precipitation. As 

noted previously, simulation similarity with gridded precipitation (Supplementary 

Fig. 1) characterized well the basic position of the rain band over South Asia and the 

Tibetan Plateau. However, the WRF-Chem simulated precipitation showed the effect 
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of subtle orographic features, i.e., high precipitation along the Himalayas. In our 

previous use of WRF-Chem25, comparison with observed precipitation from 73 

national meteorological monitoring stations over the Tibetan Plateau showed that the 

simulations adequately captured the seasonal variation of precipitation but, with an 

underestimation from May to October. In this study, the previous underestimation of 

precipitation was improved upon as was shown in Supplementary Table 4; this is 

probably due to the use of the Kain-Fristch cumulus scheme rather than the Grell–

Devenyi Ensemble cumulus scheme used previously. The Kain-Fristch scheme 

demonstrated improved precipitation simulation for the reasons articulated earlier.  

 

1.3.3 Evaluation of black carbon 

In previous work, we had confirmed that the CBMZ gas-phase chemical 

mechanism and MOSAIC aerosol module were the most suitable in the reconstruction 

of black carbon (BC) concentrations over the Tibetan Plateau and adjacent regions25,26. 

As is shown in Supplementary Table 5, we had compared model simulations of black 

carbon concentration with in-situ stations from 14 stations. The WRF-Chem model 

with the aforementioned combination of chemical schemes reproduced well the 

spatial variation of BC concentrations at these sites26. Both simulations and 

observations reveal low BC concentration levels occurred at sites over the Tibetan 

Plateau such as Namco, Lhasa, and Qomalangma, with concentrations less than 1 μg 

m−3, whereas high black carbon levels appeared in highly populated cities such as 

Xi'an (8.7 μg m−3). 
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Supplementary Table 5 Observed and simulated surface black carbon concentration (µg m−3) 

for specified time periods. 

Name Location 

(N, E) 

Time (LT) Observati

on 

Simulati

on 

 

Xi’an 34.2N 108.9E May 2013– 

Apr 2014 

8.7 11.8 Li et al27.  

Lanzhou 36.0N 103.E Sep 2010– 

Aug 2011 

7.58 4.51 Li et al28. 

Urumqi 43.8N 87.6E Nov 2009– 

Feb 2010 

6.15 1.94 Liu et al29. 

Lhasa 29.6N 91.0E May 2013– 

Mar 2014 

0.14 0.19 Li et al30.  

Qomalangma 28.3N 86.9E May 2015– 

Apr 2016 

0.29 0.18 Chen et al31. 

Namco 30.7N 90.9E Jan 2012– 

Dec 2012 

0.19 0.10 Wan et al32.  

Qinghai 

Lake 

36.9N 99.9E Jan 2012– 

Dec 2012 

0.84 0.58 Zhao et al33. 

Laohugou 39.5N 96.5E May 2009– 

Mar 2011 

0.48 0.24 Zhao et al34. 

Ranwu 29.3N 96.9E Nov 2012– 

Jun 2013 

0.14 0.21 Wang et al35. 

Muztagh Ata 38.2N 75.0E Dec 2003– 

Dec 2006 

0.06 0.11 Cao et al36. 

NCO-P 27.9N 86.8E Dec 2006– 

Feb 2008 

0.17 0.25 Marinoni et al37. 

Manora Peak 29.4N 79.5E Feb 2005– 

Jul 2008 

1.14 1.43 Ram et al38.  

Dhaka 23.7N 90.3E Mar 2010– 22.8 7.81 Begum et al39.  

  Feb 2011    

Sinhagad 

Pune 

18.3N 73.7E Jan 2010– 

Dec 2010 

3.8 

 

2.7 

 

Safai et al40. 

 

 

An additional reanalysis dataset (the Modern-Era Retrospective analysis for 

Research and Applications version 2 (MERRA-2)) was also used as a comparative for 

WRF-Chem simulation output; this can be seen in Supplementary Fig. 6. Both 

WRF-Chem and the MERRA-2 reanalysis characterized high black carbon 

concentration levels along the Indo-Gangetic Plain with some “hotspots”; this is 

expected given the intense local anthropogenic emissions there. Comparatively, the 

Tibetan Plateau exhibits lower concentrations with marginally higher values along the 

southern edge of the plateau. The WRF-Chem model are more pronounced in 

orographic regions like the inland regions of the Tibetan Plateau. The detail of the 
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WRF-Chem simulations is expected due to the higher resolution of WRF-Chem which 

captures the niceties of topography and its effects on atmospheric dynamics. As 

reported in a recent study41, the relatively more detailed topographic resolution used 

by the WRF-Chem model resulted in 50% more black carbon transport across the 

Himalayas.  

 

 

Supplementary Fig. 6 Surface 2016 surface black carbon concentration values (µg m−3).  

a MERRA-2 reanalysis and b WRF-Chem simulation.  

 

We further evaluate the WRF-Chem model performance in black carbon 

simulation by utilizing in-situ observations from the coordinated monitoring and 

research network of atmospheric pollution and cryospheric changes (APCC)42 to 

evaluate the model performance in black carbon simulation. The APCC was initiated 

by our group in 2013 to conduct a more integrated and in-depth investigation of the 

origins and distribution of atmospheric pollutants and their effects on cryospheric 

change, covering the Tibetan Plateau and the surrounding region (Supplementary Fig. 

7). The APCC measurement network currently consists of 30 stations that collect 

samples from the atmosphere, glaciers, and snow cover.  
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Supplementary Fig. 7 The atmospheric stations location of the APCC network referring 

to Kang et al42. The base map image is plotted by the author Shichang Kang based on the 

downloaded Digital Elevation Model (DEM) data from the open source website 

(http://www.gscloud.cn/sources/?cdataid=302&pdataid=10). 

 

Supplementary Table 6 identified the 20 meteorological (atmospheric) stations in 

the study area. Supplementary Fig. 8 shows the mean and standard deviation of 

measured and modeled black carbon concentrations from the 20 atmospheric sites. 

The model simulated values of black carbon were comparable to in-situ observations 

at the majority of atmospheric sites. Specifically, the simulated black carbon 

concentrations show high values in urban sites such as Lanzhou (6.96 ± 3.56 µg m−3) 

and Kathmandu (5.7 ± 2.73 µg m−3), followed by Dushanbe (3.89 ± 1.51 µg m−3) and 

Mardan (4.32 ± 2.89 µg m−3). In contrast, relatively low surface black carbon 

concentrations are found in the remote sites, such as Nam Co (0.32 ± 0.28 µg m−3), 

Everest (0.44 ± 0.23 µg m−3), and Lhasa (0.97 ± 0.42 µg m−3). Overall, the model 

represented well the black carbon concentration at these sites well over the simulation 

period (Supplementary Fig. 8). 

 
Supplementary Fig. 8 Comparison of measured and simulated average black carbon 

concentration at stations from APCC network. The whiskers represent the greatest values.  
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Supplementary Table 6 Detailed geographic information of APCC meteorological sites over 

the Tibetan Plateau surrounding area. (masl is meters above sea level) 

 Full station name Location Elevation 

(masl) 

Ali Ngari Station for Desert Environment Observation 

and Research, western Tibetan Plateau  

33.4N, 79.7E 4270 

Laohugou Qilian Observation and Research Station of 

Cryosphere and Ecologic Environment, northern 

Tibetan Plateau  

39.4N, 96.5E 4230 

Beiluhe Beiluhe Observation and Research Station in 

Qinghai-Tibet Plateau  

35.4N, 92.5E 4000 

Namco Nam Co Station for Multisphere Observation and 

Research, southern Tibetan Plateau  

30.8°N, 91.0E 4730 

Nyalam Nyalam, southern Tibetan Plateau  28.2N, 86.0E 4166 

Everest Qomolangma Atmospheric and Environmental 

Observation and Research Station (Everest), 

Himalayas  

28.3N, 86.9E 4276 

Linzhi southeastern Tibetan Plateau 29.7N, 94.7E 3326 

Yulong Yulong Snow Mountain Glacial and Environmental 

Observation and Research Station 

27.2N, 100.2E 2650 

Lanzhou Lanzhou city, Gansu Province 36.0N, 103.9E 1520 

Lhasa Lhasa city, Xizang (Tibet) Autonomous Region 29.6N, 91.3E 3642 

Dhunche Dhunche  28.1N, 85.3E 2051 

Pokhara Pokhara  28.2N, 84.0E 813 

Jomsom Jomsom  28.8N, 83.7E 3048 

Kathmandu Kathmandu  27.7N, 85.4E 1300 

Lumbini Lumbini  27.5N, 83.3E  100 

Karachi Karachi  24.9N, 67.0E  13 

Mardan Mardan  34.2N, 72.0E 485 

Dushanbe Dushanbe  38.5N, 68.9E 864 

Hunza Hunza  36.5N, 74.9E 2519 

Zhongba Zhongba, southern Tibetan Plateau 29.7N, 84.0E 4704 

As to model evaluation metrics for 20 APCC stations, these are highlighted in 

Supplementary Fig. 9. Additionally, Supplementary Fig. 10 is a plot of simulated and 

observed daily mean black carbon concentrations at the Qomolangma (Mt. Everest) 

station (QOMS, 28.36N, 86.95E, 4276 masl). It appears that the WRF-Chem tends to 

underestimate the black carbon in high spike conditions but does reproduce a 

reasonable seasonal profile. 
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Supplementary Fig. 9 Scatter diagram for measured and simulated average black 

carbon concentrations at APCC stations. 

 

 

Supplementary Fig. 10 The simulated and observed daily mean black carbon 

concentrations at the QOMS station.  

 

A further evaluation of the WRF-Chem performance was undertaken at the event 

scale; this was for four pollution incidents where black carbon exceeded 1 µg m−3 at 

QOMS. The four instances were (i) incident A – June 8–10, 2015, (ii) incident B – 

March 19–22, 2016, (iii) incident C – April 9–18, 2016, (iv) incident D – April 11–14, 

2017. Supplementary Fig. 11 details all of the four pollution episodes. The 
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WRF-Chem model captured the variations in trend of observed surface black carbon 

concentrations – correlation coefficients were all above 0.8, implying that the model 

was able to reproduce black carbon concentration distributions. It is also noteworthy 

to mention that black carbon underestimation by the chemical transport model. This is, 

at least in part, because the model grid is a point source regional average computation 

over 25km, whereas the observation at QOMS site is more strongly influenced by 

complex local topography that is not represented well in the model due to the model’s 

coarse resolution43,44,45. Model discrepancies also likely originate from underlying 

uncertainties such as inadequate representation of emissions data and the 

representation of the planetary boundary layer height46,47,48. As noted earlier, we 

updated the initial chemical conditions with representative values and selected the 

optimal combination of physical schemes. Therefore, when compared with in-situ 

observation data, the model reproduced satisfactory results of seasonal surface black 

carbon as well as capturing their spatial variability. 



24 

 

 

Supplementary Fig. 11 Comparisons between simulated black carbon (BC) 

concentrations and observations at QOMS for the four pollution episodes. a event A, b 

event B, c event C, and d event D. 
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1.3.4 Model uncertainty analysis 

In addition to different physical and chemical schemes, variations in spatial 

resolutions can also result in simulation uncertainties. In this study, we conducted the 

WRF-Chem simulations at a 25 km spatial resolution. To analyze model uncertainty 

caused by the spatial resolution, we designed a higher resolution WRF-Chem 

simulation, i.e., at a resolution of 8 km – the result can be seen in Supplementary Fig. 

12. A comparison of both model resolution runs of the 500 hPa wind field with the 

ERA-Interim reanalysis is plotted in Supplementary Fig. 12a and confirms that each 

resolution captures the essence of summer dynamics, showing a local disturbance in 

the Indian subcontinent and southerly winds prevailing in the southern Tibetan Plateau. 

Additionally, we compared the vertical velocity simulated along 20°N. Supplementary 

Fig. 13, modelled vertical velocity, indicates that the 25-km spatial resolution 

simulation was just as representative as that at the 8-km resolution. Therefore, we 

concluded that a resolution of 25 km was adequate to capture local convection in both 

the horizontal and vertical dimensions.  

Moreover, reference to previous studies was invaluable in our choice of 

resolution. Global climate models (GCMs), with low horizontal resolution have been 

used to study the effect of black carbon on the South Asian monsoon and the 

precipitation; these included CESM49 (1.9° (latitude) × 2.5° (longitude)), PCM50 ( 

300km), CCM351 (T42/L18), NASA finite-volume GCM52,53. Given the GCMs low 

resolution, subtle characteristics of atmospheric dynamics in complex terrain cannot 

be adequately resolved. Additionally, high-resolution regional climate models (RCMs) 

have been used: Ji et al23. used the RegCM-chemistry model to investigate the effects 

of black carbon on the Indian summer monsoon at 50 km resolution in the horizontal. 

Soni et al54. used the WRF-Chem model (at 30 km horizontal resolution) and found 

lower tropospheric heating by black carbon caused increased convection and rainfall 

in North-East India during the pre-monsoon season. Likewise, Dong et al55. 

successfully used the WRF model at a 27 km horizontal resolution to simulate the 

deep convection over the Indian subcontinent at precipitation event scales. Given the 

abilities of the RCMs to capture local convection over South Asia at coarser 

resolutions, we felt justified that our 25 km would resolve the key climate dynamics 

of interest. 
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Supplementary Fig. 12 Summer 500 hPa wind (units: ms−1) in 2016. a the ERA-interim 

re-analysis and, WRF-Chem simulations with different spatial resolutions (b 25km & c 8km). 

 

Supplementary Fig. 13 Summer vertical velocity (omega: Pa/s) in 2016 from WRF-Chem 

simulations along 20°N at different resolutions. a 8 km and b 25-km. 
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Finally, we discuss the ensemble experiments using the Kain-Fristch cumulus 

scheme; this is shown in Supplementary Fig. 14. The single simulations using the 

Kain-Fritsch cumulus scheme captured the daily precipitation when compared to a 

baseline (the ERA5 reanalysis); this emphasizes the value of the ensemble modeling 

where running two or more related but different analytical models and then 

synthesizing the results into a single score or spread improves the accuracy of 

predictive analytics.  

 

Supplementary Fig. 14 Comparison of daily precipitation from the ensemble 

WRF-Chem simulations using the Kain-Fritsch cumulus scheme to that from the ERA5 

reanalysis data during the simulation period. Scheme abbreviations are given in 

Supplementary Table 4. 

 

1.4 Glacier mass balance model 

The monthly-scale mass balance model from Radić and Hock56 was used to 

model glacier mass balance for the Tibetan Plateau for the period 1979–2014. The 

primary input data in this model includes monthly precipitation and air temperature; 

this was obtained from the CRU dataset. Glacier area-weighted specific mass balance 

(B) for the whole glacier in each mountain range was calculated as a sum of the 

specific mass balance (b) of each elevation band on a glacier (i): 

𝐵 =
∑ 𝑏𝑖∙𝑆𝑖

𝑛
𝑖=1

∑ 𝑆𝑖
𝑛
𝑖=1

 (8) 
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where bi and Si denote specific mass balance and glacier area, respectively, subscript 

(i) represents the number of elevation bands on a glacier (i = 1, 2, 3, …, n) with an 

elevation interval of 50 m. 

Monthly specific mass balance (bi, mm water equivalent) for each elevation band on a 

glacier was calculated as: 

𝑏𝑖 = 𝑎𝑖 + 𝑐𝑖 + 𝑅𝑖  (9) 

where ai is glacier surface ablation (negative), ci is glacier mass accumulation 

(positive), and Ri refers to snowmelt refreezing (positive) at each elevation band. 

 

For debris-free glaciers, the glacier surface ablation (ai, mm water equivalent) was 

calculated based upon a positive degree-day model57 in which snow/ice melt is 

considered linearly correlated to monthly air temperature. Here, monthly ai was 

computed as:  

𝑎𝑖 = 𝑓𝑠𝑛𝑜𝑤/𝑖𝑐𝑒 × ∫ max(𝑇𝑖, 0) 𝑑𝑡  (10) 

where fsnow/ice denotes the degree-day factor for snow/ice (mm water equivalent 

day−1 °C−1), and Ti denotes monthly air temperature (°C) above the glacier surface. 

 

For debris-covered glaciers, the relationship between debris thickness and glacier 

surface ablation58 was used to calculate the effect of debris cover on glacier surface 

ablation. In detail, an averaged curve for debris thickness and surface ablation was 

used in the mass balance model to calculate the reduction of ice ablation due to debris 

cover. To calculate the ablation of debris-covered glaciers, the ablation factor ki was 

introduced to quantify the effect of the debris on glacier surface ablation. Thus, 

monthly glacier surface ablation due to debris cover (ai, debris) was calculated as: 

   𝑎𝑖,debris = 𝑘𝑖 × 𝑓𝑠𝑛𝑜𝑤/𝑖𝑐𝑒 × ∫ max(𝑇𝑖, 0) 𝑑𝑡             (11) 

where ki denotes the scale factor for each elevation band (i) and depends on the debris 

thickness. 

 

Monthly glacier mass accumulation for each elevation band ci (mm water equivalent) 

was calculated as: 

 

    𝑐𝑖 = 𝛿𝑚 × 𝑃𝑖 {
𝛿𝑚 = 1, 𝑇𝑖 < 𝑇𝑠𝑛𝑜𝑤

𝛿𝑚 = 0, 𝑇𝑖 ≥ 𝑇𝑠𝑛𝑜𝑤
           (12) 

where δm is a constant, Ti denotes air temperature at each elevation band, and Tsnow 
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represents the threshold temperature differential between snow and rainfall. If Ti is 

below Tsnow, Pi is assumed to be snow. Otherwise, Pi is regarded as liquid 

precipitation. 

 

Based on the relationship between annual potential refreezing Ri,pot (cm) and the air 

temperature Ta (°C) at each elevation band40, Ri,pot was calculated by equation (13): 

𝑅𝑖,pot = −0.69 × 𝑇𝑎 + 0.0096 (13) 

where the lower boundary of annual snowmelt refreezing over the whole glacier is 

zero, while an upper boundary was applied in the ablation zone and assumed equal to 

the accumulated snow. Monthly snow meltwater frozen on the glacier surface (Ri) 

does not flow away until the accumulated melt in a mass balance year exceeds the 

annual potential refreezing (Ri,pot). 

 

In order to interpolate the Climatic Research Unit Time-Series (CRU TS) 

monthly temperature at each elevation band, we applied two temperature lapse rates 

(Tlap, and Glap): Tlap corresponds to the ‘statistical lapse rate’  between the CRU TS 

altitude of the grid cell at glacier location (hCRU) and the highest elevation of the 

glacier (hmax), while Glap denotes glacier surface temperature taking into account 

glacier surface configurations such as orientation and glacier surface climate 

environment.  

Monthly air temperature at each elevation band (Ti) was calculated as: 

𝑇𝑖 = 𝑇𝐶𝑅𝑈 + 𝑇lap × (ℎ𝑚𝑎𝑥 − ℎ𝐶𝑅𝑈) + 𝐺lap × (ℎ − ℎ𝑚𝑎𝑥) (14) 

where TCRU denotes the CRU TS monthly air temperature for the period from 1979 to 

2014, and h represents the altitude of the glacier elevation band. 

 

To scale up CRU TS monthly precipitation to hmax, a precipitation correction 

factor (kp) was assigned, while a precipitation gradient (dpre) was used to interpolate 

precipitation to each elevation band (the percentage of precipitation decreases with 

every 50 m decrease in elevation) from the highest to lowest elevation of the glacier. 

Thus, monthly precipitation for each elevation band was calculated as: 

𝑃𝑖 = 𝑘𝑝 × 𝑃𝐶𝑅𝑈 × ⌊1 + 𝑑𝑝𝑟𝑒 × (ℎ − ℎmax)⌋ (15) 

where PCRU denotes CRU TS monthly grid precipitation from 1979–2014 at each cell 

location on the glacier. 
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The glacier mass balance sensitivities to temperature change (∆𝐵/∆𝑇) and 

precipitation change (∆𝐵/∆𝑇) were calculated as: 

∆�́�

∆𝑇
= ∆�́�(±∆𝑇) − ∆�́� (16) 

∆�́�

∆𝑃
= ∆�́�(±∆𝑃) − ∆�́� (17) 

where B is the simulated annual average mass balance (m water equivalent year−1) for 

the period from 1979–2014, B (∆𝑇) is the same B but in response to a step-wise 

temperature change in the range from −6 K to +6 K incremented by 0.5 K, and B (∆𝑃) 

is the same B, but in response to a step-wise precipitation change from −30% P to +30% 

P with incremented by 5% P: these were advanced in an uniform stepwise change to 

the original monthly temperature and precipitation time series throughout the 36-year 

period. 

 

2. Precipitation and incoming moisture variations over the Tibetan Plateau  

2.1 Precipitation trends over the Tibetan Plateau 

We utilized the GPCP monthly precipitation dataset to investigate the 

precipitation trend over the Tibetan Plateau. The GPCP is a monthly mean rainfall 

dataset. GPCP is a merged dataset on a 2.5-degree global grid derived from rain gauge 

station data, satellite derived data, and sounding observations for the period 1979 to 

the present. As shown in Supplementary Fig. 15, the GPCP precipitation trend 

corroborates the increased summer precipitation trend (derived from the CRU dataset) 

over the southern Tibetan plateau and, more importantly confirms the trend reversal at 

the beginning of 21st century. Based upon our earlier analysis of CRU monthly 

gridded precipitation data, it had been established that, in the northern Tibetan plateau, 

there has been an increase in summer precipitation over the past 56 years. 
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Supplementary Fig. 15 Summer precipitation trend over the Tibetan Plateau (TP). 

Linear trends in summer area-averaged precipitation over the northern TP using the Climatic 

Research Unit dataset (period of record (por) 1961–2016, black dashed line) and the 

accumulative anomaly in summer area-averaged precipitation over southern TP using Global 

Precipitation Climatology Project (GPCP) dataset (por 1979–2016, blue solid line).  

 

In the meantime, and covering the study domain, a further dataset from the China 

Meteorology Data Service Centre (CMDSC), which contained daily precipitation data 

from 86 national observational stations was used to analyze precipitation trends for 

the 1961–2014 period. The daily analysis likewise confirms the decreasing trend in 

summer precipitation over the southern Tibetan plateau during 2004–2016; this 

accompanied by a concomitant increasing trend for the northern Tibetan plateau 

(Supplementary Fig. 16a). Subsequently, we calculated a time subset (i.e., the 2004–

2016 period using CRU) for the summer precipitation trends over the southern 

Tibetan plateau and adjacent regions as plotted in Supplementary Fig. 16b. As 

expected, the CRU analysis revealed a decreasing trend in the summer precipitation 

was evident over the southern Tibetan plateau, while the opposite was the case for 

many regions within Indian subcontinent. 
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Supplementary Fig. 16 Summer precipitation change. a Summer precipitation trend overv 

the Tibetan plateau during 2004–2016 using CMDSC in-situ observations. b CRU derived 

summer precipitation trend over the Tibetan plateau and South Asia for period of record 

2004–2016 using CRU. NTP and STP in a represent the northern Tibetan plateau and the 

southern Tibetan plateau, respectively. The red polygon in b represents South Asia. Black dots 

in b indicate statistically significant areas. 
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2.2 Change of incoming moisture from South Asia to the southern Tibetan 

Plateau 

In the southern Tibetan plateau, the impact of localized surface evaporation is not 

particularly pronounced59, thus the inter-annual variability of the summer 

precipitation is primarily controlled by “long-range” moisture transport. To investigate 

moisture transport and moisture change from South Asia to the southern Tibetan 

Plateau, we computed the moisture flux and its divergence using the European Center 

for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) 

for the 1989–2018 period; the analysis is plotted in Supplementary Fig. 17a. 

Supplementary Fig. 17a indicates a predominance of negative divergent values of 

summer moisture flux over South Asia and the southern Tibetan Plateau; this implies 

convergent zones of water vapor for the aforementioned regions. Moreover, the water 

vapor flux field substantiates moisture source over southern Tibetan Plateau is one of 

long-distance transport from South Asia. As for change at the “decadal” scale 

(Supplementary Fig. 17b), increased summer transport of moisture flux change 

indicates that incoming water vapor flux was reduced during the 2004–2018 period in 

the southern Tibetan Plateau compared with the prior period (i.e., 1989–2003). 

However, Supplementary Fig. 17b reveals that, summer divergence of moisture flux 

was reduced for South Asia during 2004–2018 and, there was a prominent 

strengthening of the cyclonic circulation in South Asia, the consequence being more 

water vapor flux convergence in the latter “decade”. 
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Supplementary Fig. 17 Summer integrated transport moisture flux field and its 

divergence derived using the ERA-Interim reanalysis dataset. (a) Summer mean during 

1989 to 2018. (b) Difference between the periods 1989–2003 and 2004–2018 (the later minus 

the former). Red line drarn along the northern side of the Bay of Bengal is reference locus.  
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A previous study by Lin et al60. found that the summer moisture flux to the 

Tibetan Plateau along the northern side of the Bay of the Bengal (marked with a red 

line in Supplementary Fig. 17a) had reduced during the 21st century (Supplementary 

Fig. 18). As noted by Curio et al61, the northern side of the Bay of the Bengal 

regulates the precipitation variability over the Tibetan Plateau, and this is consistent 

with the years of strong and weak precipitation over the plateau60. As observed by the 

5-year smoothed red line of Supplementary Fig. 18, the year 2004 is indeed an 

inflexion point leading to an ensuing decrease in incoming moisture flux to the 

Southern Tibetan Plateau.  

 

 

Supplementary Fig. 18 Annual change of moisture flux along the path of northern side 

of Bay Bengal (marked with a red line in Supplementary Fig. 17a) to the Tibetan 

Plateau referring to Lin et al60. The actual trend of moisture flux over time is delineated by 

the black solid line. The blue dotted line represents the fitted trend and red line is a 5-year 

smoothed average.  

 

In conclusion, by analyzing the moisture flux and its divergence from various 

perspectives, it was discovered that an inflexion point occurred in 2004 manifested 

thereafter by a decreasing trend of incoming moisture flux over the southern Tibetan 

Plateau. Moreover, other climate dynamics also changed the most noticeable one 

being a strengthening of moisture flux convergence over South Asia. 
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3. South Asian black carbon emissions, loadings, and atmospheric heating 

To investigate black carbon emissions over South Asia, we utilized monthly 

global black carbon emission inventories split out by sector (energy production, 

industry, transportation, residential and commercial, agriculture, as well as 

deforestation and wildfire), at 0.1°×0.1° resolution; these data were obtained from 

Peking University. As shown in Fig. 19, the temporal trend and variation of black 

carbon emissions over South Asia were essentially on an upward trend from 1961. 

Moreover, the difference when compared to the global average has become larger 

since 2001. We make note of the 2001 onwards spread vis-à-vis global/south Asia as 

this might induce significantly higher radiative perturbations than that implied by the 

globally mean estimates62. 

 

 

Supplementary Fig. 19 Summer monthly black carbon emissions since the 1960 over 

South Asia and the world from emission inventories from Peking University. 
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Supplementary Fig. 20 Black carbon derived from MERRA-2.  Summer black carbon 

concentration (µg m−3, a–c) and wet deposition (µg m−3, d–f) over the period 1986 to 2016. 

 

Supplementary Fig 20 is a time series of black carbon concentration and wet 

deposition derived from the MERRA-2 (Modern-Era Retrospective analysis for 

Research and Applications version 2) reanalysis dataset. An increasing trend in black 
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carbon emissions does not necessarily mean increasing atmospheric black carbon 

concentrations in the Indian subcontinent as atmospheric aerosols are largely removed 

during the Indian summer monsoon. To uncover the trends in atmospheric black 

carbon loading, the latest version of the global atmospheric MERRA-2 reanalysis 

dataset was analyzed. It was discovered that atmospheric black carbon concentrations 

have been ever-increasing with time (Supplementary Fig. 20a to Supplementary Fig. 

20c). We also investigated the wet removal of black carbon during the summer 

monsoon, which have been also ever-increasing from 1986 to 2016 (Supplementary 

Fig. 20d to Supplementary Fig. 20f).   

To examine the impact of South Asian black carbon on summer air temperatures, 

the WRF-Chem regional model was tuned and optimized to run simulations for each 

year from 2007 to 2016 (Supplementary Fig. 21). The results of the WRF-Chem 

simulations showed that increased atmospheric black carbon loading does indeed 

result in an increasing temperature change in the atmosphere. 

 

 
Supplementary Fig. 21 WRF-Chem simulated black carbon concentrations (red line) 

and subsequent warming at 500 hPa (black line) area-averaged over South Asian from 

2007 to 2016. Dotted lines are fitted trend.  
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4. South Asian black carbon linkage with to summer precipitation decrease in 

south Tibetan Plateau 

In the main text, we identified a decreasing trend in the summer precipitation 

over the southern Tibetan Plateau at an inflexion point around 2004; this decline, it 

was discovered, is regulated by the long-range moisture transport into the region. 

Further analysis was conducted to examine the change of long-range moisture 

transport into the southern Tibetan Plateau and, it was found that a reduction had 

occurred after the inflexion point. The analysis also revealed a well-defined increase 

in moisture convergence in South Asia, i.e., in the upstream part of the long-range 

moisture transport. 

A review of past research conducted in South Asia52,63 revealed that black carbon 

can enhance atmospheric moisture convergence conditions and increase local 

atmospheric convection. Given the backdrop of earlier research on black carbon we 

undertook a statistical analysis whereupon results showed that the summer 

precipitation regime over the south Tibetan Plateau from 2004 onwards had a negative 

correlation with the south Asian summer black carbon emissions. A contrast, however, 

was found over the entire timeline of the dataset i.e., a positive correlation. Finally, we 

undertook a WRF-Chem model investigation of potential mechanism(s) that might be 

associated with South Asian black carbon and moisture transport change and, 

subsequent observed alteration of the summer precipitation over the southern Tibetan 

Plateau. 

 

4.1 The lag correlation analysis between black carbon and summer precipitation  

As was plotted in Fig. 1 in the revised manuscript, black carbon emissions have 

been increasing since 1985 but the summer precipitation observed decrease in the 

southern Tibetan Plateau occurred later at the inflexion point of 2004. Given the 

aforementioned, one would postulate there exists a delay / tipping point between the 

two. To establish as to whether a delay / tipping point exists between the two, we 

conducted a lag correlation analysis between South Asian black carbon and summer 

precipitation over the southern Tibetan Plateau. As can be seen in Supplementary Fig. 
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22, there is an insignificant (P＞0.05) lag relationship between summer precipitation 

over the Tibetan Plateau and South Asian black carbon; this is especially so for a lag 

time of more than 10 years. Thus, we concluded that the negative correlation is more 

than likely due to black carbon reaching a critical level in the atmosphere to affect 

local convection and precipitation. Returning to Supplementary Fig. 19 once again, 

i.e., the difference in South Asian black carbon emission compared to the global 

average, we remarked upon the larger divergence between the two since the 21th 

century. We also referenced Ramanathan et al62. to infer that the divergence may well 

induce significantly higher radiative perturbations than the globally mean estimates. 

    

Supplementary Fig. 22 Cross correlation between summer area-averaged precipitation 

in the southern Tibetan Plateau and South Asian area-averaged black carbon emissions 

starting at 2004 lagged out to 19 years of black carbon emissions. Dashed line represents 

smoothed fit.  

 

As a further test of the WRF-Chem capacity to simulate actual conditions we 

reversed the hypothesis, i.e., can the model not model a condition. Hence, we 

conducted WRF-Chem simulation experiments for 2016 using the South Asian black 
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carbon inventory for 1985 where black carbon emissions were at a lower level; this 

was to explore whether lower concentrations would drive the same climate dynamics 

as was found to be the case for the 2007–2016 period (Supplementary Fig. 4a, b in the 

revised manuscript). The model simulations were unable to reproduce a strengthening 

of the cyclonic circulation of moisture in South Asia during the summer 

(Supplementary Fig. 23a, cf. Supplementary Fig. 4a). In addition, the northward 

transport of moisture flux from South Asia to the southern Tibetan plateau was 

insignificantly weakened. The moisture flux along 80°E (Supplementary Fig. 23b) 

indicates that 1985 forced black carbon was not an adequate amount to result in a 

water vapor increase over South Asia with a concomitant reduction over the southern 

Tibetan Plateau. In essence then, summer precipitation over the southern Tibetan 

Plateau starts to decrease around 20 years after 1985 and is not a lagged effect. 

 

 

Supplementary Fig. 23 South Asian black carbon triggered summer moisture flux 

change in 2016. a at 500 hPa and b along 80 °E using the1985 emission inventory. 

 

In summary, through combined lag-time correlation analysis and WRF-Chem 

model simulations, it appears that there is no delayed effect of increased South Asian 

black carbon on reduced summer precipitation over the southern Tibetan Plateau. The 

change in meteorological fields (meridional moisture and vertical wind components) 

since 2004 are attributed to the contemporaneous South Asian black carbon emissions 

reaching a sufficient level that significantly affects local convection and precipitation. 
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4.2 Mechanism of South Asian black carbon affecting on precipitation  

Using the WRF-Chem model, a series of sensitivity simulations were undertaken 

to examine the climate dynamics and forcing due to atmospheric black carbon over 

south Asia. A dominant summer moisture flux change identified was an intensification 

of the cyclonic circulation of moisture in the eastern Indian subcontinent and the Bay 

of Bengal in the lower-layer atmosphere (Supplementary Fig. 24). As to the summer 

precipitation decline that has occurred over the southern aspect of the Tibetan plateau; 

this is discussed in the revised text. In addition to the direct radiative effect, black 

carbon can also influence the properties of liquid clouds and ice clouds. It has been 

shown that cloud condensation nuclei (CCN) can increase with increasing aerosol 

loading64,65,66 (Fan et al., 2013; Rosenfeld et al., 2008; Yuan et al., 2008). The past 

documented research is very relevant given that Supplementary Fig. 25 highlights the 

increased summer CCN number concentrations at 1% supersaturation in the 

troposphere over the Indian subcontinent. 

 

Supplementary Fig. 24 850 hPa WRF-Chem simulated average summer moisture flux 

change due to South Asian black carbon loading for the period 2007–2016. 
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Supplementary Fig. 25 Summer average CCN (cm−3) change at 1% supersaturation due 

to South Asian black carbon loading for the period 2007–2016. a 850 hPa and b 500 hPa. 

 

Another central factor that our analysis uncovered is that of convective available 

potential energy (CAPE). Supplementary Fig. 4c in the main text, confirms that there 

has been a significant increase in CAPE in the eastern Indian subcontinent. Intensified 

black carbon concentrations which is an absorbing aerosol, induces positive radiative 
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forcing and subsequent heating of the low and middle troposphere (Supplementary 

Fig. 26b). Moreover, air temperature and change (as plotted in Supplementary Fig. 26) 

reflects the fact that black carbon induces increased meridional temperature gradients 

in the eastern Indian subcontinent, i.e., northern-increased versus southern-decreased.  

 

 

Supplementary Fig. 26 500 hPa WRF-Chem simulated temperature for the period 2007–

2016. a summer mean temperature and b its change caused by South Asian black carbon 

loading.  
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The enhancement of local convection and moisture source over the Indian 

subcontinent resulted in higher summer cloud water mixing ratios over that region 

(Supplementary Fig. 27). As a consequence, localized increased precipitation reduced 

water vapor availability elsewhere and, as noted earlier, was coupled with a 

weakening downstream flow in the direction of the southern Tibetan plateau; the 

change in the induced regional dynamics ends up as reduced precipitation. 

 
Supplementary Fig. 27 WRF-Chem simulated cloud water mixing ratio change caused 

by South Asian black carbon induced summer mean cloud water mixing ratio change 

during 2007–2016.  

 

Additional analysis was carried out for severe precipitation events over the Indian 

subcontinent: 228 heavy rain days were selected from the APHRODITE daily gridded 

precipitation dataset: these accounted for 39.6% of total summer precipitation during 

2007–2015. A threshold value of that exceeding 100 mm/day defined a heavy rain day. 

The results (Supplementary Fig. 28) of area-averaged daily rainfall show 

unsurprisingly that daily heavy rain averaged over South Asia was accompanied 

alongside comparatively lower values for the southern Tibetan plateau.   



46 

 

 

Supplementary Fig. 28 Comparison of summer area-averaged daily rainfall 

(APHRODITE daily dataset) over the southern Tibetan plateau with that over South 

Asia for the period 2007–2015. 
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As discussed earlier, the WRF-Chem model was turned and optimized to study the 

effects of increasing black carbon. With respect to the precipitation event part i.e., 

heavy rain days, simulations indicated that black carbon lead to increased daily 

precipitation (Supplementary Fig. 29a) for most of the Indian subcontinent and, the 

results were consistent with the APHRODITE maximum precipitation centers (black 

dots in Supplementary Fig. 29a). Moreover, the WRF-Chem breakdown into the two 

components of convective and large-scale precipitation revealed (a) enhancement of 

the convective precipitation regime over the Indian subcontinent (Supplementary Fig. 

29b), while at the same time (b) a decrease in large-scale precipitation 

(Supplementary Fig. 29c). The results reinforce prior lines of inquiry as to the effects 

of black carbon and enhanced convective instability, increased summer heavy rain and 

depletion of atmospheric water that is subsequently transported northward to the 

southern Tibetan plateau. 

 

 

Supplementary Fig. 29 South Asian black carbon triggered average change for 228 

heavy rain day events for the period 2007–2016. a total precipitation, b convective 

precipitation, and c large-scale precipitationBlack dots in a represent the APHRODITE 

maximum precipitation centers. 
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5. Glacial mass balance change and its climate drivers  

5.1 Glacial mass balance change over the Tibetan Plateau 

The Tibetan Plateau and surrounding areas contain the largest number of glaciers 

outside of the polar regions. According to Maurer et al., 2019, the Himalayan glaciers 

have experienced the most intensive ice loss over the past 40 years. Tibetan Plateau 

glacial shrinkage generally decreases from the Himalayas to the continental interior 

and is the least in the eastern Pamir with positive mass balance67. 

To investigate the extent of glacial mass decline, we adopted the method 

proposed by Brun68, i.e., time series of digital elevation models (DEMs) were used to 

calculate the glacier volume changes for the 2007–2016 period. The methodology is 

fully automated and calculates DEMs from available ASTER satellite optical stereo 

pairs. A linear regression through time series of co-registered ASTER DEMs was 

fitted to estimate the rate of elevation change for each 30-m pixel. A particular 

strength of this method is that it relies exclusively on satellite optical data. Thus, it is 

not affected by signal penetration, which is a major source of uncertainty in DEMs 

derived from radar sensors (e.g., from the Shuttle Radar Topography Mission; SRTM), 

in which the signal penetrates to an unknown depth up to many meters into the snow 

and ice69. Supplementary Fig. 30 shows the spatially distributed differences in glacier 

mass balance. The most prominent positive mass change (up to 0.3m 

water-equivalent-year−1) is observed at West Kunlun, in the northwestern part of the 

Tibetan Plateau. The largest glacial mass loss was found in Nyainqentanglha with a 

variability of −0.53m water-equivalent-year−1 in Nyainqêntanglha.   

      
Supplementary Fig. 30 The summer average glacier volume change over the Tibetan 

plateau from 2007 to 2016. The base map image is generated by the first author, based the 

downloaded Digital Elevation Model (DEM) data from the open source website 

(http://www.gscloud.cn/sources/?cdataid=302&pdataid=10). 

http://www.gscloud.cn/sources/?cdataid=302&pdataid=10
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In addition to the glacier volume calculation, we reconstructed the time series of 

reference-surface mass balance for the 1979–2014 period using an empirical model 

(more details in section 1.4) calibrated with observed mass balance from 45 glaciers. 

Supplementary Fig. 31 shows the time series evolution of cumulative annual glacier 

mass balance. There is insignificant variability before year 2000 (−0.57m 

water-equivalent-year−1). However, there is accelerated glacial mass loss after year 

2000 with cumulative glacier mass balance of −2.97m water-equivalent-year−1. 

Striking through is the glacial mass decline in the central Himalayas (−13.54m 

water-equivalent-year−1) and the Nyainqentanglha (−24.38m water-equivalent-year−1). 

Moreover, glaciers in the central Himalayas and the Nyainqêntanglha have 

experienced greater cumulative annual glacial mass balance loss when compared to 

the mean. One inference that may be taken from the glacial loss differences may be 

that the southern Tibetan Plateau is more sensitive to climate perturbations that are 

anthropogenic in nature. 

 

 

Supplementary Fig. 31 The cumulative annual glacier mass balance over the Tibetan 

Plateau as well as in the central Himalayas and, the Nyainqêntanglha over the southern 

Tibetan Plateau.  
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5.2 Drivers of glacial mass balance change  

In order to determine the drivers of glacial change, we applied the optimization 

procedure from Radić and Hock57 in the calibration of an empirical model (more 

details in section 1.4) using observed mass balance time series data from 45 glaciers 

over the plateau70 and obtained the best match. The empirical model was used to 

investigate the mass balance sensitivities of each 45 glaciers to temperature changes 

from −6 to 6 Kelvin and precipitation changes from −30% to 30%. The results 

(Supplementary Fig. 32) show a difference in sensitivity to temperature and 

precipitation: (i) the change in mass balance linearly increases with the increase in 

precipitation perturbation but (ii) the relationship between the change in glacial mass 

balance and the change in temperature perturbations is non-linear.  

 

Supplementary Fig. 32 Glacial mass balance sensitivities to climate drivers following 

Wang et al70. a temperature and b precipitaion. The red line indicates the mean sensitivity 

across the 45 glaciers, and the violet shading reflects the standard deviation.  

Applications of the empirical model also uncovered significant spatial 

heterogeneity in the annual glacial mass balance for 1979 to 2014 period; this is 

shown in Supplementary Fig. 33(a). The patterns of glacial mass gain in Kunlun and 

southern Tibetan Plateau  mass loss (e.g., the Himalayas and Hengduan Mountains) 

are in agreement with the results obtained from other distinctive studies, i.e., ICEsat71, 

ASTER68, and GRACE72. Although rising temperatures are considered the dominant 

driver of glacier change in the Himalayas 73,74, changes in precipitation in both 

directions likely drive the systematic differences in glacier status over the Tibetan 

Plateau67. Besides, it is worth reiterating that summer precipitation accounts for more 

than 60% of the total annual precipitation that feeds the Tibetan plateau75,76; this rises 

to 90% over the southern Tibetan Plateau. 
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Supplementary Fig. 33 Spatial patterns of glacial mass balance as well as its changes due 

to different climate drivers simulated by the glacier mass balance model. a annual 

mean glacial mass balance and its changes due to b temperature, c annual precipitation, and d 

summer precipitation for the period 1979–2014.  

 

Supplementary Fig. 33 also shows the individual contribution of precipitation 

and warming to the annual mean glacial mass accumulation: the glacier mass change 

of glaciers over the Tibetan Plateau is driven by both temperature (Supplementary Fig. 

33b) and precipitation (Supplementary Fig. 33c). Moreover, precipitation has resulted 

in substantive change in glacial mass over the southern Tibetan Plateau, especially in 

the Himalayas. As reported by a plethora of previous analyses, summer precipitation 

affects the glacial mass balance in the southern Tibetan Plateau more than that in the 

northern parts (Supplementary Fig. 33d). 

Supplementary Fig. 34a shows the analysis of time series in glacial mass balance 

and its climate drivers over the Tibetan Plateau. It would seem that glacial melting by 

temperature is the dominant driver of glacier mass loss. Meanwhile, over time 

precipitations’ contribution to glacial mass accumulation is unchanged. However, 

things are somewhat different for precipitation in the central Himalayas (southern 

Tibetan Plateau) as Supplementary Fig. 34b indicates a declining trend with greater 

variability. Moreover, the contribution from summer precipitation accounts for a 

larger proportion of the contribution from the annual precipitation.  
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Supplementary Fig. 34 Time series of glacial mass balance as well as its changes due to 

different climate drivers. a the Tibetan Plateau and b the central Himalayas, southern 

Tibetan Plateau.   
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Finally, considering the important role of precipitation in glacial mass balance 

over the southern Tibetan Plateau, we investigated whether there has been a seasonal 

and decadal shift in precipitation, as well as its contribution to glacier mass 

accumulation. To account for shifts in precipitation over the southern Tibetan Plateau, 

we conducted a PDF (probability density function) analysis and found that the 

precipitation exhibited a marked seasonal pattern with significantly greater 

precipitation in the summer (Supplementary Fig. 35a). The contribution of summer 

precipitation to glacial mass accumulation (Supplementary Fig. 33d) actually accounts 

for a large proportion of the contribution from the annual precipitation 

(Supplementary Fig. 33c). Also, there is a decadal shift in precipitation over the 

southern Tibetan Plateau (Supplementary Fig. 35b), forcing a decadal shift of summer 

precipitation to contribute to glacier mass accumulation (Supplementary Fig. 35c). 

 

 

Supplementary Fig. 35 The probability density functions. a seasonal precipitation during 

1979–2014, b decadal summer precipitation and c their contribution to glacial mass 

accumulation for the 1979–2014 period.  
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6. Supplementary information for datasets used in this work 

Here, we supplemented more details for the datasets used in this study, as shown 

in Supplementary Table 7, including the data type, spatial and temporal resolutions, 

and the time/period used.    

Supplementary Table 7 More details of the datasets used in this study 

 Dataset 

name 

Type Resolutions 

(spatial, temporal) 

Period  

 CRU Gridded 0.5°×0.5°, month 1961–2016 

 APHRODITE Gridded 0.25°×0.25°, day 2004–2015 

Precipitation ERA5 Gridded 0.25°×0.25°,  2016 

 GPCP Gridded 2.5°×2.5°, month 1979–2016 

 CMDSC In-situ  China, day 2004–2016 

 UCC In-situ South Asia, day 2016 

Specific moisture ERA-Interim Gridded 0.25°×0.25°, 

month 

1989–2018 

Wind ERA-Interim Gridded 0.25°×0.25°, 

month 

1989–2018 

Moisture flux ERA-Interim Gridded 0.25°×0.25°, 

month 

1989–2018 

Divergence of moisture flux ERA-Interim Gridded 0.25°×0.25°, 

month 

1989–2018 

Black carbon concentration 

and wet deposition 

MERRA-2 Gridded  0.5°×0.625°, 

month 

1986, 2001, 

2016 

Black carbon concentration 

 

APCC  In-situ South Asia and TP,  

day 

2016 

Black carbon emission Peking 

University 

Gridded  0.1°×0.1°, month 1961–2014 

*UCC data is derived from the Utah Climate Center (https://climate.usu.edu/). CMDSC data 

is accessible at http://data.cma.cn/.  

 

In addition, it is a fact that different years/time periods were used which pertain to the 

analysis at hand. In Supplementary Table 8, we have itemized the datasets selected 

periods, the analysis undertaken and, a brief explanation.  

 

 

http://data.cma.cn/
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Supplementary Table 8 Summary of iterative analyses and corresponding dataset periods 

used in this study. 

Different analyses  Datasets Note 

Ⅰ：Identification of a decreasing  

trend in summer precipitation in  

the STP since 2004. 

CRU  

(1961–2016, Fig. 1b) 

 

GPCP 

 (1979–2016, Fig. S15) 

This dataset is available 

since 1979 

Ⅱ: Confirmation of decreased  

summer precipitation in STP  

since 2004. 

In situ observations  

(2004–2016, Fig. S16a) 

 

APHRODITE  

(2004–2015, Fig. 1c) 

This dataset is only 

updated to 2015 

Ⅲ：Comparing the change of 

incoming moisture to the TP 

before and after 2004, 

indicating a decrease in 

incoming moisture since 2004.  

ERA-Interim 

(1989–2018, Fig.2a, Fig. 2b, and 

Fig. S17) 

To reveal the average 

annual change for 

fifteen years before and 

after 2004. 

Ⅳ: Discussion of the 

correlation coefficient between 

summer precipitation decreased 

over the STP and BC emissions 

over the South Asia since 2004. 

Peking BC emission  

(1961–2014, Fig. 2c and Fig. 2d) 

This dataset period is 

only covered from 1960 

to 2014.  

CRU precipitation  

(1961–2014, Fig. 2c and Fig. 2d) 

 

Ⅴ: Revealing the annual 

averaged effect of Asian BC on 

summer precipitation decrease 

over the STP, and its 

contribution to glacial mass 

loss.  

WRF-Chem simulations 

(2007–2016, Fig. 3 and Fig.4) 

Prior similar 

simulations using the 

MOZART represented 

well the BC after 2006, 

so 2007–2016 selected. 

InVEST evaluation 

(2007–2016, Fig. 5) 

*BC and STP are the abbreviations of black carbon and southern Tibetan Plateau, 

respectively.  
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