Appendix

Evolutionary adaptation of the protein folding pathway for secretability

Dries Smets, Alexandra Tsirigotaki, Jochem H. Smit, Srinath Krishnamurthy, Athina G. Portaliou, Anastassia Vorobieva, Wim Vranken, Spyridoula Karamanou and Anastassios Economou

Table of contents

Supplemental figures	2
Appendix Figure S1	
Appendix Figure S2	
Appendix Figure S3	
Appendix Figure S4	
Supplemental tables:	9
Appendix Table S1 Plasmids	9
Appendix Table S2 Primers	9
Appendix Table S3 Strains	10
Appendix Table S4 Cloned genes	10
Appendix Table S5 Buffer list	
References	13

Appendix Figure S1 Structure and sequence alignment of PpiA and PpiB with homology comparison across bacteria (related to Figure 1)

A. Structural alignment of periplasmic PpiA (PDB 1V9T: chainB 1.8Å, orange) and cytoplasmic PpiB (PDB 1LOP 1.7Å, green) using PyMOL, yielding an RMSD of 0.37Å. Both structures consist of an orthogonal β -barrel with the anti-parallel β -strands in the following sequence β 1-10-3-4-6-5-7-2 (numbers indicated on the structure) with α -helices on either side of the barrel and two minor β -strands β 8/9 located outside the β -barrel.

B. Similar residues between *E. coli* PpiA (P0AFL3) and PpiB (P23869). Identical, strongly similar physicochemical properties (scoring >0.5, Gonnet PAM 250 matrix) and weakly similar physico-chemical properties (scoring \leq 0.5, Gonnet PAM 250 matrix) are depicted on the 3D structure of PpiA (PDB 1V9T: chainB).

C. Structural position of the 'front-facing' N- and C-strap (ribbons, dark blue and grey, respectively) within the cradle formed by the saddle in the back and the α -helices on either side (surface, light grey) using PpiA (PDB 1V9T: chainB).

D. Sequence alignment of E. coli (pro)PpiA with PpiB using Clustal Omega [1].

Top: the linear secondary structure is displayed with the different structural elements coloured and annotated (based on RCSB PDB). The residues of the active site are underlined [2]. '*': identical residues; ':' strongly similar and '.' weakly similar physicochemical properties.

Bottom: Consensus derived from 150 (pro)PpiA and PpiB sequences from across γproteobacteria that contain both twins (all sequences in Dataset EV1).

Appendix Figure S2 Folding kinetics of PpiA and PpiB at 25 and 4°C analyzed with local HDX-MS displayed as a colour map (related to Figure 3)

Folding kinetics of PpiB (**A-D**) and PpiA (**E-H**) at 25°C or 4°C (as indicated), monitored by local HDX-MS.

A, **B**, **E**, **F**. The HDX-MS refolding kinetics data for PpiA and PpiB at 25 and 4°C (Dataset EV4; n=3 biological repeats) were further analyzed by PyHDX in order to determine the folded fractions per residue (Dataset EV5). The pipeline of analysis is shown in Fig.EV3B. Folding, displayed per residue (x-axis) over time (y-axis) in a colour map in steps of 25% folded fraction (as indicated at the bottom), is shown up to 10min for 25°C and 30-60min for 4°C (as indicated, complete data set in Dataset EV5). The alignment index (x-axis) is based on PpiA (extended N-tail; missing loop between β 6- β 7; Appendix Fig. S1D). For each peptide, 100% folding was set to the D-uptake of the final folded protein. Grey areas: residues absent in one of the twins, prolines or no experimental coverage. Colour-boxes below the linear secondary structure map (top) indicate foldons; named in alphabetical order and subscript numbers (if formed in gradual steps) following the order of formation sequence. Grey bar: unstructured regions that acquired final states fast (Fig. EV3) and were omitted from the analysis.

C, **D**, **G**, **H**. Foldons, colour-coded as in the left panels, are indicated relative to formation time and temperature on the PpiB (1LOP) and PpiA (1V9T) 3D-structures. The indicated time points were: for PpiB, 25°C (t_{80%} of 0.29-0.33-0.42-0.47 min); for PpiB, 4°C (t_{80%} of 0.09-0.29-0.90-1.75 min); for PpiA, 25°C (t_{80%} of 0.24-0.33-0.47-0.51 min); for PpiA, 4°C (t_{50%} of 0.34-0.55-0.79-0.99 min) (Dataset EV5).

Appendix Figure S3 Refolding kinetics of (pro)PpiA and (pro)PpiB at 25°C analyzed with local HDX-MS (Related to Figure 5)

Folding kinetics of the mature domains of proPpiA (**A**, **C**) and proPpiB, carrying the proPpiA signal peptide, (**B**, **D**) at 25°C (as indicated), monitored by local HDX-MS.

A, **B**. The HDX-MS refolding kinetics data for (pro)PpiA and (pro)PpiB, at 25°C (Dataset EV4; n=3 biological repeats) were further analyzed by PyHDX in order to determine the folded fractions per residue (Dataset EV5). The pipeline of analysis is shown in Fig.EV3B. Folding, displayed per residue (x-axis) over time (y-axis) in a colour map in steps of 25% folded fraction (as indicated at the bottom), is shown for up to 30 min (complete data set in Dataset EV5). The alignment index (x-axis) is based on the proPpiA sequence (signal peptide, extended N-tail; missing loop between $\beta 6$ - $\beta 7$; Appendix Fig. S1D). For each peptide, 100% folding was set to the D-uptake of the corresponding native mature domain peptide. Grey areas: residues absent in one of the twins, prolines or indicating no experimental coverage. Colour-boxes below the linear secondary structure map (top) indicate foldons; named in alphabetical order and subscript numbers (if formed gradually, step-wise) following the order of formation sequence. Grey bar: unstructured fast folding regions (Fig. EV5D) omitted from analysis.

C, **D**. Foldons, colour-coded as in the left panels, are indicated relative to formation time and temperature on the PpiB (1LOP) and PpiA (1V9T) 3D-structures. The indicated time points are: for proPpiA ($t_{50\%}$ of 0.9-2.0-2.3-20.8 min) and for proPpiB ($t_{50\%}$ of 0.06-0.08-0.44-1.2 min), both at 25°C (Dataset EV5).

Appendix Figure S4 Effect of signal peptide on the initial foldons of PpiA (Related to Figure 5)

Peptides (proPpiA numbering followed) spanning two initial foldons, B (left) and A (right), were selected as examples to demonstrate the effect of the signal peptide on the folding of PpiA. Spectra at selected timepoints are displayed with the corresponding centroid indicated. The unfolded (0%) and native (100%) state (HDX data in Dataset EV4, n=3 biological repeats) were used to calculate the folded fractions in PyHDX (purple; Dataset EV5). The pipeline of analysis is shown in Fig. EV3B.

Supplemental tables:

Appendix Table S1 Plasmids

Vector	Antibiotic	promoter	Origin of	Reference/Source
	resistance		replication	
pET22b	Ampicillin	T7(lac)	pBR322	Novagen (https://www.merckmillipore.com/)
pBAD501	Gentamycin	ara	p15A/pACYC	pBAD33proKLPhoA/Gem ^R [9]
pET610	Ampicillin	Trc (Trp- lac)	pBR322	Driessen et al. [10]

Appendix Table S2 Primers

Drimor	Forward/		Restriction site or	Sequence (5'-3') (mutated codons are bold,
Primer	Reverse	Gene	mutation inserted	restriction sites/mutations underlined)
X850	F	ppiB	Ndel	5 'GGGAATTC CATATG GTTACTTTCCACACCAATCACGG C3 '
X851	R	ppiB	Xhol	5 'GACCCG <u>CTCGAG</u> CTCGCTAACGGTCACGCTTTCAATG AT3 '
X743	F	ppiA	Ndel	5 'GGGAATTC CATATG GCAGCGAAAGGGGACCCG3 '
X1282	R	ppiA	HindIII	5'CCC AAGCTT CGGCAGGACTTTAGCGGAAAGGATAA3'
X1928	R	ppiB	HindIII	5 'CCC AAGCTT CTCGCTAACGGTCACGCTTTCAATGAT3 '
X2396	F	ppiB	113L	5'CACGGCGATATTGTCCCTGAAAACTTTTGACGAT3'
X2397	R	ppiB	I13L	5'ATCGTCAAAAGTTTT CAG GACAATATCGCCGTG3'
X2398	F	рріВ	L83I	5'AATACCCGTGGTACG ATC GCAATGGCACGTACT3'
X2399	R	ppiB	L83I	5'AGTACGTGCCATTGCGATCGTACCACGGGTATT3'
X2400	F	ppiB	V160A	5'GTTATCATTGAAAGCGCTAGCGAGCTC3'
X2401	R	ppiB	V160A	5'GAGCTCGCTAACGGT <u>AGC</u> GCTTTCAATGATAAC3'
X2346	F	ppiA _{>B,} _{6plet1}	Ndel	5'CTTTAAGAAGGAGATATA CATATG GCGGCGAAAGGGG AC3'
X2428	R	ppiA _{>B,} _{6plet1}	HindIII	5'GAACAGGCATTTCTGGTGT AAGCTT CGGCAGGACTTT AGC3'
X2348	F	ppiB _{>A,} _{6plet1}	Ndel	5'CTTTAAGAAGGAGATATA CATATG GTTACTTTACACA CCAATC3'
X2429	R	ppiB _{>A,} _{6plet1}	HindIII	5'GAACAGGCATTTCTGGTGT AAGCTT CTCGCTAACGGT AGC3'

Appendix Table S3 Strains

<i>E. coli</i> strain	Description (gene deleted)	Reference/source
DH5a	F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17	Invitrogen
	(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1	
Lemo21(DE3)	T7 RNA polymerase gene under the control of the	New England
	lacUV5 promoter.	BioLabs
BL21.19(DE3)	secA13 (Am) supF (Ts) trp (Am) zch::Tn10 recA::cat	[5]
	clpA::kan)	
MC4100	F-araD139 ¢(argF-lac)U169 rpsL150 (StrR) relA1	P. Genevaux [6-8]
	flbB5301 deoC1 pstF25 rbsR	

Appendix Table S4 Cloned genes

Gene	Uniprot accession number	Plasmid name	Vector	Description/re	eference
proppiA	P0AFL3	pIMBB10 42	pET22b	[11]	
ppiA	P0AFL3	pIMBB10 43	pET22b	[11]	
ppiB	P23869	pIMBB10 85	pET22b	[12]	
proppiB		pLMB20 94	pET22b	Addition of the PpiA signal peptide to the PpiB mature domain containing the N-terminal PpiA tail to avoid cleavage that is seen when the SP is directly attached to PpiB.	
Grafted foldin	g mutants (pr	edicted fro	m EFoldN	line)	
Gene	Construct	Plasmid name	Vector	Source	Description
ppiA _{>B,} EFoldMine,4plet	sgLMB0075	pLMB20 06	pET22b	Cloned synthetic gene (Genscript)	PpiA>B Quatdruplet EFoldMine- predicted mutant (E17V/A123C/G126A/A162V)
ppiA _{>B,} EFoldMine, Singlet	sgLMB0072	pLMB20 03	pET22b	"	PpiB>A Singlet EFoldmine- predicted mutant (C121A)
ppiA _{>B,} EFoldMine,4plet	sgLMB0073	pLMB20 04	pET22b	"	PpiB>A Quadruplet EFoldMine- predicted mutant (V12E/C121A/A124G/V160A)
ppiA _{>B,} EFoldMine, Multiplet	sgLMB0090	pLMB20 21	pET22b	ű	PpiB>A Multiplet EFoldMine- predicted mutant (H8A/V12E/D18Q/L28V/E33S/I40 T/E66P/V103A/C121A/A124G/D1 28K/V133A)
Grafted foldin	g mutants (de	erived from	Native co	ntacts)	
ppiA _{>B, Singlet1}	sgLMB0093	pLMB20 83	pET22b	"	PpiA>B Singlet1 (L18I)
ppiA _{>B, Doublet1}	sgLMB0076	pLMB20 07	pET22b	"	PpiA>B Doublet1 (E17V/L18I)

ppiA _{>B, 3plet1}	sgLMB0077	pLMB20 08	pET22b	"	PpiA>B 3plet1 (E17V/L18I/G126A)
ppiA>B, Singlet2	sgLMB0078	pLMB20 09	pET22b	"	PpiA>B Singlet2 (L9F)
ppiA _{>B, Singlet3}	sgLMB0091	pLMB20 22	pET22b	"	PpiA>B Singlet3 (V33L)
ppiA _{>B, Singlet4}	sgLMB0092	pLMB20 23	pET22b	"	PpiA>B Singlet4 (A135V)
ppiA _{>B, Doublet2}	sgLMB0079	pLMB20 10	pET22b	"	PpiA>B Doublet2 (V33L/A135V)
ppiA _{>B, 3plet2}	sgLMB0080	pLMB20 11	pET22b	"	PpiA>B 3plet2 (L9F/V33L/A135V)
ppiA _{>B, 3plet3}	sgLMB0094	pLMB20 84	pET22b	"	PpiA>B 3plet3 (L18I/I88L/A162V)
ppiA _{>B, 6plet2}	sgLMB0095	pLMB20 85	pET22b	"	PpiA>B 6plet1 (L9F/L18I/V33L/I88L/A135V/A162 V)
ppiA _{>B, 6plet1}	sgLMB0081	pLMB20 12	pET22b	"	PpiA>B 6plet2 (L9F/E17V/L18I/V33L/G126A/A13 5V)
ppiA _{>B, control}	sgLMB0106	pLMB20 96	pET22b	"	PpiA>B Negative Control (S28T/S101A/N151D)
ppiB _{>A, 3plet1}	PpiB>A (3plet 1)	pLMB21 69	pET22b	Quick Change Mutagenesis	PpiB>A 3plet1 (I13L/L83I/V160A)
ppiB _{>A, 3plet2}	sgLMB0096	pLMB20 86	pET22b	Cloned synthetic gene (Genscript)	PpiB>A 3plet2 (F4L/L28V/V133A)
ppiB _{>A, 6plet1}	sgLMB0097	pLMB20 87	pET22b	"	PpiB>A 6plet1 (F4L/I13L/L28V/L83I/V133A/ V160A)
ppiB _{>A, 6plet2}	sgLMB0089	pLMB20 20	pET22b	"	PpiB>A 6plet2 (F4L/V12E/I13L/L28V/C121A/A12 4G/D128K/V133A)
ppiB _{>A, Multiplet}	sgLMB0098	pLMB20 88	pET22b	"	PpiB>A Multiplet (T3L/F4L/H8A/I13L/T15L/L28V/C 31V/L83I/C121A/V133A/V160A)
ppiB _{>A, control}	sgLMB0107	pLMB20 97	pET22b	"	PpiB>A Negative control (T23S/A96S/D149N)
proppiB	sgLMB0104	pLMB20 94	pET22b	ű	Addition of the PpiA signal peptide to the PpiB mature domain containing the N-terminal PpiA tail (AKGDPH) to avoid cleavage that is seen when the signal peptide is directly attached to PpiB.
Constructs for in vivo secretion					
Gene	Plasmid name	Vector Description/reference			
Secreted prote	eins				

ppiB phoA	pIMBB1571	pBAD501	The <i>ppiB</i> gene (495bp) was isolated by PCR from pIMBB1043 using primers X850 (Forw Ndel) and X1928 (Rev HindIII) and was cloned in the Ndel-HindIII sites of pIMBB1570 (pBAD501 pro(KL)PhoA), substituting the proPhoA signal peptide.
ppiA phoA	pIMBB1584	pBAD501	The <i>ppiA</i> gene (510bp) was isolated by PCR from pIMBB1085 using primers X743 (Forw Ndel) and X1282 (Rev HindIII) and was cloned in the Ndel-HindIII sites of pIMBB1570 (pBAD501 pro(KL)PhoA), substituting the proPhoA signal peptide.
ppiA>B, 6plet1 phoA	pLMB2208	pBAD501	The <i>ppiA>B</i> (<i>S1</i>) gene (510 bp) was isolated by PCR from sgLMB0081 using primers X2346 (Forw Ndel) and X2428 (Rev HindIII) and was cloned in the Ndel-HindIII sites of pIMBB1570 (pBAD501 pro(KL)PhoA), substituting the proPhoA signal peptide.
ppiB _{>A, 6plet1} phoA	pLMB2209	pBAD501	The <i>ppiB>A(S1)</i> gene (495 bp) was PCR isolated from DH5a using primers X2348 (Forw. Ndel) and X2429 (Rev. HindIII) and was cloned to the Ndel-HindIII site of pIMBB1570 (pBAD33proKLPhoAGemR), substituting the PhoA signal peptide.
Sec Translocase			
hissecY _{prlA4(I40} _{8N/F286Y})-EG	pIMBB842	pET610	[11]

Appendix Table S5 Buffer list

Buffer S-A	50 mM Tris-HCl pH 8.0, 1 M NaCl, 5 mM Imidazole, 5% glycerol v/v
Buffer S-B	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 5 mM Imidazole, 5% glycerol v/v
Buffer S-C	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 5% glycerol v/v
Buffer S-D	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 50% glycerol v/v
Buffer U-A	50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 5 mM Imidazole, 5% glycerol v/v
Buffer U-B	50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 5 mM Imidazole, 5% glycerol v/v; 8M Urea
Buffer U-C	50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 5 mM Imidazole, 5% glycerol v/v; 6M Urea
Buffer U-D	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 5 mM Imidazole, 5% glycerol v/v; 6M Urea
Buffer U-E	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 100 mM Imidazole, 5% glycerol v/v; 6M Urea
Buffer U-F	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 5% glycerol v/v; 6M Urea
Buffer U-G	50 mM Tris-HCl pH 8.0, 50 mM NaCl, 10% glycerol v/v; 6M Urea
Buffer A	5 mM MOPS pH 8.0; 5 mM NaCl
Buffer B	25 mM Tris-HCl pH 8.0, 25 mM KCl
Buffer C	25 mM Tris-HCl pH 8.0, 25 mM KCl, 8M Urea

References

- 1. Sievers, F., et al., *Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.* Mol Syst Biol, 2011. **7**: p. 539.
- 2. Kallen, J. and M.D. Walkinshaw, *The X-ray structure of a tetrapeptide bound to the active site of human cyclophilin A.* FEBS Lett, 1992. **300**(3): p. 286-90.
- 3. Ashkenazy, H., et al., *ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules.* Nucleic Acids Res, 2016. **44**(W1): p. W344-50.
- 4. Landau, M., et al., *ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures.* Nucleic Acids Res, 2005. **33**(Web Server issue): p. W299-302.
- 5. Mitchell, C. and D. Oliver, *Two distinct ATP-binding domains are needed to promote protein export by Escherichia coli SecA ATPase.* Mol Microbiol, 1993. **10**(3): p. 483-97.
- 6. Casadaban, M.J., *Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu.* J Mol Biol, 1976. **104**(3): p. 541-55.
- Genevaux, P., et al., Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics, 2002.
 162(3): p. 1045-53.
- 8. Ullers, R.S., et al., *Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli.* Proc Natl Acad Sci U S A, 2007. **104**(9): p. 3101-6.
- 9. Guzman, L.M., et al., *Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter.* J Bacteriol, 1995. **177**(14): p. 4121-30.
- 10. van der Does, C., et al., SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol Microbiol, 1996. **22**(4): p. 619-29.
- 11. Gouridis, G., et al., *Signal peptides are allosteric activators of the protein translocase.* Nature, 2009. **462**(7271): p. 363-7.
- 12. Tsirigotaki, A., et al., *Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome.* Structure, 2018.