Supplemental Methods

Selection of genes targeted by WTA

Human protein-coding genes were determined based on the HUGO Gene Nomenclature
Committee (HGNC) and designed according to the available RefSeq transcripts. Mouse protein-
coding genes were determined based on Mouse Genome Informatics (MGI) and designed
according to the available RefSeq transcripts. For mouse genes, we also considered the current
status of genes in NCBI RefSeq and did not include those with poor status (Suppressed,
Provisional, Model, or Inferred). Notably, 1,450 protein-coding genes that exist in the MGI
database had no available mRNA transcripts in RefSeq at the time of design. By comparison, that
number in human was only 31 and included a few genes that should have been characterized as
loci and not protein-coding entities (ex. PCDHG@), TRD).

In order to provide the best sensitivity for lower-expressing transcripts, we elected to
remove the top 10 most highly expressed genes in TCGA across tumor types from the human
WTA (ACTB, ACTG1, EEF1A1, EEF2, FTL, GAPDH, PSAP, RPL3, TPT1, and UBC). A similar
assessment was performed for mouse genes according to (Séllner et al. 2017) but as most of the
genes identified were organ-specific, we opted to instead remove genes based on empirical data
using our assay. Those genes were Gm20594 and Eefla1. Eefla1 is the mouse homolog of
human EEF1A1 we prospectively removed for the same rationale, and Gm20594 is the human
ortholog of MTRNRZ2L7, which has homology to mitochondrial rRNA and thus could yield very
high counts. In both human and mouse WTA, mitochondrially-encoded transcripts were removed
as they are also very highly expressed.

The final probe pool consists of 18,815 probes for human WTA and 20,175 probes for
mouse WTA, including 139 negative control probes for human and 210 negative control probes

for mouse. These probes target 19,505 and 21,596 annotated genes for human and mouse, of
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which 19,128 and 21,040 are protein-coding respectively. Due to high homology in some gene

families, 636 human probes and 656 mouse probes target more than one gene (Table S1).
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Figure S1. WTA probe design. A. Schematic of WTA probes, with a sequence complementary

to the target RNA, a UV-photocleavable linker, and an indexing tag sequence designed to be read

out by high-throughput sequencing. The indexing tag sequence contains a UMI and a barcode

designed to uniquely identify each probe. B. After release on the DSP instrument, the tag

sequence is collected and amplified by PCR to add lllumina P5 and P7 sequences as well as i5

and i7 index sequences for sample demultiplexing after sequencing. C. Number of probes and

genes targeted by the human and mouse WTAs.
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Figure S2. Correlation of WTA with other DSP panels and RNA-seq. A. Left: Scatterplot of

WTA counts and the mean counts of an 1,812 gene panel with 5 probes per target for a

representative matched AOI. Middle/Right: Boxplots of Pearson correlation coefficients between

WTA and the mean count of 5 probes per target from the smaller panel, or 100 iterations of a

randomly selected single probe. B. Spearman’s correlation of WTA counts in each AOI compared

to RNA-seq of each cell line profiled in this experiment using just the lowest quartile of expressed

genes in the RNA-seq data (Q1), or the highest quartile of expressed genes (Q4). For each AOI,

the matching cell line is shown in blue and all other cell lines in grey.
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Figure S3. Correlation of WTA with RNA FISH in cell line titrations. A. Table showing RNA-
seq TPM in each of the two cell lines in the titration for each gene tested by RNA FISH. Genes
were selected for high (>100 TPM) in one cell line, and low (<1 TPM) expression in the other to

create a gradient of gene expression across the titration. B-C. Scatterplots showing WTA counts



vs RNA FISH fluorescent intensity across the cell line titration for each gene tested in human (B)

and mouse (C).
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Figure S4. A. Log+o counts of all negative probes across replicate experiments in 11 FFPE human

and mouse cell lines. Points are colored by cell line, and separated by AOI size. B. Relationship
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between negative probe signal and target signal in each AOI in 11 FFPE human and mouse cell
lines. The logio geometric mean of negative probes is plotted on the x-axis, and the log+o
geometric mean of target probes on the y-axis. Probes were filtered for outliers as described in
the Methods. Line is y=x, and points are colored by cell line and shaped by AOI size. C. Boxplots
showing target (in blue) and negative probe counts (in black) for all genes in 11 FFPE human and
mouse cell pellets in 50, 200, and 400 uym-diameter circular AOls. The red dot indicates 2 SD
above the geometric mean of negative probe counts, the threshold used for calling a gene above

background in this manuscript.
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Figure S5. Sensitivity of WTA at different gene expression levels. A. Expression level of

transcripts used in the RNAscope absolute transcript comparison experiment. Mean number of
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transcripts per cell for each gene in each cell line is indicated. B. Scatterplots plotting log1o(TPM)
in the RNA-seq experiment on the x-axis, and logio(mean transcripts per cell) in the RNAscope
experiment for each gene in each cell line tested in this experiment. Dashed lines indicate the
threshold for calling a gene “expressed”. 1 TPM in RNA-seq, and 1 transcript per cell in
RNAscope. C. Replicability of RNAscope mean transcripts per cell for 5 genes run in duplicate
experiments. D. Scatterplot of WTA counts on the y-axis vs mean transcripts per cell from
RNAscope on the x-axis. Breakpoints at which WTA counts and RNAscope transcripts per cell
become linearly correlated were calculated for each AOI size and are indicated by a dashed line.
E. Specificity of human WTA compared to RNAscope in each AOI size, using RNAscope mean

transcripts per cell = 1 as the threshold for a true expressed gene.
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Figure S6. WTA is compatible with human fresh-frozen and mouse fixed-frozen samples.
A. Scatterplots of WTA counts for matched CD20- CD3E- and PanCK-enriched regions in FFPE
vs fresh frozen (FF) tonsil tissue (human, top) and FFPE vs fixed-frozen (FxF) cell pellets (mouse,
bottom). Pearson correlation coefficients are indicated on each plot. B. Comparison of signal-to-
background ratio of all genes in FFPE vs FF tonsil tissue (human, top) and FFPE vs FxF cell

pellets (mouse, bottom).
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Figure S7. Mouse WTA is compatible with commonly used mouse strains. A. Image of the
C57BL/6 FFPE organ array used in this experiment, with the 7 tested organs labeled. Similar
tissue arrays from two other mouse strains (BALB/c, NOD) were also profiled. B. Left:
Representative scatterplot of WTA counts in the brain between C57BL/6 and BALB/c. Right:
Boxplot of correlation coefficients of all comparisons between strains for each organ. C. Heatmap
of scaled gene expression of the 16,610 genes expressed above background in at least 10% of

AQIs. AOIs and genes are clustered by hierarchical clustering.
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Figure S8. Correlation of WTA counts, detected genes, pathway analysis, and cell type
deconvolution results across AOI sizes in CRC and NSCLC. A. Pearson’s correlation of
counts from all genes from each AQOI to every other AOI of the same tumor and segmentation

type. AOls are ordered by area. B. Number of genes detected in at least 20% of AOIs in each



size bin that are also detected in the “large” size bin. Shared genes are in blue, unique genes are
in red. C. Boxplots showing Q3 normalized count of genes encoding CD3E, PTPRC, and KRT19,
which were used as morphology markers for the segmentation. D. Heatmap of ssGSEA
enrichment of the most differentially expressed Reactome pathways between tumor and immune
compartments. Enrichment was computed using genes detected above background in >20% of
AOls. Columns and rows are clustered by hierarchical clustering and annotated by tumor type,
segment, and area bin. All displayed pathways are significant at FDR < 0.01. E. Results of cell
type deconvolution using a cell profile matrix derived from gene expression profiles of tumor,
stroma, and immune cells (Danaher et al.). Data are shown as stacked barplots with each bar as
a single AOI, and the estimated abundance of each immune cell type colored and faceted by

tumor type, segment, and region within the tumor.
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Figure S9. Effect of read depth on performance metrics and biological analyses of human
WTA. A. Relationship between read depth (raw reads/um?) and sequencing saturation (1-
deduplicated/aligned) (left) or percent unique reads (right) split by AOI size. B. Relationship
between read depth and number of reads per UMI. Example histogram of reads per UMI for large

AOIs subsampled to 100 raw reads/um? (left), and mean reads per UMI for all size bins at 50,
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100, and 150 raw reads/um? (right). C. The first panel shows genes detected above background
per AOI at each size and subsampling level. The other panels show Spearman’s correlation of
counts, results from cell type deconvolution, differential expression fold change and p-value, and
ssGSEA enrichment in subset AOls to the same AOI at 300 raw reads/um?. Jittered points are
individual AOls and lines represent the average for each AOI size, colored by area bin. Differential
expression (DE) does not have individual AOI points since it is run by segment group (Tumor vs
Immune) rather than by AOI. AOI sizes are colored as in A. D. Same calculations as B but plotted
against individual AOI's sequencing saturation instead of read depth. E. Scatterplots showing
logio counts of raw reads versus logio UMI deduplicated counts for each AOI. Data is shown for

the 150 reads/um? subsampling level.
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Figure S10. Additional analyses of the human kidney dataset. A. Principal component
analysis of variation between samples using genes detected above background in >1% of AQls.
PCA1 vs PCA2 is plotted, with points colored by sample and shaped by kidney structure. B.
Volcano plots of fold change vs -logio(p-value) from differential expression analysis of normal

glomeruli vs tubules, and proximal tubules vs distal tubules. Top marker genes identified in
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proximal tubule cells, distal tubule cells, and podocytes from published scRNA-seq data (Young
et al. 2018) are colored. C. Heatmap of ssGSEA enrichment of the most differentially expressed
Reactome pathways between substructures in normal kidney samples. Enrichment was
computed using genes detected above background in >1% of AOIls. Columns and rows are
clustered by hierarchical clustering and the data are scaled by row. All displayed pathways are
significant at FDR < 0.05. D. Boxplots of all cell types with significantly different proportions
between normal and DKD glomeruli (t-test Bonferroni-corrected p-value < 0.05), colored by

pathological annotation.
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Figure S11. Annotation of mouse embryo organs. DSP fluorescent images (right) and H&E
images of serial sections (left) of two representative sections of the mouse embryo. Organs

profiled are outlined and labeled.

13



