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Supplementary Note 1: CHIP Prevalence Across Age Bins 

In GHS subjects, the prevalence of ASXL1 mutations appears to taper off at older ages, while 

SF3B1 mutations become relatively more common (Extended Data Figure 1E). To evaluate the 

statistical significance of these changes in prevalence across age bins, we employed chi-squared 

statistics to compare carrier and non-carrier counts across age bins. The ratio of ASXL1 carriers to 

non-carriers among individuals aged 60-80 is significantly lower than the same ratio among 

individuals aged 80-100 (X2 = 245, P=2.4 x 10-55). In contrast, the ratios are no different between 

individuals aged 80-90 and those aged 90-100 (X2 = 0.874, P=0.35). Similar calculations across 

all top-8 recurrent CHIP genes provided statistical support for continued increases in prevalence 

across the oldest age bins (i.e. 80-90 vs 90-100) for DNMT3A (X2 = 13.7, P=2.17 x 10-4) and TET2 

(X2 = 20.2, P=6.91 x 10-6).  

 

Supplementary Note 2: CHIP VAF and Individuals With Multiple CHIP Mutations 

Among all CHIP mutation carriers, 11,125 (40%) had at least one CHIP somatic mutation at a high 

variant allele fraction (VAF > 10%) in the UKB (5,981 [47%] had high VAF CHIP in GHS). 

Except for JAK2, which had a relatively high average VAF, the more common CHIP mutations 

generally had lower VAFs than the rarer and more canonically leukemogenic mutations within 

individuals with a single CHIP mutation (Figure S1A). Amongst the eight most recurrently 

mutated CHIP genes, average age among carriers with mutations in a single CHIP gene was lowest 

in DNMT3A carriers (59.95) and highest in SRSF2 (62.72) and SF3B1 carriers (63.51). Maximum 

VAF among all CHIP carriers increased linearly with the number of CHIP mutations identified in 

an individual ( = 0.101, P < 1 x 10-16, Figure S1C), consistent with the concept of accumulation 

of multiple mutations during progressive clonal expansion. Telomere length was not substantially 

different across CHIP mutation carriers, although consistent with recent reports1, CHIP carriers 

generally had reduced telomere lengths (Figure S1D).  

 

Supplementary Note 3: Conditional Analysis and Statistical Fine-mapping 

While the overall approach we took to identify independent common variant signals was clumping 

and thresholding, we also applied two additional approaches to identify independent lead signals 

from our genome-wide association analyses of CHIP (Tables S3, S4) and DNMT3A-CHIP (Tables 

S5, S6) in UKB. The first was conditional analysis using GTCA COJO2, which we used given the 
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interpretability of its iterative step-wise approach. In particular, by relaxing our significance 

threshold to the suggestive cutoff of p ≤ 5 x 10-6 when interpreting independent signals from such 

conditional analysis, we are able to more strictly adjust for common variant signals that may 

influence rare variant associations. For example, while conditional analysis at a significance cutoff 

of 5 x 10-8 identifies 29 independent signals associated with CHIP across 23 common variant loci, 

a significance cutoff of 1 x 10-6 identifies 53 independent signals (Table S3), which is closer to the 

number of signals identified by clumping and thresholding (57, Table S2) and fine-mapping (51, 

Table S4), and enables us to better condition for all potential common variant signals that may 

confound rare variant associations. Using these parameters, we see substantial overlap between 

independent signals (i.e. 24/29 variants with P_COJO ≤ 5 x 10-8 were also found within credible 

sets identified by FINEMAP). 

We ran conditional analysis using default settings (including an MAF threshold of = 0.01) and 

with an LD reference derived from a subset of 10,000 unrelated EUR samples from UKB. In 

contrast, statistical fine-mapping models variants jointly when using LD patterns and association 

signals to evaluate the most probable number of causal signals (K) and the probability that any 

variant drives a causal signal (i.e. posterior inclusion probability, PIP). We performed statistical 

fine-mapping on association statistics from a combination of UKB and GHS using the FINEMAP 

software3. We used a MAF threshold of 0.01, p-value filter of 0.1, and an LD reference calculated 

as a weighted composite of the LD correlations independently determined from the full set of EUR 

samples in UKB and in GHS. Notably, this better captures the range of haplotypes present across 

the UKB and GHS EUR populations. Therefore, this fine-mapping approach is also 

complementary to the conditional analysis approach as a result of this increased haplotype 

representation. Interestingly, this can significantly impact which variants are prioritized. For 

example, at the LY75 locus on chromosome 2, FINEMAP strongly prioritized the rs78446341-A 

LY75 missense variants (Table S3, Extended Data Figure 3), whereas conditional analysis does not 

identify it as an independent signal (Table S4). Another notable locus is the TERT locus, which 

fine-mapping and conditional joint analysis suggest has numerous independent signals (eight and 

five, respectively). We identified numerous variants with fine-mapping as top credible set signals 

that are not found by clumping and thresholding or COJO (Figure S3A, B). Independent signals 

are also reported from an analysis of DNMT3A-CHIP associations results using COJO (Table S5) 

and FINEMAP (Table S6). 
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Supplementary Note 4: Potential Confounding of Rare Variant Associations 

Given that our CHIP phenotypes are ascertained on the basis of somatic mutations and variants 

with higher frequency and/or a larger degree of clonal expansion (i.e. higher VAF) can be detected 

in exome-sequencing-based platforms designed for germline calling, rare variant and gene burden 

associations from genome-wide analysis will sometimes feature the same variants and 

genes through which the phenotype is defined. To avoid circularity, we excluded all such 

variants from our reported results.  Furthermore, as other associated rare variants (i.e., those which 

were not used to condition the CHIP phenotypes) may themselves be somatic 

variants, we assessed whether significantly associated rare variants had lower (i.e. than expected 

for germline) variant allele fractions (VAFs) across carriers, as well as whether age-at-sample-

collection was associated with variant carrier status (as both these tests suggest a somatic origin 

for a variant). For genome-wide significant rare variant and gene burden associations for which 

we had exome data, we reported these VAF and age-association results along 

with genetic association results in order to provide resolution as to whether such associations are 

likely driven by germline or somatic variation. To control for the possibility that our somatic CHIP 

calls may contain some germline variants that could then be linked to variants that confound 

burden mask analyses, we reran common and rare variant analyses for our CHIP_inclusive and 

DNMT3A phenotypes after conditioning on all independent common variant signals. These signals 

were chosen by taking the union of variants that a) were significant at COJO adjusted p ≤ 5 x 10-

6 (p-value chosen to be strict in conditioning out common variant signals) or b) had one of the 

highest two posterior inclusion probabilities (ie. PIPs) in any credible set identified by FINEMAP. 

In total, we adjusted by 144 common variants in our CHIP_inclusive association analyses and 130 

common variants in our DNMT3A-CHIP association analyses. 

 

When rare variant associations were on the same chromosome as a CHIP gene, we also evaluated 

whether the carriers of significantly associated rare variants shared specific somatic mutation calls 

(which might signal germline variant contamination that is leading to linkage-based confounding). 

This was the case with a number of rare variants on chromosome 2, which seemed to be driven by 

a DNMT3A mutation call in our somatic callset that is likely to be a germline variant (rs139053291-

A). While we do not report these rare variant associations, we ultimately kept this variant in our 
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callset as it was a previously reported CHIP mutation4. However, this variant is likely to be a false 

positive (at least in a substantial number of carriers). We identified a similar situation with a set of 

rare variant associations on chromosome 17 (which we similarly do not report), which were driven 

by linkage with a likely germline variant in TP53 (rs587781371-T)5 . These variants warrant 

reevaluation by others when calling CHIP and/or when working with our CHIP callset. 

 

Supplementary Note 5: Associations in Individuals of Non-European Ancestral Background 

Even though our power to detect associations in non-EUR populations was limited, we ran 

genome-wide association analyses for African ancestry individuals, South Asian ancestry 

individuals, and East Asian ancestry individuals. Although no associations reached genome-wide 

significance, 17 of 57 variants identified in the EUR analyses showed directionally consistent 

effects across all populations (Table S9; 7/57 expected). The recently described CHIP-risk-

increasing association reported for the African ancestry-specific TET2 enhancer variant 

(rs144418061-A, reported OR = 2.4, P = 4.0 x 10-9)4 was not significantly associated in African 

ancestry (OR = 1.37 [0.87-2.18], P = 0.176, AAF = 0.036) nor European ancestry (OR = 1.02, 

[0.45-2.31], P = 0.97, AAF = 0.000014) subjects despite us having sufficient power (> 0.8) at our 

sample sizes to detect an effect size (i.e. OR) of 1.55 in African ancestry individuals and 2.1 in 

European ancestry individuals. Given that this association trends positively in our analysis among 

African ancestry individuals, and that we find significant common variant associations at the TET2 

locus, this lack of replication likely reflects a degree of “winner’s curse” in the original study and 

insufficient power in our analysis to detect a more moderate true effect size. 

 

Supplementary Note 6: Patterns of Effects Across CHIP Subtypes 

Beyond the TCL1A locus, the gene-specific CHIP analyses identified additional shared and 

opposed patterns across CHIP subtypes (Figure 2A, Table S20). The THRB locus was significantly 

associated with TET2-CHIP (OR = 1.16 [1.10-1.21], P = 2.55 x 10-9, Extended Data Figure 5), and 

replicated in GHS (OR = 1.22 [1.14-1.31], P = 2.66 x 10-8), but not associated with our overall 

CHIP phenotype (Figure 1). The SEPT3 locus was associated with TP53-CHIP (OR = 4.42 [2.61-

7.50], P = 3.29 x 10-8) but not our overall CHIP phenotype and did not replicate in GHS (OR = 

1.17 [0.34-3.97], P = 0.80). Signals at the SMC4 locus on chromosome 3 were strongly consistent 

across all CHIP subtypes (Figure 2A, green box). Variants at the CD164 locus are significantly 
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associated with DNMT3A-CHIP and ASXL1-CHIP (and show non-significant but trending 

associations with SRSF2-CHIP) but are not associated with TET2-CHIP.  Consistent with the 

overall patterns of shared germline contribution across CHIP subtypes, a polygenic risk score 

(PRS) generated with estimates from our DNMT3A-CHIP GWAS was significantly associated (P≤ 

0.007, i.e. 0.05/7) with being a carrier of TET2-CHIP (OR = 1.16 [1.13-1.20], P = 2.47 x 10-23), 

ASXL1-CHIP (OR = 1.21 [1.16-1.27], P = 7.29 x 10-19), JAK2-CHIP (OR = 1.53 [1.35-1.74], P = 

8.0 x 10-11), and SRSF2-CHIP (OR = 1.30 [1.16-1.45], P = 6.96 x 10-6) but not with other CHIP 

subtypes. As reported by others6, the JAK2 46/1 locus was strongly associated with an increased 

risk of JAK2-CHIP (OR = 2.24 [1.86-2.69], P = 9.22 x 10-18). Rare variant results for DNMT3A-

CHIP were similar to those from CHIP overall (Table S12,13). We identified two loss of function 

gene burden associations with an increased risk of TET2-CHIP at the ZNF318 (OR = 5.83 [2.98-

11.4], P = 2.48 x 10-7) and RPS6KA2 (OR = 18.2 [6.09-54.3], P = 2.05 x 10-7) genes, with the 

former likely to be driven by somatic variation and the latter likely to be driven by germline 

variation (Table S14). The latter is additionally interesting given the significant common variant 

association signal we identified at the ZNF318 locus in our GWAS of DNMT3A-CHIP (Table 

S11). We also found an association via rare variant burden testing between loss of function variants 

(AAF <= 1 x 10-5) in the NFE2 gene and JAK2-CHIP (OR = 163 [27-991], P = 3.09 x 10-8, Table 

S19), which replicated in GHS (OR = 49 [4.75-499], P = 0.001), and provides support for NFE2 

gene function loss as a driver of clonal hematopoiesis. 

 

Supplementary Note 7: ExWAS Analysis of Mosaic Chromosomal Alteration (mCA) Phenotypes 

We performed rare variant and gene burden associations analyses (Tables S22-S27) for the mLOY, 

mLOX, and autosomal mCA phenotypes we generated, which exclude samples with CHIP 

mutations and should therefore be mCA specific (see methods). Notably, we found a novel risk 

reducing association between a rare missense variant in the KNTC1 gene (rs61751321-T, AAF = 

0.003, L317F) and the mLOY phenotype (OR = 0.60 [0.50-0.72], P = 2.56 x 10-8). While this 

association does not reach the strict Bonferroni multiple-testing correction threshold we are using 

for rare variants (P <= 7.14 x 10-10), it is interesting given the role KNTC1 plays in mitotic 

checkpoint activity7, and how targeted knockdown of KNTC1 has been shown to antagonize cell 

proliferation and induce apoptosis across numerous cancer cell types8–10. Given that KNTC1 is 

predominantly expressed in lymphocytes (Figure S6)11, and that this rare missense variant is 
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predicted to be deleterious by >= 2 computational predictors (e.g. CADD and SIFT), it is plausible 

that this association represents a genetic loss of function that antagonizes the clonal hematopoietic 

expansion that accompanies mLOY. Using a gene burden framework (i.e. ‘M1’ burden masks12), 

we also identified a rare variant signal supporting a recently described13 risk increasing association 

between rare loss of function variants in the GIGYF1 gene and mLOY (5.61 [3.35-9.40], P = 5.73 

x 10-11). 

We also defined 22 chromosome specific binary mCA phenotypes (e.g. individuals with any mCA 

on chromosome 1 were cases, and individuals without any CH were controls), and used these to 

test for rare variant associations using a gene burden framework. Using this approach, we 

identified seven significant (P ≤ 2.05 x 10-9, i.e. 3.6 x 10-7 burden threshold / 22 chr / 8 masks) cis 

gene burden associations (i.e. gene was on the same chromosome as the mCA phenotype), and one 

significant trans gene burden association (Table S27). Four of these cis gene burden associations 

were with rare loss of function variants (TM2D3, MPL, ATM, and SH2B3), and recapitulated 

previously reported associations where mCAs drove replacement or duplication of inherited risk 

alleles14,15. We also identified an association between mCAs on chromosome 22 and rare loss-of-

function variation in the PRR14L gene, although these variants were strongly age associated and 

likely of somatic origin. This replicates recent findings that PRR14L is associated with uniparental 

disomy on chromosome 22 and clonal hematopoiesis16, and further suggests that PRR14L is a CH-

associated gene that is biallelically disrupted by both somatic point mutation and mosaic 

chromosomal alteration. We found a novel association between rare loss-of-function variation in 

the RC3H1 gene (OR = 44 [16-127], P = 1.16 x 10-12) and mCAs on chromosome 1, suggesting 

RC3H1 as a gene that drives CH. This seems plausible given that RC3H1 is a regulator of 

inflammation and immune homeostasis17, and that it is directly associated with 

angioimmunoblastic T-cell lymphoma in mice18. VAF and age associations suggested these 

variants were germline, and that similar to TM2D3, RC3H1 is biallelically lost when mCAs disrupt 

the remaining functional gene copy. Rare loss-of-function variants in YLPM1 that were strongly 

age associated and likely somatic in origin were associated with mCAs on chr14 (OR = 30 [12-

75], P = 2.44 x 10-13). Interestingly, YLPM1 has been shown to limit telomerase activity by 

downregulating TERT expression via promoter binding. Therefore, its function loss via point 

mutation and/or mosaic chromosomal alteration likely drives clonal hematopoiesis. Nearly all 

carriers of loss of function variants across these cis-associated genes had an mCA that overlapped 
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the gene boundary, although univariate enrichment was only significant for MPL, PRR14L, ATM, 

RC3H1, and SH2B3 (P ≤ 0.009, Table S27). Finally, we identified a trans association between rare 

missense variants in the IGLL5 gene and mCAs on chr13 (OR = 30 [15-62], P = 3.09 x 10-21), 

suggesting synergistic trans-chromosomal loss events that may drive CH.  

 

Supplementary Note 8: ExWAS Analysis of Telomere Length 

We also performed an ExWAS of leukocyte telomere length, as quantified by Codd et al.19, 

conditioned on common variant signals identified by GWAS (Table S28). We found 472 

significant rare variant associations (P ≤ 7.14 x 10-10, AAF < 0.005, Table S29), including high 

effect size missense and/or nonsense variants in genes associated with telomere biology (TERF1, 

POT1, NAF1, ACD, SAMHD1, HBB, RTEL1, and TINF2).  

Furthermore, we identified significant gene burden associations with telomere length (Table S30), 

including associations with aggregations of loss of function variants (i.e. ‘M1’ burden masks12) 

that suggest that disruption of the DCLRE1B gene significantly increases telomere length (𝛽  = 

0.60 [0.47-0.73], P = 4.2 x 10-19), and that disruption of the PARN gene significantly decreases 

telomere length (𝛽 = -0.61 [-0.73 - -0.49], P = 2.32 x 10-23). This association with DCLRE1B is 

particularly notable given that it interacts with proteins (SNM1B/Apollo) that are required to 

protect telomeres against pathogenic repair-based elogation20. A significant positive gene burden 

association between rare loss of function variants in the CTC1 gene and telomere length (𝛽 = 0.38 

[0.33-0.44], P = 4.77 x 10-42) is interesting given that this gene has been reported to be involved in 

multiple aspects of telomere maintenance21,22, and suggests that disruption of CTC1 has a net 

elongating effect on telomeres. Rare loss of function variants in the ATM gene were significantly 

associated with reduced telomere length via gene burden testing (𝛽 = -0.21 [-0.27 - -0.16], P = 

3.41 x 10-15), whereas rare loss of function variants in the OBFC1 gene were significantly 

associated with increased telomere length via gene burden testing (𝛽 = 0.43 [0.30-0.55], P = 1.05 

x 10-11). OBFC1 is a DNA replication gene previously implicated in telomere biology23, and is 

also the nearest gene to the index SNP on chromosome 10 that we identified in our CHIP GWAS. 

For all of the telomere related genes for which we noted rare variant associations above, we also 

identified significant and directionally consistent gene burden associations. VAF ratios and an 

absence of age associations suggested that these telomere length-associated rare variants were of 

germline origin. 
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Supplementary Note 9: CHIP Associations With COVID-19 

As previously reported by Zekavat et al.24, we also saw a larger estimate of increased risk of severe 

COVID from CHIP among individuals with a history of solid cancers (OR = 2.94 [1.60-4.98], P = 

1.69 x 10-4) than among individuals with a history of liquid cancers (OR = 1.86 [0.70-4.16], P = 

0.17). However, as this analysis excludes all individuals with any cancer prior to DNA collection 

(n=42,448), and blood cancers are much rarer than solid cancers, the analysis among individuals 

with a history of liquid cancers had a much lower sample size (n = ~4,000 for liquid cancers vs n 

= ~35,000 for solid cancers) and limited power. In an analysis among CHIP mutation carriers, 

CHIP VAF (as a quantitative trait) was also associated with COVID-19 hospitalization (OR = 1.16 

[1.03-1.29], P =0.012) and severe COVID-19 infection (OR = 1.24 [1.02-1.51], P = 0.033). Within 

these models, CHIP VAF was transformed using rank inverse normalization, so the OR unit is on 

the rank normalized scale. While our COVID-19 data is more limited in size and quality (e.g. we 

do not observe a significant association between COVID-19 phenotypes and sex) in the GHS 

cohort, similar logistic regression modeling identified directionally consistent (although non-

significant) estimates of association between CHIP mutation carrier status and hospitalization (OR 

= 1.18 [0.94-1.46], P = 0.14) and severe COVID-19 infection (OR = 1.42 [0.91-2.12], P = 0.11). 

These models also did not adjust for active malignancy status as this data was not available to us 

for GHS. 

Models were then extended to CHIP subtypes by testing for the association between CHIP gene 

specific carrier status (for carriers whose mutation reached a VAF >= 0.10) and COVID-19 

infection. Given sample size limits, this modeling was only done in the UKB cohort. We focused 

this modeling on our severe COVID-19 phenotype, as we were better powered to see effects with 

this trait. While estimates were positive for all CHIP subtypes, and nominally significant for 

ASXL1-CHIP (OR = 2.23 [1.14-3.88], P = 9.4 x 10-3), TP53-CHIP (OR = 4.52 [1.10-12.2], P = 

0.01), and SF3B1-CHIP (OR = 3.11 [0.76-8.44], P = 0.056), PPM1D-CHIP was the only CHIP 

subtype that reached significance after Bonferroni correction at 𝛼 = 0.05/8 (OR = 5.42 [1.89-12.2], 

P = 2.8 x 10-4). Furthermore, this association is even stronger (OR = 9.24 [2.80-22.5], P = 1.76 x 

10-5) when removing all samples with any history of cancer (i.e. an ICD10 code in any health 

record indicating the diagnosis of any malignant or benign cancer at any time), which we did as a 
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sensitivity analysis to control for the possibility of confounding that may result from reported 

associations between PPM1D status and chemotherapeutic exposure25.  

Our severe COVID-19 phenotype coding was comprised exclusively of individuals that were 

ventilated due to COVID-19 or died due to COVID-19 and is therefore a good representation of 

COVID-related death or near death. Since the cancer registry data we have access to does not go 

beyond 2020, an individual was assigned active malignancy status if they had a record of any 

cancer event after January 1, 2020 (chosen to correspond with pandemic onset) in records from 

their general practitioner or hospital visits. Our type 2 diabetes coding was defined as individuals 

with billing codes in their medical records for ICD10 E11 or O241. Similar to the heavy smoking 

phenotype used in other analyses (see methods), smoking in these analyses was based on data 

surveying for smoking habits (e.g. number of cigarettes per day, self-reported ever-never smoking 

status, age started/stopped smoking, etc.), but was defined more broadly as ever vs never in order 

to limit data missingness. Ever smokers were defined as those with evidence of any previous 

smoking. BMI was coded as a transformed rank inversed normalized value based on the first 

measurement from initial intake. 

 

Supplementary Note 10: Mendelian Randomization (MR) Analyses Provide Support For 

Associations Between Cancers and CHIP Subtypes 

To further evaluate the relationship between CHIP and other diseases, including cardiovascular 

and oncologic phenotypes, we performed Mendelian Randomization (MR) using as instrumental 

variables the germline predictors of CHIP that we identify here. Whereas recent studies evaluating 

the relationship between CHIP and other disease phenotypes have relied on a very small number 

of instrumental variables (~1-3)26,27, we use a much larger set of 29 independent instrumental 

variables derived from conditional analysis (i.e. variants identified by COJO with P_COJO <= 5 

x 10-8, Table S3, blue rows). For these MR analyses, we specifically focused on CVD and oncology 

phenotypes that parallel those used in our survival analysis, as well as a set of other phenotypes 

recently reported to associate with clonal hematopoiesis. These include Alzheimer’s disease 

(AD)26, liver phenotypes27 (Alanine aminotransferase, i.e. ALT, Non-alcoholic liver disease, i.e. 

NALD, and cirrhosis), body mass index28 (i.e. BMI), COVID1924, sepsis24, and kidney disease29. 

Since the heritability of CHIP is modest4 (h2 = ~0.04), MR analysis of CHIP as an exposure is 

likely limited by weak instrument bias and limited power30. Furthermore, our CHIP instruments 
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are most reflective of associations with DNMT3A-CHIP, so we have even less power with these 

MR models to detect truly causal associations that are driven by non-DNMT3A CHIP subtypes. 

Therefore, while the absence of an MR association between CHIP and an outcome does not rule 

out a causal relationship, clear and significant associations across a variety of MR methods can 

provide additional support for a causal relationship between CHIP and other diseases. 

Furthermore, given the recent reporting of significant MR associations between CHIP and other 

diseases, we believe that our MR analyses can provide additional clarity due to the increased 

number of instrumental variables we utilize. 

The CVD, oncological, and other phenotypes used in this analysis were coded as described in the 

methods section. Liver phenotypes (ALT, NALD, cirrhosis) were defined by health records as 

previous described31–33. Alzheimer’s Disease was defined from health records using ICD10 code 

G30, and sepsis was defined from health records using ICD10 code A41. All MR analyses were 

done using a Two Sample MR approach, with exposure estimates derived from our UKB GWAS 

(using conditionally independent SNP, as described above), and outcome estimates derived from 

GWAS performed using the GHS cohort. 

We applied seven complimentary MR methods (Table S32), as implemented in the 

MendelianRandomization R package (version 0.6.0). We identified significant MR associations 

between CHIP and myeloid leukemia (ORIVW = 1.47 [1.05-2.06], P = 0.024), CHIP and lung cancer 

(ORIVW = 1.55 [1.34-1.80], P = 8.90 x 10-9), CHIP and melanoma (ORIVW = 1.39 [1.13-1.1.71], P 

= 0.0021), CHIP and non-melanoma skin cancers (ORIVW = 1.26 [1.13-1.41], P = 5.30 x 10-5), 

CHIP and prostate cancer (ORIVW = 1.20 [1.03-1.1.39], P = 0.017), and CHIP and breast cancer 

(1.17 [1.04-1.31], P = 0.01), but not between CHIP and any of the other phenotypes (Extended 

Data Figure 6A, Table S32). These MR results are consistent with and supportive of the 

associations we identified in our longitudinal survival analyses. However, these associations may 

reflect shared risk factors that independently predispose to both CHIP and various cancers. Such 

horizontal pleiotropy violates MR assumptions and can confound results. To address this, we used 

two Egger-type MR methods that are able to account for horizontal pleiotropy34. Each of these 

methods estimates an intercept term that is reflective of the pleiotropic effect. In a number of the 

CHIP x solid cancer associations noted above, these Egger methods estimate significant causal 

effect estimates beyond the effects of pleiotropy. For example, in the case of lung cancer (Figure 

4, Extended Data Table 1), both MR-Egger regression and penalized robust MR-Egger regression 
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(which can address the outsized influence of outliers) estimate the largest causal effect sizes (i.e. 

odd ratios) after accounting for pleiotropic effects (modeled as the significant intercept term). 

Since the TERT locus in particular is associated with lung cancer (and highly expressed in both 

lung and blood tissue), we repeated the MR analysis of CHIP and lung cancer after excluding 

TERT variants from our instrumental variables (25 SNPs remaining). These associations remained 

significant, although less strong (Figure 4, Extended Data Table 1, Table S32), and the MR 

methods estimate significant causal effects but non-significant pleiotropic effects. Therefore, on 

the whole, these results do provide support for a causal relationship between CHIP and lung cancer 

above and beyond the effects of horizontal pleiotropy. Nonetheless, given the aforementioned 

power considerations, and that a number of CHIP associated loci are in canonical cancer genes 

(e.g. ATM, TP53), pleiotropic confounding cannot be unequivocally ruled out when interpreting 

these MR results. That said, the associations between CHIP and lung cancer and CHIP and skin 

cancer are consistent with recent reports that CHIP may disrupt tumor immune surveillance35, and 

suggest the hypothesis that the relationship between CHIP and solid tumors may have an immuno-

oncological basis. Follow-up studies should test this directly, as well as if and/or how clonal 

hematopoiesis impacts response to checkpoint inhibiting therapeutics. 

 

Supplementary Note 11: Sensitivity Analyses Limiting CHIP Callset To Variants With VAF < 

0.35 

 

Given the many criteria that have been applied to determining a subject’s CHIP carrier status, 

including those reported by and advocated by flagship CHIP efforts4,5,36 (Jaiswal, Ebert, et al.), a 

hard variant allele frequency filter (i.e. VAF < 0.35) that blanketly removes variants with higher 

VAF without regard for other criteria will eliminate correctly called CHIP variants. However, this 

will likely also remove a small number of germline variants that are false positives in our CHIP 

callset. Therefore, to ensure that our results are robust to even a minor degree of germline variant 

contamination, we repeated our GWAS and longitudinal analyses after filtering out variants in our 

CHIP callset with VAF ≥ 0.35. 

 

The results are highly consistent with those we report. For example, genetic effect estimates are 

nearly identical when repeating genetic associations using the VAF < 0.35 callset (R2>0.989 for 



 

 Regeneron - Internal Use Only 

CHIP and CHIP subtypes, Figure S15). Furthermore, the protective associations we report for 

missense variants in LY75 are also unchanged (ORrs78446341-A = 0.77, P = 3.20 x 10-10, 

ORrs147820690-T = 0.46, P = 7.70 x 10-8). When repeating longitudinal analyses using the filtered 

callset, results are generally unchanged (Figure S16-S18). One exception to this is that risk 

estimates for hematologic neoplasms are reduced, although still significant and consistent with 

our main results (Figure S16). Importantly, in our view, this effect size moderation is highly 

supportive of the fact that blanket filtering on VAF < 0.35 is too conservative and is removing 

individuals with expanded CHIP that are at the highest risk of hematologic neoplasia. This is 

further supported by the fact that the risks estimates that are most moderated are those for 

carriers of DNMT3A mutations who also have additional CHIP mutations (DNMT3A+), which is 

directly consistent with the aforementioned notion that blanket VAF filtering is eliminating 

individuals with expanded CHIP (e.g. those with expanded DNMT3A who have subsequently 

acquired additional mutations). A similar moderation is seen for risk of death (Figure S17), 

which likely derives from the same exclusion of individuals with expanded CHIP that are at the 

highest risk of hematologic neoplasia. Notably, estimates of CVD risk (Figure S17) and solid 

tumor risk (Figure S18) among CHIP carriers are unchanged (including risk of lung cancer for 

smoker and non-smoker CHIP carriers). 

 

Supplementary Note 12: Sensitivity Analyses After Excluding Individuals With Diagnoses Of 

Blood Cancer Up To 90 Days After DNA Collection 

 

We also performed additional longitudinal sensitivity analyses after excluding individuals with 

diagnoses of blood cancer up to 90 days after DNA collection. While all main results are 

calculated after already excluding individuals with any diagnosis of blood cancer prior to DNA 

collection date, this analysis is to further ensure that our results are robust to the possibility that 

some individuals we called as CHIP carriers already had latent hematologic malignancy at the 

time of sequencing. 

Out of 8,039 individuals in UKB that we identified with blood cancer diagnoses, only 30 

(0.37%) were excluded from this analysis on the basis of having a diagnosis of blood cancer 

within 90 days of sequencing. Furthermore, out of the 8,826 CHIP carriers evaluated for incident 
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blood cancer, only 12 individuals (0.14%) were excluded due to having a diagnosis of blood 

cancer within 90 days of sequencing, including only 1 individual with a diagnosis of AML, 1 

individual with a diagnosis of MDS, and 2 individuals with a diagnosis of MPN. When removing 

these few individuals, estimates for the risk of developing blood cancer (including myeloid, 

lymphoid, AML, MDS, and MPN subgroups) were entirely unchanged. Within this sensitivity 

analysis, our myeloid grouping was also updated to all individuals with any (ICD10) diagnostic 

code belonging to C93-C95. This was done in order to ensure that our estimates are robust to the 

inclusion of additional rarer types of myeloid malignancy. As mentioned, this did not impact our 

risk association estimate (ORmain = 11.53 [9.94-13.38], P=1.3 x 10-228, ORsensitivity_analysis = 11.26 

[9.72-13.05], P=7.2 x 10-229). 

Overall, these sensitivity analyses provide further support for our main callset and main results 

and suggest that i) our main genetic and phenotypic results are robust ii) our main callset is well 

calibrated. This is further supported by the fact that our association estimates between CHIP and 

demographic variables such as age and smoking are highly consistent with those reported 

previously in the literature. Nonetheless, we report the results of this sensitivity analysis to further 

facilitate decision making by researchers as they use/filter our callset in whichever way they feel 

is best for their research questions of interest. 
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