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Supplementary Figure 1 31 

 32 

Supplementary Figure 1 | Negative stain electron microscopy (EM) of AqpZ-W14A reconstitution. (a) and (b) 33 
Micrographs with 2D-sheet (arrowhead 1), 2D-crystalline proteo-liposome (arrowhead 2) and several small 2D-sheets 34 
(arrowheads 3). (c) and (d) Zoom-in series of a 2D-sheet in (b). The 2D square lattice of AqpZ is discernible in (d). 35 
Similar results were obtained in all samples.  36 
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Supplementary Figure 2 37 

 38 

Supplementary Figure 2 | Cryo electron microscopy (cryo-EM) 2D-crystallographic analysis of AqpZ-W14A 39 
2D-crystals. (a) IQ-plot of the merged 2D-projection data. The resolution rings (from the center to Nyquist of the 40 
plot) represent 15 Å, 10 Å, 8 Å, 6 Å and 4 Å resolution. The diffraction spots are marked with their respective figure 41 
of merit (FOM): 1, >95; 2, >90; 3, >85; 4, >80; 5, >75; 6, >70; 7, >65; 8, >60; 9, <60. The Fourier space crystal axes 42 
H and K are indicated. (b) Zoom-in image of the first (upper-right) qudrant in (a). (c) 4Å-projection structure of 43 
AqpZ-W14A. Four unit cells are shown (full image size 190 Å). The plane-group symmetry of the 2D-crystal is 44 
p4212.  45 
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Supplementary Figure 3 46 

 47 

Supplementary Figure 3 | Workflow of the AqpZ association/dissociation events analysis. (a) The workflow of 48 
the AqpZ association/dissociation events analysis. Single particles, extracellular (green) and intracellular (red), were 49 
picked from each HS-AFM frame (time) to extract the coordinates (step 1). The picked particles were given an 50 
identifier by coordinates comparison with the previously identified particles (step 2), in which process newly 51 
identified particles were updated for later frames (update). Both extracellular (E) and intracellular (C) particles were 52 
combined for the assignment of the number of bonds (#bond) for each particle (step 3), where each particle is 53 
assigned the idealized lattice position closest to the location in which it is detected. As diffusing molecules are not 54 
detected in HS-AFM imaging, all resolved particles are assumed part of the lattice. Four exemplary single particles 55 
(arrowheads) and their bonds (dark lines) are displayed. (b) Time-evolution changes of the detection (top) and #bond 56 
(bottom) for an example single particle. If the particle is not detected in a frame, N/A is assigned to #bond of that 57 
frame. From these plots, dwell times of complete events (association and dissociation with unchanged environment) 58 
are extracted. Examples: Blue: Not a complete event, due to change of #bond, i.e. change of molecular environment. 59 
Orange: Series of two-bond events. A false detection in the top time sequence corresponds to n/a in the bottom 60 
sequence. (c) Time-evolution changes of #array-bound molecules.   61 
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Supplementary Figure 4 62 

 63 

Supplementary Figure 4 | Chemical structures and properties of the lipids used in the experiments. All lipids 64 
have the same head group and the same degree of saturation, namely one cis-double bond roughly at the mid-position 65 
of the hydrocarbon tail, i.e. Δ9 position for C14, C16 and C18 lipids and at Δ11 position for C20 lipids. These lipids 66 
all have melting temperatures <0 °C, thus are in liquid phase throughout the experiments (room temperature). These 67 
structural similarity of the lipids, where the most significant difference resides in the length of the hydrocarbon tails, 68 
ensures that the observed difference in the membrane-mediated membrane protein interactions can be related to the 69 
hydrophobic thickness of the bilayers.   70 
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Supplementary Figure 5 71 

 72 

Supplementary Figure 5 | Analysis of membrane protein hydrophobic thickness. In all panels: Blue: hydrophilic 73 
residue surface, red: hydrophobic residue surface, green: aromatic residue surface (indicated below the structures). (a) 74 
OmpF, membrane exposed surface (PDB 2OMF), (b) AqpZ, membrane exposed surface (PDB 2O9D), and (c) AqpZ, 75 
protomer interface (PDB 2O9D). From left to right: Surface representation of the structure, 360º ‘unrolled’ surface of 76 
the structure, and plot of the relative abundance of hydrophilic, hydrophobic and aromatic surface exposed residue 77 
surfaces along the protein thickness. The hydrophobic thickness l is determined as l = Ahydrophobic/csurface, where 78 
Ahydrophobic represents the area of the hydrophobic pixels on the ‘unrolled’ surface and csurface represents the width of 79 
the ‘unrolled’ surface.  80 
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Supplementary Figure 6 81 

 82 

Supplementary Figure 6 | Schematic illustration of membrane compression and bending. Membrane 83 
compression (black arrows) is defined as the change of local lipid leaflet thickness compared to the resting leaflet 84 
thickness, thus the local hydrophobic mismatch. No compression (asterisk 1), positive compression (asterisk 2) and 85 
negative compression (asterisk 3) are shown. The red dashed lines indicate the tangents of the local slopes, i.e. 1st 86 
derivative of the hydrophobic mismatch. Membrane bending is defined as the change in local slope (red dots), thus 87 
the 2nd derivative of local hydrophobic mismatch. No bending (asterisk 4, tagent holds), positive bending (asterisk 5, 88 
tangent increases) and negative bending (asterisk 6, tangent decreases) are displayed. The schematic illustrates a 89 
single type of lipid. Schematic generated using Biorender.com..  90 
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Supplementary Figure 7 91 

 92 

Supplementary Figure 7 | 2D membrane deformation fields and energies. (a) and (b) The 2D membrane 93 
deformation of two cylindrical membrane proteins. (a) The model built for a cylindrical membrane protein on a grid 94 
of nodes. Each node represents a 0.5 nm x 0.5 nm area on a discretized membrane deformation field. Each cylindrical 95 
membrane protein has a cross-section radius of 2 nm. Black dot: Center of mass (COM). Red squares: Boundary 96 
nodes. Green circles: Interior boundary nodes. Green crosses: Exterior boundary nodes. (b) Three numerically 97 
simulated situations of two cylindrical membranes at 7 nm (Left), 4 nm (Middle), and 1 nm (Right). Distance d is 98 
defined as the distance between protein COMs minus two times the protein radius (edge-to-edge distance). The 99 
membrane deformation fields, uxy, is solved (Top) using finite difference method (see Supplementary Note 1), from 100 
which the deformation energy density map, dGdef, is determined (Bottom). In the simulation, u0 = 0.2 nm and l = 1.2 101 
nm (C14 lipid). The deformation field within the protein boundary is meaningless and filled with u0 for illustration 102 
purpose. The elastic potential between the proteins, ΔGelas, is calculated by the integration over the selected area on 103 
the energy density map (dash lines) minus the area occupied the protein. (c) The clover-leaf AqpZ model based on 104 
the Cryo-EM data (Supplementary Fig. 2, Supplementary Note 1). R = 2.6 nm, ε = 0.006 and ω = ±30°. (d) and (e) 105 
The 2D deformation fields (Top) and the deformation energy density maps (Bottom) of the four local-configurations 106 
using: (d) Cylindral protein model as shown in (a). R = 2.62 nm. (e) Clover-leaf AqpZ model as shown in (c). In both 107 
(d) and (e), the distance between COMs is 9.5 nm, and the closest edge-to-edge distance is ~1 nm. The integration 108 
area (dash lines) is confined with boundary lines either crossing where the two neighbor molecules are closest, ~1 109 
nm, or the protein COMs. Integrations over the selected areas give, from left to right: 4x ψ1, 2x ψ2, 1x ψ3, and 1x ψ4.   110 
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Supplementary Figure 8 111 

 112 

Supplementary Figure 8 | Saddle-shaped membrane deformation between proteins. (a) AqpZ array (time 113 
average over 34 frames). White box: membrane area encircled by four AqpZ tetramers. (b) LAFM map of the 114 
highlighted region in (a). (c) Line profiles of the highlighted region in (a). h: z-values . d: Distance along the arrows 115 
in the insets (right). The characterization of the saddle-shaped membrane area between proteins must be considered 116 
with caution as only very sharp tips can probe the narrow region between proteins.   117 
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Supplementary Figure 9 118 

 119 

Supplementary Figure 9 | Rearrangements of the membrane configurations in association/dissociation events. 120 
With association/dissociation events to and from states 1B (a) and 2B (b), the 2D membrane local-configuration 121 
changes and thus energetic changes occur. The changes of the local-configurations are displayed as {δn1 δn2 δn3 δn4} 122 
below the rearrangements.  123 
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Supplementary Figure 10 124 

 125 

Supplementary Figure 10 | Membrane protein automata. (a) The environment of a membrane protein in the 126 
membrane protein automaton. The environment of a membrane protein is represented as a 3x3 kernel, including itself 127 
in the central field (C), its four direct neighbors (N1-N4), and the four diagonal neighbors (D1-D4). (b) Each field in 128 
the automaton is either occupied (state O) or empty (state E). Examples of a one-bond event (top) and a two-bond 129 
event (bottom) are given for state update rules illustration (see Supplementary Note 2). Local-configurations (see 130 
figure 3) and bonds (white sticks) are marked. (c) The initial state of the automata: 1024 (16*8x8) out of 13225 131 
(115x115) fields are at state O. Different intial concentration of diffusing molecules (Cinit)was used in each simulation 132 
to ensure the system reaching equilibrium (see Methods and Supplementary Note 2). (d), (e) and (f) Membrane 133 
protein automata with imaginary ψnorm (see text) favoring local-configuration 2 (d, ψnorm = {1.00 1.90 3.00 4.00}), 134 
local-configuration 3 (e, ψnorm = {1.00 2.00 2.90 4.00}), and local-configuration 4 (f, ψnorm = {1.00 2.00 3.00 3.90}). 135 
(g) to (l) Membrane protein automata with ψnorm = {1.00 2.06 3.22 4.10} and analysis (see text). (g), (h) and (i) 136 
Selected frames of membrane protein automata in membranes of no (g), small (h), and large (i) hydrophobic 137 
mismatch. (j) The time-evolved macroscopic association energy ΔGmacro (left, see definition in Supplementary Note 138 
2) and ΔGmacro at equilibrium (steps 901-1000) as a function of the energy scale factor ψ/ψnorm (right, also shown as 139 
Fig. 3i). (k) The energy difference between states 1B and 2B (ΔGdiff). Left: The probability density function (pdf) of 140 
the dwell times (n = 19417) in one automaton, displayed in log-binning and fitted with two gaussians, representing 141 
the time constants. Right (also shown as Fig. 3j): ΔGdiff as a function of the energy scale factor (ψ/ψnorm).  142 
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Supplementary Figure 11 143 

 144 

Supplementary Figure 11 | The AqpZ-W14A mutation. Slices approximately mid-membrane through the AqpZ 145 
tetramer (a) WT and (b) W14A (model). The substitution of the bulky W14 in the AqpZ-WT (yellow) to the small 146 
A14 in AqpZ-W14A appears to open a cavity for lipids to intercalate between the protomers (arrows).  147 
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Supplementary Figure 12 148 

 149 

Supplementary Figure 12 | The AqpZ WT protomer association and dissociation dynamics in a lipid bilayer 150 
that matches the hydrophobic thickness of the AqpZ protomer-protomer interface. (a) and (b). HS-AFM movie 151 
frames of AqpZ WT oligomers in a C20 membrane (image parameter: 0.33 nm/pixel): (a) Regions where all 152 
oligomers were intact, AqpZ4. (b) Regions where non-canonical AqpZ oligomers, AqpZ2 and AqpZ3, were observed 153 
(dashsed circles). (c) Occurrence probabilities of AqpZ WT oligomeric states at the array edge.154 
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Supplementary Note 1: 2D deformation fields and energies 155 

The continuous elastic field, uxy, is the deviation of each lipid head-group from its unperturbed height as a 156 
function of space, xy, in a 2D cartesian coordinate. The expression of Gdef is1: 157 

𝐺!"# =
$
% ∫∫ $𝐾& &

'!"
(
+ )#

*$
(
%
+ 𝜅+*∇%𝑢,- − 𝑐./

%0 𝑑𝑥𝑑𝑦 , (S2.1) 
  

where ∇%= &!

&'!
+ &!

&(!
 is the Laplacian operator, and KA is the bilayer stretch modulus, l the thickness, κb the 158 

bending modulus, τE the external tension, and c0 the spontaneous curvature. Minimization of Gdef under the 159 
boundary conditions, dependent on the geometries of the membrane and protein configuration, gives uxy that 160 
characterizes the membrane deformation. The boundary conditions specify that the hydrophobic regions of 161 
the bilayer core and the protein TMD outer surface must be matched at the protein-lipid interfaces, and the 162 
slope at the protein-lipid interfaces is zero1. In this paper, the hydrophobic region of the protein TMD outer 163 
surface is considered having constant height at all directions and free of fluctuation, thus at the protein-lipid 164 
interfaces, u = u0 and |∇𝑢| = 0. In the HS-AFM experiment, the membrane is considered free of external 165 
tension and spontaneous curvature, thus eq. S2.1 becomes eq. 6 in the main text:  166 
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$
% ∫∫ $𝐾& &

'!"
(
(
%
+ 𝜅+*∇%𝑢,-/
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Eq.5 was numerically minimized to solve for uxy2. In short, minimiazation of eq.5 is equivalent to solving the 167 
Euler-Lagrange equation:   168 

𝜅+∇/𝑢,- +
*$
()
𝑢,- = 0 . (S2.2) 

  
We used the finite difference (FD) method to solve eq. S2.2 by discretizing the continuous field into a grid 169 
of nodes. Node size h = 0.5 nm, corresponding to the size of one lipid molecule, was used in the numerical 170 
simulation (Supplementary Fig. 7a). We used the clover-leaf model as a simple coarse-grained 171 
approximation to the cross-sections of membrane proteins: 172 

𝐶(𝜃) = 𝑅{1 + 𝜖 cos(𝜃 − 𝜔)} , (S2.3) 
  

where C(θ) is the cross-section in radial coordinate with the origin positioned at the center of mass (COM) 173 
of the protein, and R is the protein radius, ε the magnitude of the deviation of the protein cross section from 174 
the circle (ε = 0 for a cylindral protein) , and ω the tilt angle of the protein as compared to vertical axis (θ = 175 
0). Nodes corresponding to the protein boundary, as well as the interior and exterior boundaries were 176 
identified.  177 

Such, the deformation field, uxy, is charactereized as a vector, u, and eq. 5 can be written in its matrix format 178 
as2: 179 

𝐺!"#,12 = 𝒖3𝑸𝒖 , (S2.4) 
  

and 180 

𝑸 = ℎ% &4*
%
𝑳3𝑳 + *$

%()
𝑰(	  , (S2.5) 

  
where L and I are Laplacian and identity matrices respectively. And eq. S2.2 becomes: 181 

𝑸𝒖 = 𝒗 , (S2.6) 
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where vector v contains zeros except for the rows corresponding to the protein boundary nodes. Besides, we 182 
also adjusted the rows corresponding to the protein boundary nodes in matrix Q to ensure the protein 183 
boundary nodes in u all have values of u0. Eq S2.3 was solved in MATLAB using the Jacobi iteration 184 
method3. In each iteration, we adjusted the rows in u corresponding to the interior and exterior nodes so that 185 
each exterior node has the same value as its closest interior counterpart. This roughly ensures the zero-slope 186 
requirement at the protein-lipid interfaces.  187 

Using the workflow described above, we first solved the deformation fields and eneriges in which two 188 
identifical cylindral proteins (R = 2 nm) are positioned at different edge-to-edge distances d 189 
(Supplementary Fig 7b). The cylindral protein was set to have the same hydrophobic TMD core thickness 190 
as an AqpZ, and membranes of different thicknesses, corresponding to C14, C16, C18 and C20, were 191 
simulated. We used KA = 60 kBT nm-2 and a well-established relationship κb = KAl2/12 to characterize the 192 
membrane physical properties in all simulations4,5. The changes of the deformation energies, i.e. the elastic 193 
potential (ΔGelas, eq. 6), when the proteins come closer to each other were compared (Fig. 3b-e). Aside of 194 
the discussion in the main text, we also observed that in a thicker membrane, e.g. C20, the elastic potential 195 
becomes attractive at longer distance, d ~ 3.8 nm, than in a thiner membrane, e.g. C14, where the potential 196 
becomes attractive at d ~ 3 nm. This is primarily due to the increased contribution from the membrane 197 
bending component, i.e. κb scales up with l, and the decreased contribution from the membrane compression 198 
component, i.e. KA scales down with l (Eq. 5). 199 

Then, we solved uxy of local-configurations 1-4 (Fig.3f) using both the cylindral protein model (ε = 0, R = 200 
2.62 nm, Supplementary Fig. 7a) and the clover-leaf AqpZ model (ε = 0.06, R = 2.6 nm, ω = ±30°, 201 
Supplementary Fig. 7c). In local-configurations 2-4 built with both models, the COM between neighboring 202 
proteins is 9.5 nm and the closest edge-to-edge distance is 1 nm. We denote ψi as the minimized Gdef under 203 
the boundary conditions given by the geometries of the membrane and protein configuration 204 
(Supplementary Fig. 7d,e). We consider {ψ1 ψ2 ψ3 ψ4} = ψ1ψnorm, where ψnorm = {ψ1 ψ2 ψ3 ψ4}/ψ1 shows the 205 
relative energies of the local-configurations. The numerical simulations using the cylindral protein model 206 
gives ψ1(C14) ~ 7.9, ψ1(C16) ~ 0.85, ψ1(C18) ~ 0.58, ψ1(C20) ~ 5.2 and ψnorm = {1.00 1.81 ± 0.05 3.01 ± 0.13  3.50 ± 207 
0.26} (mean ± std). The numerical simulations using the cylindral protein model gives ψ1(C14) ~ 7.3, ψ1(C16) ~ 208 
0.78, ψ1(C18) ~ 0.54, ψ1(C20) ~ 4.9 and ψnorm={1.00 2.06 ± 0.08 3.21 ± 0.17 4.09 ± 0.32 }. Both simulations 209 
suggest that local-configuration 3 is unfavored as compared to local configuration 2 and 4, meaning that it is 210 
energetically favorable to eliminate this configuration (see main text). Besides, ψ2-ψ4 are larger when the 211 
proteins were built with the clover-leaf model, as compared with the cylindral model. This suggests that the 212 
geometry of the AqpZ may play a negative role in the stability of the AqpZ arrays. We deduce that much 213 
less dissociation events would have been observed if the AqpZ geometry was closer to the cylindrical model. 214 
Thus, the protein geometry is essential in the membrane-mediated array-formation process.   215 

We noticed larger variance of the deformation energy in the more complex local-configuration involving 216 
more proteins, i.e. std(ψ4) > std(ψ3) > std(ψ2). Especially, ψ4/ψ1 = 4.09 ± 0.32 in the clover-leaf model 217 
simulation, which means that this configuration is strongly favored, ψ4 << 4ψ1, in some membranes and 218 
strongly unfavored in the others, ψ4 >> 4ψ1. Since no significant difference of the array morphology was 219 
experimentaly observed in the investigated membranes, the real variance in ψ2-ψ4 is thought to be smaller. 220 
One explanation is that as the configuration becomes more complex and involves more proteins, the 221 
fluctuations in the hydrophobic region of protein TMD outer surface, e.g. AqpZ (Supplementary Fig. 5b), 222 
which also induce local membrane curvature and tension, may not be neglectble in solving and comparing 223 
Gdef of these complex configurations. We think the averaged ψnorm reflects the relative energies of the local-224 
configurations, and the difference in the averaged ψnorm as the protein geometry was modeled differently 225 
shows the trend in which the clover-leaf shape of AqpZ is inclined to destabilize the array. Thus, the 226 
averaged ψnorm = {1.00 2.06 3.21 4.09} was used in the membrane protein automata to simulate the array 227 
morphology and the dyanmics of the association/dissociation events at the array edges (Supplementary 228 
Note 2).  229 
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Supplementary Note 2: Membrane protein automata 230 

We developed the membrane protein automata (based on the well-established cellular automata6) to simulate 231 
the array dynamics and morphology to complement the discretized framework to understand the membrane-232 
mediated membrane protein interactions (Supplementary Fig. 10). A membrane protein automaton is 233 
composed of a grid of fields, equivalent to cells in cellular automata, each in one of two states: state O for 234 
occupied and state E for empty. Fields at state E are considered the diffusion field where probability of 235 
meeting an unbound molecule PU  (unit %) characterizes the concentration of freely diffusing molecules. 236 
Besides, all interactions are local, only dependent on the environment defined by a 3x3 kernel surrounding 237 
the field of interest, including the field of interest in the center (C), its four direct neighbors (N1 to N4), and 238 
four diagonal neighbors (D1 to D4) (Supplementary Fig. 10a). Direct protein-protein interaction, 239 
represented as C-N, with strength EP-P, can be formed between C and one of its direct neighbors. Membrane-240 
mediated membrane protein interactions are the result of the rearrangements of the membrane local-241 
configurations 1-4, with strength ψ1 to ψ4 , respectively. These interactions are represented as CNND, e.g. 242 
CN1N2D1 characterizes the upper-left membrane of the environment, the intersection point of fields C, N1, 243 
N2, and D1 (Supplementary Fig. 10a). Thus, a 3x3 environment kernel includes four potential C-N sites and 244 
four CNND sites. In the example shown, CN1N2D1 and CN1N4D4 have local-configuration 2 at state E and 245 
local-configuration 3 at state O; The intersection points CN2N3D2 (upper right) and CN3N4D3 (lower right) 246 
have local-configuration 0, i.e. empty membrane, at state E and local-configuration 1 at state O; and there is 247 
a C-N1 interaction at state O (Supplementary Fig. 10b, top).  248 

We can write the energy of a state (st = O or E) through:  249 

𝐸5657(85 = 𝜓85 + 𝐸9:985   ， (S3.1) 
  

𝜓85 = 𝑛$85𝜓$ + 𝑛%85𝜓% + 𝑛;85𝜓; + 𝑛/85𝜓/  ， (S3.2) 
  

𝐸9:985 = 𝑛9:985 𝐸9:9  ，	 (S3.3) 
  

where eq. S3.1 defines the total energy of a state, st, as the sum of the membrane local-configuration 250 
rearrangements described by eq. S3.2 and the direct protein-protein interactions described by eq. S3.3, with 251 
𝑛!"# being the number of local-configuration i and 𝑛$%$"#  is the number of direct protein-protein interactions in 252 
the environment kernel. The multiplicity of state st is: 253 

Ω85 ∝ 𝑒:<+,+-.
/+ />03 	， (S3.4) 
  

In the examples given, {𝑛&' 𝑛(' 𝑛)' 𝑛*' 𝑛$%$' ; 𝑛&+ 𝑛(+ 𝑛)+ 𝑛*+ 𝑛$%$+ } equals {4 2 0 0 0; 2 0 2 0 1} 254 
(Supplementary Fig. 10b, top) and {5 1 1 0 0; 1 1 1 1 2} (bottom).  255 

Each field in the automaton is given an initial state by the user. After initialization, the automaton scans 256 
through the 3x3 kernel environment of each field of interest C in the current step s, and updates the state for 257 
the next step s+1 following the state-update rules: 258 

1. If all direct neighbors Ns of C are occupied in the current step, the state does not change in the next step, 259 
which gives: N1 = N2 = N3 = N4 = O à Cs+1 = Cs. 260 

2. Else if all direct neighbors Ns of C are empty in the current step, C must be empty in the next step, i.e. 261 
the membrane protein, if there is any, must diffuse away. This gives: N1 = N2 = N3 = N4 = E à Cs+1 = E. 262 

3. Else, the probabilities of the state of C in the next step given the current state of C (𝑃,!→,!"#), are 263 
considered for state-updating, through analyzing the potential environments of C. W 264 

𝑃?/→?/12 = O
A3/12

A4/12B	A#/12
P [1 − 𝛿?/<𝛿?/12D(1 − 𝑃E)]  ， (S3.5) 
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The δ functions in eq. S3.5 assures that if C is empty in the current step and occupied in the next step, i.e. Cs 265 
= E and Cs+1 = O, the probability of meeting an unbound molecule in the diffusion field, PU, is considered. 266 
Besides, an additional diffusing molecule, having {n1 n2 n3 n4 nP-P} = {4 0 0 0 0}, must always be included 267 
at state E to correctly account for the energy difference between states E and O (Supplementary Fig. 10b 268 
state E). This setup allows us to simulate distinct array dynamics and morphology through different 269 
combinations of EP-P, PU and ψ = {ψ1 ψ2 ψ3 ψ4}. Notably, the ratios between the four ψi values define the 270 
likelihood of forming certain local-configuration, and the magnitudes, competing with the direct protein-271 
protein interactions, define the strength of the membrane-mediated interactions.  272 

In HS-AFM imaging, we observed that the association energy is lower in lipids with a small hydrophobic 273 
mismatch, while the energy between states 1B and 2B is lower in lipids with a large hydrophobic mismatch, 274 
both scaling linearly to the mismatch square. Thus, to imitate the hydrophobic mismatch, we fixed the ratios 275 
between the ψi values as ψnorm (set ψ1 = 1) and increased/decreased the magnitudes of the deformation 276 
energy through the scale factors ψ/ψnorm, which can be interpreted as increasing/decreasing the hydrophobic 277 
mismatch square in the automata. We initialized the system with 16 8x8 (1024) square-shaped arrays in a 278 
115x115 (13225) grid, thus 1024 of 13225 fields are at state O (Supplementary Fig. 10c) and simulated for 279 
1000 steps. The total number of molecules, array-bound and diffusing, is fixed in each simulation as Ntotal = 280 
1024 + 13225* PU, the former representing array-bound molecules and the latter diffusing molecules. The 281 
value of PU is different in each simulation to ensure that the arrays grow within the grid before reaching 282 
equilibrium. For illustration, we also performed simulations with ψnorm values favoring individual local-283 
configurations (Supplementary Fig. 10d,e,f and Supplementary Movie 8, bottom row). These simulations 284 
suggested that the array morphology depends on the choice of ψnorm values: Linear arrays dominate if 285 
configuration 2 is favored; Round-shaped and hollow arrays dominate if configuration 3 is favored; Square-286 
shaped arrays dominate if configuration 4 is favored. We used ψnorm = {1.00 2.06 3.22 4.100} 287 
(Supplementary Fig. 7 and Supplementary Note 1) in the automata to simulate AqpZ array dynamics 288 
(Supplementary Fig. 10g,h,i and Supplementary Movie 8, top row). Most of the arrays in these automata 289 
had a round-shaped morphology, which agrees with the observation made in the experiment (Fig. 2a,b,c). 290 
This preferred morphology can be explained by the unfavored local-configuration 3 in ψnorm, comparing to 291 
other local-configurations (see text).  292 

We then analyzed the arrays in the automata as described in the main text, and calculated ΔGasso using eq. 3. 293 
The time-evolved ΔGasso in all automata reached equilibrium after step 900 (Supplementary Fig. 10j, left). 294 
The ΔGasso at equilibrium (average ΔGasso over steps 901-1000) were compared in automata of different 295 
ψ/ψnorm (right, also shown as Fig. 3j), suggesting that the hydrophobic mismatch undermines the association 296 
of a diffusing molecule to the array edges. Following, we collected 19417 complete events from one 297 
automaton and plotted the dwell times with the log binning method (Supplementary Fig. 10k, left). Two 298 
peaks were observed from this dwell time analysis, which supports the choice of two effective time 299 
constants in the kinetic model as a satisfactory approximation. Finally, we analyzed the dwell-times in the 300 
simulations, as previously described, and calculated ΔGdiff using eq. 4. The same membrane-dependent trend 301 
in ΔGdiff observations was also reproduced in the membrane protein automata (right, also shown as Fig. 3k), 302 
in which hydrophobic mismatch stabilizes the formation of an additional interaction. In summary, the 303 
membrane protein automata reproduce the observed membrane-dependent energetic trends, in which ΔGasso 304 
decreases with increasing hydrophobic mismatch square (compare Fig. 2h with Fig. 3j), and ΔGdiff increases 305 
with increasing hydrophobic mismatch square (compare Fig. 2i and Fig. 3k). 306 

The ψnorm used in the automata is the average of ψnorm values in all four membranes investigated. An 307 
underlying assumption in the usage of the same ψnorm with different ψ/ψnorm to approximate 308 
increased/decreased magnitude of deformation energy is that the relative perferences among the local-309 
configurations hold in different cases. This is strictly not correct, given the different contributions of bending 310 
and compression to the deformation energy in the four membranes investigated as discussed in 311 
Supplementary Note 1. However, since we failed to observe significant morphological differences among 312 
the membranes, i.e. one local-configuration is strong favored in some membranes and strongly unfavored in 313 
the others, we think this assumption is sound at least in the our case. 314 
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