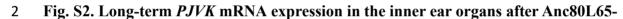
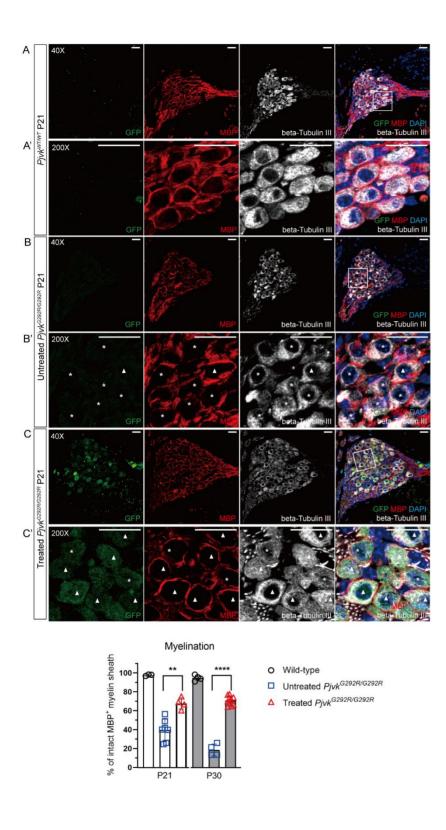


Fig. S1. The ABR waveform and DPOAE levels of *Pjvk*^{G292R/G292R} and treated


Pjvk^{G292R/G292R} mice.

(A) Superimposed ABR traces (click stimuli) at 100 dBSPL. (B) The mean values of DPOAE amplitude in P21 mice (untreated N=11, treated N=9). Data are shown as the mean \pm SD. **, p<0.001; ***, p<0.0001. Data are shown as the mean \pm SD. (*** P=0.0001, ** P<0.005,


Student's t test).

- 3 CMV-PJVK neonatal injection.
- 4 Quantification of human *PJVK* mRNA expression in untreated and treated *Pjvk*^{G292R/G292R}
- 5 mice at different time points. P10 and P120 *Pjvk*^{G292R/G292R} mice injected with Anc80L65-
- 6 CMV-PJVK at P0-1 were used to evaluate long-term PJVK expression. Samples were
- 7 divided into SGNs, VGNs, VO, and OC, and *PJVK* mRNA expression was detected by qPCR
- 8 (N=5 in the P10 group, N=1 in the P120 group). Data are shown as the mean \pm SD. SGN:
- 9 spiral ganglion neuron, VGN: vestibular ganglion neuron, VHC: vestibular hair cells, CHC:
- 10 cochlear hair cells, VO: vestibular organs, OC: organ of Corti.

13 Immunofluorescence staining of SGN paraffin sections taken at P21 from wild-type (A),

14	untreated (B), and treated (C) Pjvk ^{G292R/G292R} SGNs. The SGNs were stained with an anti-
15	MBP antibody for the myelination marker and an anti-beta-III tubulin antibody for the
16	neuronal marker. (A-A') Wild-type SGN is shown as a positive control. Most neurons are
17	enveloped by intact MBP+ myelin sheaths. (B-B') Untreated <i>Pjvk^{G292R/G292R}</i> mice show
18	relatively normal neuron morphology (beta-III tubulin $^+$) but abnormal myelination (MBP $^+$) in
19	the SGN at P21. Asterisks indicate that the SGNs are partially or not enclosed by myelin
20	sheaths. (C-C') After Anc80L65-CMV-PJVK injection, the MBP and GFP double-positive
21	SGNs in <i>Pjvk</i> ^{G292R/G292R} mice are represented by arrows. (D) Quantification of the percentage
22	of beta-III tubulin ⁺ SGNs with intact MBP ⁺ myelin sheaths in each group (P21, <i>Pjvk</i> ^{WT/WT}
23	N=3, untreated <i>Pjvk</i> ^{G292R/G292R} N=7, and treated <i>Pjvk</i> ^{G292R/G292R} N=3; P30, <i>Pjvk</i> ^{WT/WT} N=4,
24	untreated $Pjvk^{G292R/G292R}$ N=4, and treated $Pjvk^{G292R/G292R}$ N=9). The MBP ⁺ myelin sheath was
25	considered intact if it enclosed more than 80% of the outline of the beta-III tubulin $^+$ cells.
26	Scale bars = 20 μ m in A-C and 20 μ m in A'-C'. Data are shown as the mean \pm SD. (** <i>P</i> <0.01
27	untreated vs. treated mice at P21, ****, P<0.0001 untreated vs. treated mice at P30, one-way
28	ANOVA with Tukey post hoc tests).
20	

Latencies (msec)				
ABR peak	<i>Pjvk^{G292R/G292R}</i> (N=10)	Treated <i>Pjvk^{G292R/C}</i> (N=6)	P value	
I	2.24±0.05	2.04±0.03	<0.0001	
Ш	4.18±0.11	3.79±0.05	<0.0001	
V	6.60±0.17	5.89±0.10	<0.0001	
1-111	1.95±0.12	1.75±0.05	0.0018	
III-V	2.41±0.14	2.10±0.05	0.0001	
I-V	4.36±0.18	3.85±0.09	<0.0001	

Statistical tests were Student's t test.

31 Table S1. Absolute and interpeak latencies of ABR waves of *Pjvk*^{G292R/G292R} and treated

32 $Pjvk^{G292R/G292R}$ mice.