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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

This paper provides very important resources of marmoset MRI data including T2w, resting-state fMRI 

and in-vivo diffusion MRI. The strength of this study is excellent resting state fMRI dataset which are 

collected from a large sample of animals using two ultrahigh-field MRI scanners. The reviewer 

appreciates the authors’ generosity to make these datasets publicly available and recommend the 

authors to make all the information including the scanning protocols publicly available. Then the readers 

can replicate the analysis and results of this study, and benefit from these datasets for future 

developments of non-invasive connectome & neuroimaging in this species. The reviewer makes critical 

comments below mostly on the preprocessing and network analysis. The reviewer recommends the 

authors to focus on appropriately publishing resource data as is (also including all the information of 

scanning parameters) and explicitly analyzing basic data quality to strengthen the value of the data and 

make it useful for the scientists in this field. 

Major comments: 

1) The dataset does not include the structural MRI image with high contrast between gray and white 

matter (e.g., MPRAGE), which is the most important image for cross-species standardization. T1-

weighted images are not obtained in any of subjects. The structural normalization of the brain size and 

shape is done in general using T1-weighted images, which has the best contrast between gray and white 

matter in MRI images, allowing good alignment between subjects. The authors need to make a rational 

explanation not to do so and discuss limitation of this study, and possible degradation or bias of the 

group-wise connectivity. 

2) The manuscript does not include the basic quality assessment of the resource data. The resource data 

does not accompany all the information on scanning parameters needed for preprocessing. Since the 

functional connectivity studies on the resting state fMRI is highly dependent on the quality of the data, 

explicit data-driven analysis is expected to strengthen this manuscript as an MRI resource paper. No 

quality assessment (except tSNR) was presented for fMRI, e.g., the contrast-to-noise ratio (CNR), 

unexpected noise and artifacts, as well as denoising of the fMRI data for the first-level analysis. No 

frequency and time series data are presented for all the ‘neural’ like components in group ICA, which 

are important for confirming the component as neural origin. 

3) The manuscript does not provide any novel insights on the optimization of neuroimaging 

preprocessing for this species, which is behind those in the human MRI studies. It should be discussed as 

a limitation of this study. The higher-level analysis of the connectome depends on the preprocessing of 



the data, while no established preprocessing pipeline is presented in this paper. The preprocessing is 

done just through a mixture of different software packages (AFNI, FSL, Workbench, TORTOISE), all of 

which are basically optimized for human brain imaging and not for marmoset data. The actual 

commands and parameter setting are not described in detail in the manuscript nor available at the 

resource website, so that the readers cannot replicate the analysis to confirm the results of the study. 

Different packages are used for solving the same imaging problem, which is not likely chosen based on 

the reasonable arguments and may confuse the readers who would like to find the best solution of 

preprocessing in this species. For example, the authors used the FSL Topup and TORTOISE for correcting 

B0-susceptibility induced distortion (i.e. blip-up blip-down method) of rfMRI and diffusion MRI, 

respectively. This difference can result in the bias of spatial accuracy between the two datasets, and 

potentially bias the link between functional and diffusion connectivity the authors analyzed. 

4) The novelty of this paper is resting-state fMRI datasets from two institutions, as well as in-vivo 

diffusion MRI in addition to the ex-vivo dMRI that were made publicly available by the same authors 

previously. Therefore, a novel idea or analysis is expected for charactering and reducing bias, data 

harmonization and/or statistical harmonization between different datasets. However, nothing was 

explicitly performed unfortunately. Note that harmonization is a relatively new research interest in the 

human MRI large population studies (e.g., HCP, HCP, ABCD, UK biobank, Brain/MINDS-beyond) in order 

to understand subject variability. The explicit analysis for this approach to harmonize data across 

institutions/scanner and brain preparations (in-vivo vs ex-vivo) may also be valuable for the animal 

studies, as well as for its future international global neuroscience in NHP (see. PRIMatE Data and 

Resource Exchange (PRIME-DRE) Global Collaboration Workshop and Consortium, Neuron 2022). 

5) The population-based boundary maps are likely similar between the two institutions, but they are not 

very close to each other. There seems to be dislocation or misregistration of the boundaries over the 

surfaces. Similarity of the functional boundary maps between hemispheres is also not very high. These 

findings are not reasonable since less hemispheric asymmetry or smaller intersubject variability are 

expected in the marmosets than in humans. The reviewer thinks that biases and artifacts are not 

removed completely for these datasets, thus it is too early to answer these naïve questions on 

neurobiological or network organization. 

6) As for the link to the structural-functional connectivity, it is not understandable why use of neural 

tracing data did not achieve highest predictability of functional connectivity. What were these 

predictions if they were separately analyzed for short and long-distance connectivity? Is there anything 

that Hopf bifurcation neurodynamical function cannot model? High-resolution ex-vivo diffusion MRI 

data should be excellent as compared with any other diffusion MRI datasets, but it will not be complete 

nor have supreme SNR for the high b-value data. There are several issues on the accuracy of the 

diffusion tractography such as crossing vs kissing fibers, gyral bias, inaccuracy for long-distance tract, 

which are not yet solved completely in any model or algorithm. The neural tracing data using retrograde 

tracers may be absolutely reliable in terms of strength and specificity of connectivity and by far robust 

against distance. 



Minor comments: 

In abstract and many parts of the main text, the authors use a term ‘MRI space’. This is a bit sloppy 

statement since it implies the MRI scanner coordinates, which is not meaningful for understanding the 

brain. The reviewer recommends the authors to use a more general term, something like ‘standardized 

space of the marmoset brain’ or ‘marmoset brain template of ear-bar and eye-bar coordinates (MBMv3 

or MBMv2)’. The abstract should be more specific about which resource data is shared in this 

publication. Ex-vivo diffusion MRI and neural tracing data were already made publicly available in the 

authors’ previous publication. 

Results 

Line 109. For the quality assessment of fMRI between the two sites, the tSNR alone is insufficient at all. 

The tSNR calculated by simple mean divide standard deviation does show the quality of the images, but 

not for the quality of signal of interest (i.e., BOLD or neural signal). The variance of the BOLD activity in 

the resting-state fMRI is less than 10% among all even in the ultrahigh-field scanner. Therefore, for the 

quality of the fMRI data, analysis of variances obtained from data-driven analysis may provide useful 

measures including contrast-to-noise (CNR), motion-related variables, high-pass, and other artifacts 

(e.g., Marcus et al., 2013). For the quality assessment of diffusion MRI, the estimated motion, slice-by-

slice outlier detections, CNR (for the diffusion weighted signal changes) are useful for presenting the 

data quality (e.g., Bastiani et al., 2009). 

Line 139. The presented ICA components are very nice (Fig 2, S2). But the results are not showing any 

temporal features such as frequency spectrum. It is more informative to reveal the frequency spectrum 

for each component and show how they look like neural origin. It is questionable if the components E, F, 

P, S in S2 is really neural origin. The regressing ICA components to the unfiltered data can generate the 

time series data and frequency spectrum. It is also informative to demonstrate the representative noise 

or artifactual components in the supplements. 

Line 150 ‘Default-model-like network (DMN)’ Default mode network? In line 15 in the legend of Figure 

S2, ‘default-network’ should be default mode network. 

Line 240 ‘DCBC’. The distance and areas over the surface may be largely different between subjects, 

which are not well controlled or regularized unless individual surface reconstruction and surface 

registration were not performed. 



Line 335. ‘MBMv4 provides 335 a more accurate reflection of the functional parcellation of the cortex 

than current histology-based atlases’ - This is a bit sloppy statement, and any single modality of the 

brain metrics (including functional connectivity) may not provide perfect resolution of the cortical 

parcellations. For example, the histology data is more accurate than functional parcellations in some of 

the boundaries (e.g. V1/V2). 

Data acquisition: 

The functional MRI acquisition protocols are not well harmonized between two scanners (ION vs NIH). 

There are many different parameters that significantly affect the quality of the data including static 

magnetic field, gradient strength, which may cause difference in SNR, tissue T1 and T2* value, B0 

inhomogeneity & distortion. The transmission coil is also different between two institutions, causing 

substantial difference in B1+ field, and hence bias the homogeneity of the signal, SNR across space etc. 

Difference in B0 field and in TE of fMRI (18ms vs 22.2ms) should cause the differences in CNR (contrast-

to-noise ratio) of the fMRI data, which is not clearly and carefully investigated. There is no way for the 

readers to estimate how B0 inhomogeneity-induced distortion is look like between two institutions, 

unless the original (distorted) image or estimated shift images are not presented. Distortion correction 

method, Topup or TORTOISE, is optimized for human brain by default, thus the authors should carefully 

describe if it was indeed effective enough for correcting distortion of the fMRI in the small brain. There 

is no information available for detailed scanning parameters including dwell time, which is needed for 

B0-susceptibility induced distortion correction with a blip-up blip-down method. Since the resource data 

does not include any detailed info on imaging parameter (including json files usually stored in the BIDS 

format), so the data cannot be properly analyzed or replicated by the other users. The previous public 

data for ex-vivo diffusion MRI (V1 and V2) does not also provide all the information on the scanning 

parameters including dwell time. 

The fMRI preprocessing is done by legacy method and likely not optimized for this species. Registration 

is an important treatment in the preprocess, and is highly dependent on the resolution of the data and 

object size, therefore it is obvious that the marm. The quality assessment of rfMRI is not carefully done. 

There are no descriptions on the animal’s compliance during scanning and whether their head was 

moved or not during scanning. No explicit artifact or noise removal is done in the first-level analysis, 

which is commonly done in recent human resting-state fMRI studies. Bandpass filtering (0.01 – 0.1Hz) in 

the initial preprocessing (line 620) is a bit outdated approach, since it loses the significant neural signals 

at >0.1 Hz. The resampling of the fMRI data to the standard space (line 624) is not done by 

concatenating all the transformation at a single step and likely excluding the distortion correction by 

Topup. No exploratory data-driven analysis is applied, thus there is no way for the readers to see how 

much the rfMRI data is contaminated by any unexpected artifacts. The resting-state of subjects is hard 

to control the conditions of subjects particularly in animals. Therefore, data-driven approach like ICA is 

strongly recommended in the first-level analysis for estimating quality of the data, then needs to be 

applied for artifact removal. As long as the authors do not apply this approach, the group-wise ICA 

analysis should also be contaminated by a large number of unexpected artifacts from each scan. It is 



strange that the authors apply a different or wider range of frequency in the post process analysis (0.04-

0.07Hz in Line 858, 0.04-0.25Hz in Line 879). 

Surface mapping of the volume data (e.g. fMRI) is likely not performed using the subject’s surface, thus 

is potentially bias the results of a large group-based functional connectivity. Surface mapping of the 

subject’s volume onto the average or the other subject’s surface should not be very precise given the 

fact that there is a significant intersubject variability of brain size and shape of this primate species as 

compared with rodents. There is no detailed explanation of the volume-to-surface mapping (line 629). 

How were the surfaces created and how they are well aligned with the subject’s fMRI and T2-weighted 

images? 

Diffusion MRI. There are no careful descriptions whether the package of TORTOISE is used as is or 

optimized for the marmoset data. The image registration may be dependent on a global optimization 

technique that relies on the resolutions during iterative aligning processes. The optimality of the 

distortion correction by the blip-up and blip-down method may need to be carefully described. Nothing 

was described about what kind of tractography method was applied (line 639). 

Neural tracing data: the mapping method of the neuronal tracing data onto the MTR template is not 

very clear. How accurate was the registration between the neuronal tracing data and MTR template? 

There are no visual presentations nor quantitative assessment on the validity of the registration. In 

particular, it is informative to present whether cortical boundaries of the tissue sections were properly 

aligned with the MRI template. No information is available about which cost function and registration 

method (linear vs nonlinear, DOF) was applied. 

Group-ICA. Please properly describe which of NIFTI volume or CIFTI data the authors used for their 

group-wise ICA analysis using GIFT. Also please clarify if each scan data was normalized by the variance 

and its mean signal was removed before feeding into group ICA. The classification of the components 

(neural or noise) is likely done only based on the spatial distribution. This is a bit tricky because some of 

components even located within the brain may be associated with pulsation of the brain tissue (i.e., 

periodic movement). Frequency spectrum and time series signal may be presented for each component. 

Line 850. ‘while brain parcellations’. I’m wondering if the authors would really discuss whole brain 

parcellations including cortical and subcortical parcellations. 

Line 851. ‘232 brain regions per hemisphere from Paxinos Atlas’. Is this number correct? Does this 

number include both cortical and subcortical structures? 



Reviewer #2 (Remarks to the Author): 

Review of “An integrated resource for functional and structural connectivity of the marmoset brain” by 

Tian and colleagues. 

The authors provide a huge comprehensive data set acquired in marmosets encompassing awake 

resting state fMRI, in-vivo DTI, high resolution ex-vivo DTI and a large collection of neuronal tracing data. 

Moreover, the authors relied on this massive data set, in combination with deep learning and 

computational modelling, to propose a parcellation scheme of the cortex and to link anatomical 

properties with functional connectivity measures. 

This is an exquisite data set that will become an important tool for many nonhuman and human primate 

researchers which will also improve homology research. Despite the complexity of the data and some of 

the analyses, the authors were able to summarize them in a succinct and very accessible manner. The 

analyses are state-of-the-art. I highly support publication of this manuscript and only have a few 

questions and/or suggestions which may improve the manuscript: 

1. Fig. 2A-O: I am surprised by the ‘locality’ of the different functional networks. In humans and 

macaques, resting state based functional networks typically consist of multiple anatomically segregated 

subunits. In this case, mainly singular nodes are apparent (except for panel J?). How is this explained? 

From an esthetic point of view: why is the background in panels 2I-O grey? I would use the same 

background in all panels. 

2. Fig 2P, Q: It is unclear how the two network-parcellation maps are created (this was also not clear 

from the methods section) and more importantly how they relate to each other. 

3. Line 200-207. I’m puzzled by the seemingly higher intra-subject than inter-subject variability. Given 

the fixed anatomy (within a subject), which may differ from that in other subjects, this is difficult to 

understand. Moreover, this also poses problems for ‘within’ subject research -e.g. where one aims to 

relate boundary maps with task-based information, injections, electrophysiological recordings, etc. 

Please discuss. 

4. 229: Please explain exactly what is meant by ‘semi-manual optimization’. This was also unclear from 

reading the methods section. This may lead to reproducibility issues. Please discuss what exactly is done 

manually and whether this imposes methodological limitations. 

5. Fig 6A and B (scatter plots). It is unclear what exactly is plotted. Also, what is the color (MBMv4) and 

grey-scale (Paxinos) mean in panel B? 

6. In several locations (e.g. line 379) the authors mention that MBMv4 offers an alternative view on 

understanding the functional connectivity of a brain. This is a crucial statement. What exactly is meant? 

How can one relate both views? Is one ‘better’ (ground truth?) than the other? Is it reflecting the 

difference between anatomical versus functional connectivity? Or a difference in ‘sampling efficiency’? 

Or? Please discuss in depth. 

7. Related to the previous point: Different parcellations can be obtained with different measures (e.g. rs 

functional connectivity, anatomical connectivity, cyto-and myelo-architectonics, etc..). It would be highly 



informative if a few obvious parcels where all measures match and where measures don’t match are 

described/shown in more detail (not using the whole-brain overviews). 

8. The study revealed more functional networks and more parcels than previous marmoset studies. 

Does one expect these numbers to grow when higher spatio-temporal resolution data can be acquired 

in the future? In other words, to what extent are these parcels dependent on the type of 

measurements? This is important from a theoretical point of view as one (implicitly) creates the 

impression that the current processing modules are the ones determining cortical functioning. But what 

if one misses the really important modules (e.g. columnar like) simply because of current technical 

limitations? 

9. Line 506: I guess inter-subject is meant instead of intra-subject? 

10. Line 533: sentence is not clear. 

11. Line 724: why is the 60th percentile used? 

12. Line 793: Please explain the visual-choice task. I guess this was not a free-viewing movie task? 



Dear reviewers:

We thank all the reviewers and the editor for their strong encouragement and support of 

our manuscript, and especially for providing insightful comments and suggestions, which 

we believe have significantly improved the quality of our publication. We conducted new 

analyses and revised the paper accordingly in response to the comments provided. We 

addressed all the reviewers’ comments fully. 

In what follows, we provide point-by-point responses to each reviewer's comments. The 

review comments are in black font, and our responses are in blue font. The resulting edits 

of the original manuscript are highlighted in red font in the revised manuscript.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

This paper provides very important resources of marmoset MRI data including T2w, 

resting-state fMRI and in-vivo diffusion MRI. The strength of this study is excellent resting 

state fMRI dataset which are collected from a large sample of animals using two ultrahigh-

field MRI scanners. The reviewer appreciates the authors’ generosity to make these 

datasets publicly available and recommend the authors to make all the information 

including the scanning protocols publicly available. Then the readers can replicate the 

analysis and results of this study, and benefit from these datasets for future developments 

of non-invasive connectome & neuroimaging in this species. The reviewer makes critical 

comments below mostly on the preprocessing and network analysis. The reviewer 

recommends the authors to focus on appropriately publishing resource data as is (also 

including all the information of scanning parameters) and explicitly analyzing basic data 

quality to strengthen the value of the data and make it useful for the scientists in this field.

OUR RESPONSE: Thank you very much for your support and encouragement of our work. 



We have now introduced an extensive analysis and made significant edits to the 

manuscript directly addressing your comments.

Major comments:

1) The dataset does not include the structural MRI image with high contrast between gray 

and white matter (e.g., MPRAGE), which is the most important image for cross-species 

standardization. T1-weighted images are not obtained in any of subjects. The structural 

normalization of the brain size and shape is done in general using T1-weighted images, 

which has the best contrast between gray and white matter in MRI images, allowing good 

alignment between subjects. The authors need to make a rational explanation not to do so 

and discuss limitation of this study, and possible degradation or bias of the group-wise 

connectivity.

OUR RESPONSE: Thank you very much for your suggestions. 

In humans, due to the complicated gyrification, the gray-white contrasts provided by the 

T1w become essential for an accurate alignment, and it is more common to use T1w rather 

than T2w for segmentation and cross-subject regulation.

However, in rodents and marmosets, the T2w image is more commonly used than the T1w 

image for the following reasons：

1）Similar as rodents, the marmoset has a smooth brain and is free from the registration 

inaccuracy caused by complex gyrification. Thus, the gray-white contrasts provided by 

T2w image is sufficient for accurate cross-subject registration. 

2）Compared with T1w images, the T2w contrast is more similar as the T2*w contrast of 

fMRI data, allowing more accurate registration. 

3）MP-RAGE sequences are not commonly used for T1-weighted structural imaging in 

ultra-high field (UHF, ≥7T) MRI. With higher fields, the T1 relaxation time increases in 

both gray and white matter, leading to relatively smaller gray and whiter matter T1 

differences1-3, e.g., T1
WM /T1

GM = ~1700/2000 at 9.4T compared to T1
WM /T1

GM = 



~800/1400 at 3.0T4-7. Below we provide a figure to show a simulation for the point (note 

that GM-WM signal contrast on 9.4T is much worse than that of 3.0T). MP-RARE 

signals were simulated using the algorithm in Kir et al.8. Therefore, it is commonly 

known that T1 weighted sequences like MP-RAGE is not an optimal and efficient way 

to acquire gray and white matter contrast at UHF animal MRI. 

MP-RAGE sequence simulations for gray and white matter signal for (A) 3.0T and 

(B) 9.4T MRI and (C) white-gray matter signal contrast comparison of 3.0T versus 

9.4T. The sequence parameters for simulation were used as typical MR-RAGE 

protocol in research: TRout/TRinner = 6000/12 ms, TE= 3 ms, flip angle = 8º, inner 

loop phase encoding number =160, inversion time is ranged from 200 ms to 2600 

ms with equal TI interval of 200 ms. The T1/T2 value of gray matter T1/T2
GM = 

1400/100 ms for 3.0T and 2000/35 ms for 9.4T; The T1/T2 value of white matter T1/ 

T2
WM = 800/75 ms for 3.0T and 1700/35 ms for 9.4T. The white-gray matter signal 

contrast plotted in (C) was define as (White matter signal – gray matter signal)/ White 

matter signal×100%.

[1] Graaf et al, Magn Reson Med . 2006 Aug;56(2):386-94.

[2] Kuo et al, J Magn Reson Imaging . 2005 Apr;21(4):334-9.

[3] van de Ven et al, Magn Reson Med . 2007 Aug;58(2):390-5.

[4] Rooney et al, Magn Reson Med . 2007 Feb;57(2):308-18.

[5] Stanis et al, Magn Reson Med . 2005 Sep;54(3):507-12.

[6] Zhu et al, Magn Reson Med . 2005 Sep;54(3):725-31.

[7] Gelman et al, Magn Reson Med . 2001 Jan;45(1):71-9 



[8] Kir et al. J Magn Reson Imaging . 2012 Sep;36(3):748-55.

As above, it is common in rodent and marmoset neuroimaging (under high field MRI 

scanner) to use T2w image for spatial normalization; and the missing T1w contrast won’t 

affect the alignment between marmosets.

Nevertheless, we fully agreed with the reviewer's points of the importance of T1w image 

for cross-species study. Although this paper is about a marmoset rs-fMRI resource, people 

would be interested in using it for comparative studies. Furthermore, since human 

neuroimaging adopted both T1w and T2w for structural normalization, the missing T1w 

image in our marmoset resource might degrade the cross-species standardization. 

In addition, with the T1w image, the myelin map (T1w/T2w) can be calculated, which is an 

important contrast for gradient-based parcellation. We discussed the limitation in the 

revised manuscript (line 549-553):

“Fifth, our parcellation only used the resting-state functional connectivity information, as in 

many human studies21,28,40. However, more advanced approaches incorporated structural 

contrasts, especially the T1w/T2w myelin map and multiple task-fMRI data for multi-modal 

brain parcellation. Thus, combining more image modalities to improve the parcellation of 

the marmoset brain becomes important in the future.”

2) The manuscript does not include the basic quality assessment of the resource data. The 

resource data does not accompany all the information on scanning parameters needed for 

preprocessing. Since the functional connectivity studies on the resting state fMRI is highly 

dependent on the quality of the data, explicit data-driven analysis is expected to strengthen 

this manuscript as an MRI resource paper. No quality assessment (except tSNR) was 

presented for fMRI, e.g., the contrast-to-noise ratio (CNR), unexpected noise and artifacts, 

as well as denoising of the fMRI data for the first-level analysis. No frequency and time 

series data are presented for all the ‘neural’ like components in group ICA, which are 

important for confirming the component as neural origin.



OUR RESPONSE: Thank you very much for your suggestions. 

In the revised manuscript, we provided the following more quality assessments, including:

a) As the reviewer suggested, we calculated more comprehensive QA measurements 

(tSNR, CNR, and head motions) for each run. In addition, for data harmonization 

purposes, we systematically compared the data quality between ION data and NIH 

data. The two datasets were similar in the head motion or SNR/tSNR/CNR. These 

figures of QA comparison across datasets are included in the revised Supplementary 

Materials (Fig. S2 and Fig. S3):

Figure S2. Similar quality measurements of the ION and the NIH datasets. (A) The 

raster plots and their histograms present the CNR (Contrast to Noise Ratio: the mean of 

the gray matter intensity values minus the mean of the white matter intensity values divided 



by the standard deviation of the values outside the brain) and the Fiber (Foreground to 

Background Energy Ratio: the variance of voxels inside the brain divided by the variance 

of voxels outside the brain) of two datasets (the blue represents the results from the NIH 

dataset, and the yellow represents the results from the ION dataset); the results of the 

Wilcoxon rank test between two datasets (N-NIH =180 N-ION =172) are p=0.45 and p=0.11, 

respectively. (B) The raster plots and their histograms present the average SNR, median 

SNR and max SNR, average tSNR, median tSNR and max tSNR of the cortical gray matter 

from two datasets (N-NIH =180 N-ION =172). The Wilcoxon rank tests for SNR are p=0.259 

p=0.824 and p=0.968; and for tSNR are p=0.435 p=0.625 and p=0.2, respectively. (C) 

presents the average SNR, median SNR and max SNR, average tSNR, median tSNR and 

max tSNR of cortical white matter from two datasets (N-NIH =180 N-ION =172). The 

Wilcoxon rank tests for SNR are p=0.712 p=0.32 and p=0.42; and for tSNR are p=0.062 

p=0.086 and p=0.908, respectively. The above QA measurements show no significant 

differences between the NIH and the ION datasets.

Figure S3. Head motions of the ION and the NIH datasets. (A) the top panel presents 

head-motion (weighted euclidean norm of six motion parameters) across timepoints of 

different datasets (the blue represents the NIH dataset, and the yellow is the ION dataset). 

Each dot is the head-motion measure of each fMRI at a one-time point. The bottom panel 



presents the histogram statistics from each dataset (error bar represents 95% confidence 

interval), which indicates head-motion levels are similar across datasets. (B) presents the 

percentage of censored time points (motion > 0.2mm and temporal outlier > 0.1) for each 

fMRI. Most animals and fMRI runs (710 runs) have low head-motion and censored time 

points, suggesting the effectiveness of our head-constrained and training approaches. 

Note that the three fMRI runs with extensive head motions (more than 10% time points 

were censored) were excluded from our analysis, and the total number of valid runs (710) 

was reported in our manuscript, although we included the three runs in the release of 

source (raw) data.

b) In addition to what the reviewer suggested, we also provided QA reports generated by 

the “APQC” function of AFNI for the fMRI data and the “DIFFPREP” function of 

TORTOISE for the dMRI data. Both functions are used as default quality control 

assessment, providing more user-friendly formats (for example, HTML web page) to 

visualize the data and data quality (including the head motion plots). The reports are 

available for download in the revised resource.

An HTML report example is shown below:



c) We provided each component’s time series and frequency power plots for the ICA 

analysis in the supplementary Figure S5. All the components show neural-like patterns 

spatially (all peaks are in the cortical or subcortical gray matter) and temporally (no 

patterns of artifacts or noises).

3) The manuscript does not provide any novel insights on the optimization of neuroimaging 

preprocessing for this species, which is behind those in the human MRI studies. It should 

be discussed as a limitation of this study. The higher-level analysis of the connectome 

depends on the preprocessing of the data, while no established preprocessing pipeline is 

presented in this paper. The preprocessing is done just through a mixture of different 

software packages (AFNI, FSL, Workbench, TORTOISE), all of which are basically 

optimized for human brain imaging and not for marmoset data. The actual commands and 

parameter setting are not described in detail in the manuscript nor available at the resource 

website, so that the readers cannot replicate the analysis to confirm the results of the study. 



Different packages are used for solving the same imaging problem, which is not likely 

chosen based on the reasonable arguments and may confuse the readers who would like 

to find the best solution of preprocessing in this species. For example, the authors used 

the FSL Topup and TORTOISE for correcting B0-susceptibility induced distortion (i.e. blip-

up blip-down method) of rfMRI and diffusion MRI, respectively. This difference can result 

in the bias of spatial accuracy between the two datasets, and potentially bias the link 

between functional and diffusion connectivity the authors analyzed.

OUR RESPONSE: We agree with the reviewer that the preprocessing pipeline is essential 

for resting-state fMRI analysis. As the reviewer said, most existing software is optimized 

for human data, and thus we had to combine different software packages to achieve the 

best outcome for the following reasons:

1) We chose to use AFNI for the main preprocessing stream of the resting-state fMRI. 

Compared with FSL and SPM-based packages, AFNI provides the most animal-

friendly commands, while FSL and SPM-based packages are mainly optimized for 

human neuroimaging data. For example, we were not able to achieve satisfied results 

with FSL ICA-FIX for denoising (which is a standard pipeline for HCP), thus we used 

the traditional regression method to denoise the data. AFNI is also written by an NIH-

based team residing in the same NIH campus) and serving many NHP labs, including 

us, and helped solve many preprocessing issues of our marmoset data.

2) Although animal-friendly, AFNI didn’t have a state-of-art tool for EPI distortion 

correction. Thus, we used the FSL-topup and incorporated into AFNI’s main 

preprocessing stream. As the default topup config file involved many default 

parameters optimized for human data, we modified them to fit the marmoset brain size 

and data resolution. The modified config is also provided on the resource website 

(“code folder”) for the revision.

3) TORTOISE is also another NIH-based software that is designed for diffusion MRI data 

preprocessing, which outperforms FSL-based tools in many aspects, including DWI 

denoising (not available in FSL), eddy current and EPI distortion correction (more 

flexible than FSL), EPI distortion correction, and tensor-based registration (not 



available in FSL). 

4) In our study, we used in-vivo dMRI data for computation modeling. As the modeling is 

ROI-based rather than voxel-based, the slight difference between TORTOISE (for 

dMRI) and FSL-topup (for fMRI) would not lead to an opposite conclusion. 

As mentioned above, we made efforts to improve the preprocessing pipeline for marmosets, 

and the similar pipelines has been adopted by other marmoset imaging labs. 

However, we admit that our manuscript does not bring a breakthrough for preprocessing 

method. In the revised manuscript, we discuss this limitation, which is also a common 

challenge, not only for marmoset neuroimaging but also for other animal species. As a 

matter of fact, our project (marmosetbrainmapping.org) also plans to develop such an 

analysis package in future versions. More importantly, we hope that by releasing the large 

raw fMRI data of marmosets, the whole community can come together to develop better 

data analysis packages and pipelines for non-human primate neuroimaging. 

4) The novelty of this paper is resting-state fMRI datasets from two institutions, as well as 

in-vivo diffusion MRI in addition to the ex-vivo dMRI that were made publicly available by 

the same authors previously. Therefore, a novel idea or analysis is expected for 

charactering and reducing bias, data harmonization and/or statistical harmonization 

between different datasets. However, nothing was explicitly performed unfortunately. Note 

that harmonization is a relatively new research interest in the human MRI large population 

studies (e.g., HCP, HCP, ABCD, UK biobank, Brain/MINDS-beyond) in order to understand 

subject variability. The explicit analysis for this approach to harmonize data across 

institutions/scanner and brain preparations (in-vivo vs ex-vivo) may also be valuable for 

the animal studies, as well as for its future international global neuroscience in NHP (see. 

PRIMatE Data and Resource Exchange (PRIME-DRE) Global Collaboration Workshop 

and Consortium, Neuron 2022).

OUR RESPONSE: Thanks for the reviewer’s valuable suggestions. As we answered the 



first question, we comprehensively compared two datasets (tSNR, CNR, and head motions) 

and there was no significant difference between two datasets. See the response to the 

major comment point-2. 

5) The population-based boundary maps are likely similar between the two institutions, but 

they are not very close to each other. There seems to be dislocation or misregistration of 

the boundaries over the surfaces. Similarity of the functional boundary maps between 

hemispheres is also not very high. These findings are not reasonable since less 

hemispheric asymmetry or smaller intersubject variability are expected in the marmosets 

than in humans. The reviewer thinks that biases and artifacts are not removed completely 

for these datasets, thus it is too early to answer these naïve questions on neurobiological 

or network organization.

OUR RESPONSE: Thank you for this comment. Like humans, marmosets are outbred and 

thus genetically diverse, and thus their inter-individual variability is quite large. Their 

dramatic intersubject variability can be observed and quantified not only in the current fMRI 

data, but also in structural images (brain size/shape and region size) published previously 

(Liu, et al, Neuroimage, 2021):



Cited from Liu, et al, Neuroimage, 2021

As for the issue of inter-hemispheric asymmetry, we checked the original publication 

describing the boundary map method (Gordon et al. Cerebral Cortex 2016), which 

analyzed 120 healthy young adult human subjects (60 females, mean age = 25 years, age 

range = 19–32 years) during relaxed eyes–open fixation. All subjects were English native 

speakers and right-handed. The resulting population-based boundary map between 

hemispheres was not similar (see below). 



Cited from Gordon et al. Cerebral Cortex 2016

Since the original work did not show the comparison Dice value across the hemisphere, it 

is hard to estimate whether marmosets have less hemispheric asymmetry than humans. 

However, their results (Gordon et al. Cerebral Cortex 2016) might indirectly suggest that 

that might be the case. For example, Gordon et al. found 422 cortical parcels (206 in the 

left hemisphere and 216 in the right hemisphere). In contrast, we obtained the same 

number of parcels (96) for both marmoset hemispheres after blindly processing each 

hemisphere independently. Furthermore, as answered in the previous question, we have 

tried our best to ensure consistency of the data across the two marmoset populations (NIH 

and ION) and performed the same preprocessing of both datasets.

6) As for the link to the structural-functional connectivity, it is not understandable why use 

of neural tracing data did not achieve highest predictability of functional connectivity. What 

were these predictions if they were separately analyzed for short and long-distance 

connectivity? Is there anything that Hopf bifurcation neurodynamical function cannot model? 

High-resolution ex-vivo diffusion MRI data should be excellent as compared with any other 

diffusion MRI datasets, but it will not be complete nor have supreme SNR for the high b-

value data. There are several issues on the accuracy of the diffusion tractography such as 

crossing vs kissing fibers, gyral bias, inaccuracy for long-distance tract, which are not yet 

solved completely in any model or algorithm. The neural tracing data using retrograde 

tracers may be absolutely reliable in terms of strength and specificity of connectivity and 



by far robust against distance.

OUR RESPONSE: We appreciate the reviewer for making this suggestion. We have re-

run simulations using our model considering the distance. As you predicted, the neural 

tracing data is robust against distance (see panel D below). However, the overall 

performance is influenced because the simulation based on tracing data did not perform 

well in the short-range distance.

We added the figure above to the supplementary information (Fig. S9) in our revised 

manuscript and also reminded the reader of the importance of this consideration (line 431-

439):

“Since the accuracy of the diffusion tractography may be influenced by the lengths of tracts, 

we used the MBMv4 to further evaluate the structural reliability of different connectional 

distances for each type of data. The fitting results of our model are consistent with the 

prediction that the distance affects the accuracy of diffusion tractography, as both in vivo 



and ex vivo dMRI showed with lower structural-functional fitting correlations for long-range 

compared to short-range connections (Supplementary Fig. S9A-C). On the contrary, as 

expected, the neuronal tracing data are more reliable and robust to model connectivity 

against distance (Supplementary Fig. S9D). In summary, the MBMv4 presents a 

reasonable framework for examining discrepancies between structural and functional 

connectivity.”

Minor comments:

In abstract and many parts of the main text, the authors use a term ‘MRI space’. This is a 

bit sloppy statement since it implies the MRI scanner coordinates, which is not meaningful 

for understanding the brain. The reviewer recommends the authors to use a more general 

term, something like ‘standardized space of the marmoset brain’ or ‘marmoset brain 

template of ear-bar and eye-bar coordinates (MBMv3 or MBMv2)’. The abstract should be 

more specific about which resource data is shared in this publication. Ex-vivo diffusion MRI 

and neural tracing data were already made publicly available in the authors’ previous 

publication.

OUR RESPONSE: Thank the reviewer for pointing them out. In the revision, we removed 

these sloppy statements; and made it clear which resource data is previously published in 

the abstract.

“Here we present a comprehensive resource that integrates the largest awake non-human 

primate resting-state fMRI available to date (39 marmoset monkeys, 710 runs, 12117 mins) 

with previously published cellular-level neuronal-tracing (52 marmoset monkeys, 143 

injections), and multi-resolution diffusion MRI datasets. The combination of these data 

allowed us to …”

Results

Line 109. For the quality assessment of fMRI between the two sites, the tSNR alone is 



insufficient at all. The tSNR calculated by simple mean divide standard deviation does 

show the quality of the images, but not for the quality of signal of interest (i.e., BOLD or 

neural signal). The variance of the BOLD activity in the resting-state fMRI is less than 10% 

among all even in the ultrahigh-field scanner. Therefore, for the quality of the fMRI data, 

analysis of variances obtained from data-driven analysis may provide useful measures 

including contrast-to-noise (CNR), motion-related variables, high-pass, and other artifacts 

(e.g., Marcus et al., 2013). For the quality assessment of diffusion MRI, the estimated 

motion, slice-by-slice outlier detections, CNR (for the diffusion weighted signal changes) 

are useful for presenting the data quality (e.g., Bastiani et al., 2009).

OUR RESPONSE: We thank the reviewer for this good suggestion. In the revised 

manuscript, we provide these quality assessments as suggested in the supplementary 

materials (see the response to major comment #2 above).

Line 139. The presented ICA components are very nice (Fig 2, S2). But the results are not 

showing any temporal features such as frequency spectrum. It is more informative to reveal 

the frequency spectrum for each component and show how they look like neural origin. It 

is questionable if the components E, F, P, S in S2 is really neural origin. The regressing 

ICA components to the unfiltered data can generate the time series data and frequency 

spectrum. It is also informative to demonstrate the representative noise or artifactual 

components in the supplements.

OUR RESPONSE: We provided the timeseries and frequency power plots of each 

component in supplementary Figure S5. All the components show neural-like patterns 

spatially (all peaks are located in the cortical or subcortical gray matter) and temporally (no 

patterns of artifacts or noises). See the previous response to major comment #2.

Line 150 ‘Default-model-like network (DMN)’ Default mode network? In line 15 in the 

legend of Figure S2, ‘default-network’ should be default mode network.



OUR RESPONSE: Thank the reviewer for pointing it out. We have corrected it in the 

revision. 

Line 240 ‘DCBC’. The distance and areas over the surface may be largely different 

between subjects, which are not well controlled or regularized unless individual surface 

reconstruction and surface registration were not performed.

OUR RESPONSE: Individual surface reconstruction and surface-based registration were 

not performed for the following reasons:

1) Because of gyrification, surface-based registration is a better solution than volume-

based registration for the human brain. However, in rodents and marmosets, the 

smooth brain didn’t provide sufficient contrast for surface-based registrations; The 

volume information is essential for the registration. Meanwhile, the inaccurate spatial 

smoothing issue caused by the gyrification for the volume-based method is not 

apparent for the smooth marmoset brain, and thus the advantage provided by the 

surface-based registration is limited.

2) The current surface reconstruction tool (for example, Freesurfer) was deeply optimized 

for the human brain. The surface reconstruction methods for animal data are far from 

robust, accurate, and automatic. They require extensive manual intervention to 

generate a useable but imperfect surface, including the most state-of-art tools and 

pipelines published in the recent special issue of Neuroimage (for NHP neuroimaging 

tools). This issue has been emphasized as a critical challenge in the PRIME-DE paper 

and workshop.

Because of the great technical difficulty and low benefits of surface-based methods, almost 

all rodent and marmoset neuroimaging studies adopted a volume-based approach for 

registration.

Indeed, the individual surface could improve the accuracy of the estimation of spatial 

distance. However, the DCBC comparison is across-parcellations (Fig. 4C) or within the 



same individual (Fig. 5D) rather than across-subjects. Each parcellation received a 

consistent influence from the individual surface variability and thus the conclusion that the 

MBMv4 has better DCBC than other parcellations is valid.

Line 335. ‘MBMv4 provides 335 a more accurate reflection of the functional parcellation of 

the cortex than current histology-based atlases’ - This is a bit sloppy statement, and any 

single modality of the brain metrics (including functional connectivity) may not provide 

perfect resolution of the cortical parcellations. For example, the histology data is more 

accurate than functional parcellations in some of the boundaries (e.g. V1/V2).

OUR RESPONSE: Thank you for pointing this out. We removed this statement in the 

revised manuscript.

Data acquisition:

The functional MRI acquisition protocols are not well harmonized between two scanners 

(ION vs NIH). There are many different parameters that significantly affect the quality of 

the data including static magnetic field, gradient strength, which may cause difference in 

SNR, tissue T1 and T2* value, B0 inhomogeneity & distortion. The transmission coil is also 

different between two institutions, causing substantial difference in B1+ field, and hence 

bias the homogeneity of the signal, SNR across space etc. Difference in B0 field and in TE 

of fMRI (18ms vs 22.2ms) should cause the differences in CNR (contrast-to-noise ratio) of 

the fMRI data, which is not clearly and carefully investigated. There is no way for the 

readers to estimate how B0 inhomogeneity-induced distortion is look like between two 

institutions, unless the original (distorted) image or estimated shift images are not 

presented. Distortion correction method, Topup or TORTOISE, is optimized for human 

brain by default, thus the authors should carefully describe if it was indeed effective enough 

for correcting distortion of the fMRI in the small brain. There is no information available for 

detailed scanning parameters including dwell time, which is needed for B0-susceptibility 

induced distortion correction with a blip-up blip-down method. Since the resource data 



does not include any detailed info on imaging parameter (including json files usually stored 

in the BIDS format), so the data cannot be properly analyzed or replicated by the other 

users. The previous public data for ex-vivo diffusion MRI (V1 and V2) does not also provide 

all the information on the scanning parameters including dwell time.

OUR RESPONSE: The parameter file used for EPI distortion correction are modified 

according to the marmoset brain size, spatial resolution and dwell time to achieve the best 

correction for the marmoset brain. We provided the topup config file in the revision so that 

users can adopted the config file to re-run and test the topup. Meanwhile, in the resource, 

we provided the raw data and the preprocessed data with topup correction, so that the user 

can directly evaluate the outcome of the EPI distortion correction. We also added a 

supplementary Figure S10 to show the data before v.s. after EPI distortion correction.

In the revised resources (under ““sequences folder””), we provide the raw method file from 

the Bruker scanner and generated the json file (by bruker-api), so that other users can 



replicate our results or propose better analysis methods than the ones used in the current 

paper.

The fMRI preprocessing is done by legacy method and likely not optimized for this species. 

Registration is an important treatment in the preprocess, and is highly dependent on the 

resolution of the data and object size, therefore it is obvious that the marm. The quality 

assessment of rfMRI is not carefully done. There are no descriptions on the animal’s 

compliance during scanning and whether their head was moved or not during scanning. 

No explicit artifact or noise removal is done in the first-level analysis, which is commonly 

done in recent human resting-state fMRI studies. Bandpass filtering (0.01 – 0.1Hz) in the 

initial preprocessing (line 620) is a bit outdated approach, since it loses the significant 

neural signals at >0.1 Hz. The resampling of the fMRI data to the standard space (line 624) 

is not done by concatenating all the transformation at a single step and likely excluding the 

distortion correction by Topup. No exploratory data-driven analysis is applied, thus

there is no way for the readers to see how much the rfMRI data is contaminated by any 

unexpected artifacts. The resting-state of subjects is hard to control the conditions of 

subjects particularly in animals. Therefore, data-driven approach like ICA is strongly 

recommended in the first-level analysis for estimating quality of the data, then needs to be 

applied for artifact removal. As long as the authors do not apply this approach, the group-

wise ICA analysis should also be contaminated by a large number of unexpected artifacts 

from each scan. It is strange that the authors apply a different or wider range of frequency 

in the post process analysis (0.04-0.07Hz in Line 858, 0.04-0.25Hz in Line 879).

OUR RESPONSE: Thanks for the reviewer’s question. We did a similar analysis on data 

without band-passing filtering, the results of brain parcellation and evaluation are similar 

as the current reported data with band-passing filtering (0.01-0.1Hz), and thus the signals 

of 0.1 – 0.25 Hz didn’t provide significant information for the parcellation. In our resources, 

we provided raw data and preprocessed data with/without temporal filtering. Thus, the 

users can easily use or reprocess the data for their specific purposes.



The ANTs are a general, flexible, and robust software for spatial registration and has been 

widely used in spatial normalization and template construction in all kinds of species (for 

example: marmoset (Liu, et al. 2021), macaque (Seidlitz, et al. 2018), tree shrew (Wang S, 

2013), rat (Johnson, et al, 2021), mouse, dog (Datta, et al, 2012)). and compatible well 

with our marmoset data. We concatenated the transformation of different stages of 

registration as much as possible. However, the afni and fsl transformation are not directly 

compatible with ANTs. Thus, we didn’t include the head motion correction and topup 

deformation in the concatenation. This would cause extra smoothing as multiple 

resampling were conducted, but considering the better volume-based registration outcome 

provided by the ANTs, the gains outweighed the losses.

Ref:

1) Liu C, Yen CC, Szczupak D, Tian X, Glen D, Silva AC. Marmoset Brain Mapping V3: 

Population multi-modal standard volumetric and surface-based templates. 

Neuroimage. 2021;226:117620. doi:10.1016/j.neuroimage.2020.117620

2) Seidlitz J, Sponheim C, Glen D, et al. A population MRI brain template and analysis 

tools for the macaque. Neuroimage. 2018;170:121-131. 

doi:10.1016/j.neuroimage.2017.04.063

3) Wang S, Shan D, Dai J, et al. Anatomical MRI templates of tree shrew brain for 

volumetric analysis and voxel-based morphometry. J Neurosci Methods. 

2013;220(1):9-17. doi:10.1016/j.jneumeth.2013.08.023

4) Johnson GA, Laoprasert R, Anderson RJ, et al. A multicontrast MR atlas of the Wistar 

rat brain. Neuroimage. 2021;242:118470. doi:10.1016/j.neuroimage.2021.118470

5) Datta R, Lee J, Duda J, et al. A digital atlas of the dog brain. PLoS One. 

2012;7(12):e52140. doi:10.1371/journal.pone.0052140

We tried the FSL ICA-FIX on the data for artifact removal, but we failed to obtain good 

results with ICA-FIX, as the tool is mainly designed for human data. Thus, we chose the 

traditional regression-based methods for artifact removal. In the future, if there are more 

deliciated tools developed for marmosets, we will try them and update the resource if better 

results are achieved. 



For the head movement, we provided the raw head motion files in the resource websites 

for each fMRI. Note that we used the same helmet-based method to constrain the animal, 

and the head-motion level has been evaluated and compared with headpost approach in 

our previous paper (Schaeffer, et al, 2021). 

Cited from Schaeffer DJ, Liu C, Silva AC, Everling S. Magnetic Resonance Imaging of 

Marmoset Monkeys. ILAR J. 2021 Feb 26:ilaa029. doi: 10.1093/ilar/ilaa029. Epub ahead 

of print. PMID: 33631015.

“It is strange that the authors apply a different or wider range of frequency in the post 

process analysis (0.04-0.07Hz in Line 858, 0.04-0.25Hz in Line 879).”

OUR RESPONSE: This two-frequency band is used for the modeling part, and we did not 

do any frequency filtering of our rsfMRI data when we applied it to our modeling simulation 

so that it would be in the full band. In our revised manuscript, we further remind the readers 

of this point in the Methods section. 

Therefore, to find the optimal parameter alpha in our Hopf modeling, we selected the power 



spectrum in the relevant band (0.04 to 0.07Hz) normalized by the power spectrum of the 

full range without low frequency (considering a fMRI acquisition of TR=2 s, 0.25Hz is the 

maximum frequency and 0.04 Hz lower boundary is acting as a high pass filter avoiding 

the low frequencies). 

Surface mapping of the volume data (e.g. fMRI) is likely not performed using the subject’s 

surface, thus is potentially bias the results of a large group-based functional connectivity. 

Surface mapping of the subject’s volume onto the average or the other subject’s surface 

should not be very precise given the fact that there is a significant intersubject variability of 

brain size and shape of this primate species as compared with rodents. There is no detailed 

explanation of the volume-to-surface mapping (line 629). How were the surfaces created 

and how they are well aligned with the subject’s fMRI and T2-weighted images?

OUR RESPONSE: Thank you for your suggestions. Individual surface reconstruction and 

surface-based registration were not performed for the reasons described in our response 

to a previous comment about DCBC.

This study uses the Marmoset Brain Mapping V3 (MBMv3) template for volume-based 

registration and the Connectome Workbench (wb_command -volume-to-surface-mapping 

function and ribbon constrained mapping algorithm) for the volume-to-surface mapping. 

The MBMv3 has a population-based T2-weight template image and brain surfaces. First, 

the subject fMRI was co-registered to the subject T2w image, and the subject T2w was 

registered to the T2w template of MBMv3. Then, the transformations were concatenated 

to normalize the subject fMRI data to the MBMv3 template space. Finally, the normalized 

subject fMRI data were mapped to the MBMv3 brain surface.

The method of the volume-to-surfacing had been described in lines 672-678 and discussed 

the limitation in the revision manuscript regarding the individual surface mapping (lines 

543-548): “Fourth, as robust surface reconstruction tools were not available for marmoset 

brains, we didn’t perform analysis on individual surfaces. Pooling all data onto the 



population-based surface may lose the information of individual variability on brain 

morphology and reduce the accuracy of individual functional connectivity calculation and 

evaluation, for example, the DCBC index. Thus, automatic surface reconstruction is highly 

demanding for marmoset neuroimage studies.”

Diffusion MRI. There are no careful descriptions whether the package of TORTOISE is 

used as is or optimized for the marmoset data. The image registration may be dependent 

on a global optimization technique that relies on the resolutions during iterative aligning 

processes. The optimality of the distortion correction by the blip-up and blip-down method 

may need to be carefully described. Nothing was described about what kind of tractography 

method was applied (line 639).

OUR RESPONSE: Thank you for pointing this out. TORTOISE was used as is. The 

TORTOISE was developed by a lab at NIH that also performed many animal-based studies 

and thus it was developed to be used as an animal-friendly package. Although small bugs 

existed in the earlier version for the marmoset data, they have been fixed in the current 

version used here (v3.1). For the tractography, we used the default iFOD2 (Second-order 

Integration over Fiber Orientation Distributions) methods of Mrtrix3. The tracking method 

details were described in the revised manuscript (lines 687-698): 

“The response function of each preprocessed diffusion MRI data was calculated by the 

“dhollander” method of the “dwi2response” command, and then the fibre orientation 

distributions (FOD) were estimated using spherical deconvolution by the multi-shell multi-

tissue CSD method of the “dwi2fod” command. Finally, region-to-region tractography was 

performed using the iFOD2 method of the “tckgen” command. For each pair of cortical 

regions, diffusion tractography was conducted by using one region as the seed and the 

other as the target, and vice-versa. Thus, each pair of regions generated two sets of 

tracking probability maps, which were normalized by total streamlines selected, and the 

two probability maps were averaged into a single map to represent the final map of the 

connection of the two regions. Finally, all pairs of connections formed the whole cortical 



structural connectome for computational modeling.”

Neural tracing data: the mapping method of the neuronal tracing data onto the MTR 

template is not very clear. How accurate was the registration between the neuronal tracing 

data and MTR template? There are no visual presentations nor quantitative assessment 

on the validity of the registration. In particular, it is informative to present whether cortical 

boundaries of the tissue sections were properly aligned with the MRI template. No 

information is available about which cost function and registration method (linear vs 

nonlinear, DOF) was applied.

OUR RESPONSE: Thanks for your suggestions. The registration methods between MRI 

and Nissl templates were described in our previous method paper (Majka et al, 2021). We 

adopted a similar approach in the current study, using SyN transformations, CC similarity 

metric (cost function), and three-stage iteration alignments (rigid alignment (dof 6), affine 

alignment (dof 12) and non-linear SyN transformations). In the revised manuscript, we 

added these details (lines 713-717) and a new supplementary Figure S11 to demonstrate 

the validity of the registration visually.



Figure S11. The registration of the histological NM template to the MBMv3 MRI 

template. The underlay is the T2w template of the MBMv3, and the overlay is the outline 

of the histogical NM template that is transformed on the MBMv3 template space. The 

outline is generated by the @AddEdge function of the AFNI (using default setting).

Ref: Majka, Piotr et al. “Histology-Based Average Template of the Marmoset Cortex With 

Probabilistic Localization of Cytoarchitectural Areas.” NeuroImage vol. 226 (2021): 117625.

Group-ICA. Please properly describe which of NIFTI volume or CIFTI data the authors 

used for their group-wise ICA analysis using GIFT. Also please clarify if each scan data 

was normalized by the variance and its mean signal was removed before feeding into group 

ICA. The classification of the components (neural or noise) is likely done only based on the 

spatial distribution. This is a bit tricky because some of components even located within 

the brain may be associated with pulsation of the brain tissue (i.e., periodic movement). 

Frequency spectrum and time series signal may be presented for each component.



OUR RESPONSE: We used the NIFTI volume data for the group-wise ICA analysis. We 

adopted the default normalization method of GIFTI ("remove means per timepoints”). We 

also tested other normalization methods implemented in the GIFTI, which generated 

similar results. All components can be detected regardless of the normalization methods. 

As a software aimed for group-ICA analysis, the GIFTI handled the normalization well. We 

provided each component's time series and frequency power plots in the supplementary 

Figure S5. All the components show neural-like patterns spatially (all peaks are located in 

the cortical or subcortical gray matter) and temporally (no patterns of artifacts or noises).

Line 850. ‘while brain parcellations’. I’m wondering if the authors would really discuss whole 

brain parcellations including cortical and subcortical parcellations.

OUR RESPONSE: I am sorry for our misleading. The parcellation didn’t involve subcortical 

regions. Therefore, we modified the manuscript “whole-brain parcellations” to “cortical 

parcellation”.

Line 851. ‘232 brain regions per hemisphere from Paxinos Atlas’. Is this number correct? 

Does this number include both cortical and subcortical structures?

OUR RESPONSE: Thank the reviewer for pointing this out. I am sorry for our unclear 

description. We have corrected in the manuscript: “116 cortical regions per hemisphere 

from Paxinos Atlas.” For the Paxinos atlas, there are 232 cortical regions (116 per 

hemisphere). This number does not include the subcortical structures.

Reviewer #2 (Remarks to the Author):

Review of “An integrated resource for functional and structural connectivity of the 

marmoset brain” by Tian and colleagues.



The authors provide a huge comprehensive data set acquired in marmosets encompassing 

awake resting state fMRI, in-vivo DTI, high resolution ex-vivo DTI and a large collection of 

neuronal tracing data. Moreover, the authors relied on this massive data set, in combination 

with deep learning and computational modelling, to propose a parcellation scheme of the 

cortex and to link anatomical properties with functional connectivity measures. This is an 

exquisite data set that will become an important tool for many nonhuman and human 

primate researchers which will also improve homology research. Despite the complexity of 

the data and some of the analyses, the authors were able to summarize them in a succinct 

and very accessible manner. The analyses are state-of-the-art. I highly support publication 

of this manuscript and only have a few questions and/or suggestions which may improve 

the manuscript:

OUR RESPONSE: Thank you very much for your encouragement. We have rewritten the 

Results and Discussion sections of the manuscript in addressing all your comments.

Fig. 2A-O: I am surprised by the ‘locality’ of the different functional networks. In humans 

and macaques, resting state based functional networks typically consist of multiple 

anatomically segregated subunits. In this case, mainly singular nodes are apparent (except 

for panel J?). How is this explained?

OUR RESPONSE: Thank you for your suggestions. Among the 15 cortical networks, there 

are 7 functional networks (G, I, J, K, L, N, O) involving long-distance connectivity 

(anatomically segregated subunits). The reason that the networks appeared to be “locality” 

(but not really) is due to the relatively small size of the prefrontal cortex compared with 

macaque and in particular, humans. Thus, many small components didn’t catch one’s eye.

However, for all marmoset studies published so far (including the current study), the 

identified high-level association networks in marmosets are not as diverse as in humans. 

For example, we believe the networks I and J can be decomposed into default-mode, 

dorsal, ventral, frontal-parietal, and central executive networks in humans. But we were not 



able to dissociate these networks in marmosets. This concatenation of marmoset networks 

may be attributed to evolutionary differences. Alternatively, it may be influenced by the 

limited fMRI spatial resolution (0.5 mm isotropic) relative to the size of the marmoset brain, 

although this is presently the highest resolution available. 

From an esthetic point of view: why is the background in panels 2I-O grey? I would use the 

same background in all panels.

OUR RESPONSE: We appreciate the reviewer for making this suggestion. We changed 

all panels into the same white background.

2. Fig 2P, Q: It is unclear how the two network-parcellation maps are created (this was also 

not clear from the methods section) and more importantly how they relate to each other.

OUR RESPONSE: Thank you for pointing this out. We apologize for our unclear description 

in Methods, which we have revised in the manuscript (lines 739-746). We described the 

creation of the network-parcellation methods as follows: First, we combined the 15 cortical 

networks according to their spatial locations. Second, we took the highest values according 

to their normalized Z scores from ICA if they have spatial overlapping. We obtained short-

range network parcellation based on the above steps (Fig. 2P). However, short-range (local) 

connectivity usually is stronger than long-range connectivity. Therefore, when overlapping 

two ICA components, regions with long-range connectivity may be covered by the short-

range network parcellation. Thus, we created a second map for the long-range parcellation 

to cover all network components. We repeated the above step but only applied to networks 

with long-range connections (Fig. 2I-K) to obtain a second network parcellation.

3. Line 200-207. I’m puzzled by the seemingly higher intra-subject than inter-subject 

variability. Given the fixed anatomy (within a subject), which may differ from that in other 

subjects, this is difficult to understand. Moreover, this also poses problems for ‘within’ 

subject research -e.g. where one aims to relate boundary maps with task-based 



information, injections, electrophysiological recordings, etc. Please discuss.

OUR RESPONSE: Thanks for the reviewer’s valuable suggestions. This is because the 

boundary map has a big variation within a subject with a different number of runs (see Fig. 

2E). Thus, here mapping the population-based atlas to a single session within a subject 

would result in a relatively large variation because of the different number of runs between 

sessions. However, as we demonstrated in supplementary Fig. S8, it does not influence 

the functionally related information change in the parcel. Thanks for the reviewer’s 

suggestions, in the future, we will make more effort to figure out how many runs will be 

enough for the data reliability.

4. 229: Please explain exactly what is meant by ‘semi-manual optimization’. This was also 

unclear from reading the methods section. This may lead to reproducibility issues. Please 

discuss what exactly is done manually and whether this imposes methodological limitations.

OUR RESPONSE: We apologize for our unclear description, and we have updated the 

manuscript in lines 796-799. A detailed description of manual adjustments is as follows:

1) Since the thicknesses of boundaries are different, we might need to manually adjust the 

parcel borders after the automatic parcel generation.

2) The uneven region growing method might result in incorrect attributions within a parcel. 

So we have to examine and manually correct these errors.

3) According to the boundary map, we need to perform a spatial smoothing of parcel 

borders (here, we used the 8-neighbor spatial smoothing method). 

Because the above procedures are all related to computer vision, we will need to improve 

our algorithms for processing 3D imaging data and introduce more efficient automatic 

processing methods in the future.

5. Fig 6A and B (scatter plots). It is unclear what exactly is plotted. Also, what is the color 

(MBMv4) and grey-scale (Paxinos) mean in panel B?



OUR RESPONSE: We apologize for our unclear description. In Fig. 6A (left panels), these 

gray curves on the flat brain map present the borders of brain regions or the generated 

parcels from different atlases (Paxinos atlas and our MBMv4 atlas). The foreground of red 

regions is the fMRI activation patterns when the animals watched 20s visual movie clips. 

To demonstrate the functional prediction of our atlas, we calculated the match between the 

border of functional activation and brain regions/the generated parcels. In other words, for 

every voxel from the border of the functional activation pattern, we can calculate its shortest 

Euclidean distance with the borders of brain regions from Paxinos atlas or the borders of 

generated parcels from MBMv4 atlas. The results are shown in the right panels (scatter 

plot). To quantify the effect, we fitted all rasters and made a regression. The dashed black 

line represents the diagonal line, and the red line represents the linear fitting line. The linear 

fitting line is toward the side of MBMv4 atlas, so it means that MBMv4 indeed has a high 

match compared with the Paxinos atlas.

For Fig. 6B (gradient show), we labeled the voxels in the same spatial gradient with a color 

scale (from light to dark) according to the scores of the 1st gradient. You can find three 

colors in MBMv4 (yellow, green, and purple). However, for the Paxinos atlas, we cannot 

reconstruct such gradient effects so that they are all in one color (gray).

6. In several locations (e.g. line 379) the authors mention that MBMv4 offers an alternative 

view on understanding the functional connectivity of a brain. This is a crucial statement. 

What exactly is meant? How can one relate both views? Is one ‘better’ (ground truth?) than 

the other? Is it reflecting the difference between anatomical versus functional connectivity? 

Or a difference in ‘sampling efficiency’? Or? Please discuss in depth.

OUR RESPONSE: Thank you for these comments.

1) Since the brain function is generally implemented across spatial-temporal dimensions, 

measuring it from different scales is necessary. Therefore, our MBMv4 offers the brain 

description on a scale of functional-connectivity architecture.



2) Structure-function connectivity is related to each other. Our MBMv4 might offer an option 

for us to investigate this relationship. As the reviewer said, MBMv4 reflects the difference 

between anatomical features versus functional connectivity (the related discussion has 

been shown in lines 485-486). 

3) The classic atlas, such as Paxinos Atlas, is based on cytoarchitectonics. Since that, it 

cannot reflect individual differences. However, our MBMv4 using a non-invasive MRI 

imaging technique catches the individual “functional differences” to some extent. Therefore, 

it offers an option for us to investigate individual brain functions.

In sum, in our opinion MBMv4, to some extent, reflects some combination of direct and 

indirect structural connectivity according to our modeling simulation and also the statistical 

history of functional coactivations according to the task verification.

7. Related to the previous point: Different parcellations can be obtained with different 

measures (e.g. rs functional connectivity, anatomical connectivity, cyto-and myelo-

architectonics, etc..). It would be highly informative if a few obvious parcels where all 

measures match and where measures don’t match are described/shown in more detail (not 

using the whole-brain overviews).

OUR RESPONSE: We have discussed the parcels that do or do not match the structure 

(see our discussion line 486-497). For example, in our MBMv4, the somatomotor cortex is 

parcellated into parcels across multiple areas of the facial, forelimb, and trunk 

musculatures. If we look at V1/V2 region, some parcels follow the representation of 

eccentricity in the visual field, especially for the foveal, and some are not. We consider this 

is because our MBMv4 is only based on resting-state fMRI. Some topographically 

organized cytoarchitectonic areas could be dissociated from the resting-state functional 

responses. In the future, we will make more effort to detect these differences. 

8. The study revealed more functional networks and more parcels than previous marmoset 

studies. Does one expect these numbers to grow when higher spatio-temporal resolution 



data can be acquired in the future? In other words, to what extent are these parcels 

dependent on the type of measurements? This is important from a theoretical point of view 

as one (implicitly) creates the impression that the current processing modules are the ones 

determining cortical functioning. But what if one misses the really important modules (e.g. 

columnar like) simply because of current technical limitations?

OUR RESPONSE: We believe with higher spatiotemporal resolution and more fMRI 

modality (task-based fMRI like human studies), we can get a greater number of parcels 

(more detailed parcellation). Although we were able to acquire most state-of-art awake 

resting-state fMRI dataset of marmosets, the current 0.5mm isotropic spatial resolution 

was still not enough to map the functional network and parcellation in the small marmoset 

brain, especially for the complex but small prefrontal cortex. We discussed the limitation in 

the revised manuscript (lines 541-543): “Third, although the resource provided the most 

state-of-art awake resting-state fMRI, the 0.5mm isotropic resolution may not fully capture 

the functional-connectivity patterns of the small marmoset brain, because of current MRI 

technical limitations.”

9. Line 506: I guess inter-subject is meant instead of intra-subject?

OUR RESPONSE: Thanks for pointing out this typo. It was corrected in the revision. 

10. Line 533: sentence is not clear.

OUR RESPONSE: The sentence was revised to “Because neuronal tracing data revealed 

true directional anatomical connections, which is the unidirectional diffusion tractography 

may not capture. the intactness of the neuronal tracing data is helpful for an accurate 

mapping of the structural connectome.”

11. Line 724: why is the 60th percentile used?

OUR RESPONSE: We followed the rule in the original paper of boundary map and found 

it has a good performance with our marmoset dataset (Gordon, cerebral cortex 2016). 



12. Line 793: Please explain the visual-choice task. I guess this was not a free-viewing 

movie task?

OUR RESPONSE: The data was recycled from our recently published paper in Cerebral 

Cortex 2021 (The Brain Circuits and Dynamics of Curiosity-Driven Behavior in Naturally 

Curious Marmosets). We designed the delayed free-choice task (Fig. 1A in the manuscript), 

and Marmosets had to choose between two target images after watching a short movie 

clip (20sec). Here, we only took the fMRI activation pattern during 20s movie watching, 

during which the animal cannot make eye movements out of the screen (eye field is 10 

deg × 8 deg).



REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

The reviewer appreciates the authors’ efforts in revising the manuscript. The manuscript now added the 

quality assessment of the data (S2, S3, S6), which are informative for those who want to use data. 

Unfortunately, there are no attempts in this revision to applying denoise and harmonization of the fMRI 

datasets across sites/scanners, which significantly loses the impact of this manuscript. Figures added in 

this revision indeed suggest the noise or bias are significantly left unremoved in these datasets. Despite 

of their importance, preprocessing including registration and standardization is not pipelined, thus users 

who download MBMv4 parcellation cannot replicate embedding of their own imaging data to the 

standard coordinates where MBMv4 parcellation was carried out. The parcellations are done on purely 

data-driven approach without any validation by comparing with histology and tracer data. Overall, data 

looks great, but preprocessing is not complete, thus it is not clear what is the scientific novelty. 

Therefore, the reviewer recommends the authors to share the current codes of preprocessing and 

explicitly describe the limitation of the MRI preprocessing, when the data is made publicly available. 

As for structural imaging of T1w and T2w, the authors presented simulation data in the rebuttal that the 

T1w scanning does not work well in 9.4T as compared with 3T due to elongation of T1 at ultra-high field, 

which is well known phenomena. However, the point is whether T2w image at ultra-high field really has 

enough high contrasts of brain structures (e.g. gray matter/CSF contrast, gray/white matter contrast) for 

achieving good cross-subjects alignments of the brain areas. The dMRI may be much better for 

gray/white matter contrast, and probably useful for cross-subject registration. It is good to demonstrate 

the histogram of the brain signals of T1w, T2w and dMRI volumes separately in the same subject. In 

addition, T2w signal may be affected mainly by (tissue) water fraction, T2* signal may be affected by the 

iron deposition and myelination, thus T2w may not be a good indicator of brain structure. 

The results added in this revision (Fig. S2 and S6) demonstrate incompleteness of denoising and 

ambiguity of site/scanner differences. In Fig S2, it is not well understandable why the signal-to-noise 

ratio (SNR) is same for the same resolution (0.5mm) of EPI sequence between two sites (NIH vs ION) 

despite of differences in strength of static magnetic field (7T vs 9.4T, respectively). Interestingly, CNR of 

functional MRI used contrast of gray/white signals, which is not a good indicator of the quality of the 

functional MRI. Grey/white contrast is widely used for structural MRI, because the structural images are 

commonly used for registration, segmentation, and surface estimation based on the contrast of 

gray/white matter. In case of fMRI, it is common to have interests in the blood-oxygen dependent 

‘neural’ signals, e.g., beta of ‘neural’ activity in the task fMRI statistical model or the variance of the 

resting state fMRI component are optimal contrasts of interests for estimating CNR of fMRI. In addition, 

there are not any assessments of ‘noise’-like features in the fMRI datasets, which can be estimated by 



applying the first-level ICA and estimating variance of noise-like components. Indeed, Fig S1 shows that 

there are significant slice-by-slice artifacts in the temporal SNR maps in both sites, which can be 

estimated by applying the first-level ICA and even removed by regressing out the spatio-temporal 

component. In Fig S6, the authors revealed the signal-time series data, frequency spectrum data for 

signal components of group-wise ICA. However, the frequency spectrum does not very clearly show the 

‘neural like’ features and likely have contamination of very low frequency noise. In particular, D, E, F, R 

are questionable if they are really neural, while B, I, J, K seem most promising neural components. With 

so much thresholding, it is hard to know what is going on in most of areas. It is also strange that there is 

significant frequency band > 0.1 Hz although the authors described that band pass filtering (0.01 – 0.1 

Hz) (but w/o nuisance regression) was applied before feeding into ICA. When applying ICA, removal of 

the brain signal mean is not very good idea because of difference in the biasfield across runs, and 

potential bias by global signal removal. The mean brain signal needs to be normalized to a fixed value 

(e.g. 100 in SPM or 10000 in FSL, HCP), followed by removal of the timeseries mean, detrending of 

signals and cross-run variance normalization are recommended. 

Although the reviewer pointed out the potential difference of functional connectivity between 

sites/scanners (Fig. 3, S6), it is unfortunate that the authors did not assess the effect of the 

sites/scanners on the FC connectome or similarity of FC connectome between sites/scanners in this 

revision and no attempts were made for denoising and harmonization of the data across sites/scanners. 

This is probably the most significant drawback of this paper, since the valid analysis of the resting-state 

fMRI data relies on the ability to remove any potential noises and biases, since a major part of the fMRI 

signal variance (> 90 %) is dominated by structured and random noise. 

Dependence of the relationship between simulated and empirical FC on distance (Fig S9) is interesting. It 

demonstrates that major part of the variance of simulated functional connectivity (based on dMRI) is 

explained by the distance while this is not true when FC was simulated using neural tracer. This indicates 

correlation between simulated and empirical FC (Fig 7E) is largely dependent on distance via the error 

propagation from dMRI tractography. However, since a part of the authors demonstrated in their recent 

study that neural tracer data of marmosets reveals exponential distance rule (EDR) (Theodoni et al., 

2022) like in other species (macaque and rodent), the issue of distance-dependency of dMRI 

tractography may be carefully managed before simulating FC. 

As for asymmetry of the marmoset brain, reviewer described in the prior revision that it may be to a 

much smaller extent than in humans. However, the data in the revised manuscript does not address this 

issue. While number of parcellations was the same between hemispheres, there is likely left vs right 

differences in the cortical boundary maps in Fig 3. There is possibility that the areal size of the parcels 

may be different between hemispheres, but it was not evaluated in this revision. This can be achieved 

by invert warping the standard average surfaces to the subject’s native space and calculating the surface 

areas of each parcel in subject’s native space. The authors may want to make it clear if asymmetry is 

really smaller than in humans. 



Reviewer #2 (Remarks to the Author): 

The authors carefully addressed all concerns of myself and the other reviewer. I don't have further 

questions 



We thank all the reviewers and the editor for their strong encouragement and support of 

our manuscript. In what follows, we provide point-by-point responses to reviewer#1's 

concerns. The review comments are in black font, and our responses are in blue. The 

resulting edits of the original manuscript are highlighted in red font in the revised 

manuscript. 

Besides resolving the reviewer's comments, we also improved our resource by adding an 

online connectome viewer to allow the user to explore different connectomes reported in 

our paper: connectome.marmosetbrainmapping.org

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

The reviewer appreciates the authors' efforts in revising the manuscript. The manuscript 

now added the quality assessment of the data (S2, S3, S6), which are informative for those 

who want to use data. Unfortunately, there are no attempts in this revision to applying 

denoise and harmonization of the fMRI datasets across sites/scanners, which significantly 

loses the impact of this manuscript. Figures added in this revision indeed suggest the noise 

or bias are significantly left unremoved in these datasets.

We should express many thanks to the reviewer. With valuable comments, we made more 

assessments and quality control in the previous and current revisions to guarantee the 

usability of our data. In fact, we realized the "harmonization" or "reproducibility" when we 

started the data acquisition in 2018, right after the PRIME-DE data was released (Milham 

et al., 2018). Therefore, we made a lot of efforts to make the datasets comparable and 

compatible, including similar awake training and data acquisition protocols. As a result, if 

compared with the early PRIME-DE, there has been a great improvement in our research 

work. Furthermore, in the latest manuscript version, we also made a considerable effort to 

http://connectome.marmosetbrainmapping.org/


provide new results as much as possible to demonstrate the reproducibility and denoising 

between two datasets, including the results of a previous revision (different types of QA: 

SNR, tSNR, head motion, QA reports from AFNI and TORTOISE), the quantification of ICA 

components (CNR of components), the ICA components under different preprocessing 

(different normalization and noise estimation), and the comparison of the functional 

connectome across sites/scanners, etc. Therefore, the "harmonization" or "reproducibility" 

might not be the weakness, but the strength of our resources compared with previous NHP 

fMRI resources, especially after the improvement by following the reviewer's valuable 

suggestions.

However, we must admit that data harmonization and denoise is a quickly developing field, 

especially with the open resource of the primate MRI from multiple sites. In particular, a 

recent review paper published by Autio et al., 2021, comprehensively describes the 

minimal specifications for the non-human primate MRI, providing many useful guides for 

the non-human primate MRI data collection and analysis. Unfortunately, compared to the 

latest guides, our research work cannot fully follow the same practices because of practical 

difficulties (we completed the data collection before 2021 and the technical support), such 

as the lack of T1w images and parts of QA assessment in our original submission. 

In our latest manuscript version, we purposely opened a subtitle in Discussion (Specific 

limitations) to discuss these limitations and emphasized the importance of this effort we 

should make in the future. Lines 557-606.

Despite of their importance, preprocessing including registration and standardization is not 

pipelined, thus users who download MBMv4 parcellation cannot replicate embedding of 

their own imaging data to the standard coordinates where MBMv4 parcellation was carried 

out. The parcellations are done on purely data-driven approach without any validation by 

comparing with histology and tracer data. Overall, data looks great, but preprocessing is 

not complete, thus it is not clear what is the scientific novelty. Therefore, the reviewer 

recommends the authors to share the current codes of preprocessing and explicitly 



describe the limitation of the MRI preprocessing when the data is made publicly available.

We are sorry for our unclear in the last version. Indeed, we have provided the instructions 

for the data preprocessing pipeline on the resource website (ReadMe sections). In addition, 

in this latest revised manuscript, we uploaded the preprocessing code 

(“MBMv4_preprocessing_pipeline.zip”) into the “Codes” folder so that the users could 

replicate our protocol (https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html).

As for the preprocessing pipeline, we have closely collaborated with AFNI for a long time. 

The AFNI provided an easy-to-use automatical python wrapper afni_proc.py to generate 

different fMRI pipelines for different kinds of data. AFNI programs are generic image 

processing and mathematical analysis tools. Since few places need to define the species, 

the whole processing is friendly for the animal dataset. The wrapper automatically 

generated our pipeline (except that we added FSL-topup into the pipeline). All of them can 

be found in our example codes or instructions.

However, we admitted the shortages of our current preprocessing pipeline regarding our 

denoising approach compared with the HCP pipeline and widely discussed them in our 

latest manuscript version (Line 586-593). 

" A third refers to data preprocessing and denoising. The human connectome project (HCP) 

has released a sophisticated and standardized pipeline for denoising by ICA-FIX (Glasser 

MF, et al. 2013). Recently, the HCP-style pipeline was successfully transferred to the 

application of the macaque brain (Autio JA et al. 2020, 2021) and significantly accelerated 

the comparative studies between NHP and humans. As a marmoset version of ICA-FIX 

was unavailable, we adopted the traditional preprocessing method to denoise resting-state 

fMRI data. Therefore, developing HCP-style pipeline of the marmosets will be important to 

fully reveal the functional connectivity patterns of marmoset brains"

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


Reference:

Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for 

the Human Connectome Project. Neuroimage. 2013;80:105-124.

Autio JA, Glasser MF, Ose T, et al. Towards HCP-Style macaque connectomes: 24-

Channel 3T multi-array coil, MRI sequences and preprocessing. Neuroimage. 

2020;215:116800.

Autio JA, Zhu Q, Li X, et al. Minimal specifications for nonhuman primate MRI: Challenges 

in standardizing and harmonizing data collection. Neuroimage. 2021;236:118082.

As for structural imaging of T1w and T2w, the authors presented simulation data in the 

rebuttal that the T1w scanning does not work well in 9.4T as compared with 3T due to 

elongation of T1 at ultra-high field, which is well known phenomena. However, the point is 

whether T2w image at ultra-high field really has enough high contrasts of brain structures 

(e.g. gray matter/CSF contrast, gray/white matter contrast) for achieving good cross-

subjects alignments of the brain areas. The dMRI may be much better for gray/white matter 

contrast, and probably useful for cross-subject registration. It is good to demonstrate the 

histogram of the brain signals of T1w, T2w and dMRI volumes separately in the same 

subject. In addition, T2w signal may be affected mainly by (tissue) water fraction, T2* signal 

may be affected by the iron deposition and myelination, thus T2w may not be a good 

indicator of brain structure.

We appreciated the reviewer's concern regarding the registration and the value of T1w 

images, considering the large anatomical variability of the marmoset brain. We also agreed 

with the reviewer that T1w is a better indicator of brain structures than T2w; Recently, Ose 

et al. also published a valuable and significant paper in this field to indicate that T1w will 

help classify brain structures and registration as well as the evaluation of the marmoset 

brain parcels.



Unfortunately, not all of our marmosets in our fMRI resources have the T1w scanned for 

practical reasons since this project started in 2018 and ended during COVID pandemics. 

However, as the reviewer concerning registration accuracy, based on what we have, we 

purposely compared the performance of the registration of the T1w image and T2w image. 

Based on our multi-modal surface template of MBMv3 (Liu et al., 2021 Neuroimage), the 

registration results of the T1w image and T2w image are almost identical by using ANTs, 

regardless of whether the skull was removed (see the below figure for an example subject). 

We also uploaded all exemplar data and registration test results under the link “T1w and 

T2w Registration Rest” 

(https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html). So It is easier to 

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


load these images into one image viewer and check the registration results.

The underlay is the subject T2w image transformed in the MBMv3 space, and the overlay 

is the outline of the T2w template of the MBMv3. The outline is generated by the 

@AddEdge function of the AFNI (using the default setting).

In addition, because of this shortage of our resources, we reported the research progress 

in solving the anatomical variability of marmoset brains by T1w image and reminded the 

necessity of T1w image in our revised manuscript:

In the discussion, Line 569-576 

"In addition, the resource did not contain the T1w images, as the T2w images were more 

commonly used for small animal imaging using ultra-high field MRI. However, with better 

tissue contrasts than the T2w images, the T1w images are more commonly used in human 

neuroimaging studies and can improve brain tissue segmentation, spatial registration, and 

myelin maps' estimation (Ose T et al. 2022). Therefore, the T1w images should be 

considered in the future for a more accurate preprocessing and comparative studies across 



species.”

Reference: 

Ose T, Autio JA, Ohno M, et al. Anatomical variability, multi-modal coordinate systems, and 

precision targeting in the marmoset brain. Neuroimage. 2022;250:118965.

The results added in this revision (Fig. S2 and S6) demonstrate incompleteness of 

denoising and ambiguity of site/scanner differences. In Fig S2, it is not well understandable 

why the signal-to-noise ratio (SNR) is same for the same resolution (0.5mm) of EPI 

sequence between two sites (NIH vs ION) despite of differences in strength of static 

magnetic field (7T vs 9.4T, respectively).

Although the 9.4T has a stronger magnetic field than the 7T, our 7T scanner comes with 

stronger and smaller gradients (450 mT/m, 15 cm) than the 9.4T scanner (300 mT/m, 20 

cm). Therefore, we pushed the TR/TE to a limit for both scanners to obtain the best fMRI 

data. Under the current TR/TE, however, the gradient of the 9.4T scanner is not strong 

enough to implement the Bruker sampling technique (double sampling) because of the 

duty cycle. Thus, the 7T gradient compensated for the weaker magnetic field and improved 

the SNR. In addition, we provided the raw Bruker method file from both scanners in the 

resources, and the MRI physicists can easily import the method file into their Bruker 

scanner for usage.

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html

Meanwhile, the RF coil of 7T is slightly better than the 9.4T coil due to a small difference 

in the coil case. Both 7T and 9.4T RF coils were made by the same design and person 

(Daniel Papoti from Silva lab; Papoti, et al, 2017). For the ION 9.4T coil, we added an extra 

3D-printed plastic case to protect the coil loop. In contrast, we removed the case for the 

NIH 7T coil, and the coil loops were directly wrapped with soft plastic skin; thus, it was 

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


closer to the animal head and provided better SNR, although the coils were almost identical. 

Because of these differences in MRI gradient and coil protection cases, the weaker 7T 

achieved similar fMRI imaging quality to the 9.4T. 

Reference: 

Papoti D, Yen CC, Hung CC, Ciuchta J, Leopold DA, Silva AC. Design and implementation 

of embedded 8-channel receive-only arrays for whole-brain MRI and fMRI of conscious 

awake marmosets. Magn Reson Med 78, 387-398 (2017).

Interestingly, CNR of functional MRI used contrast of gray/white signals, which is not a 

good indicator of the quality of the functional MRI. Grey/white contrast is widely used for 

structural MRI, because the structural images are commonly used for registration, 

segmentation, and surface estimation based on the contrast of gray/white matter. In case 

of fMRI, it is common to have interests in the blood-oxygen dependent 'neural' signals, e.g., 

beta of 'neural' activity in the task fMRI statistical model or the variance of the resting state 

fMRI component are optimal contrasts of interests for estimating CNR of fMRI. 

Thanks for the reviewer's corrections. Here we calculated the variance of the resting-state 

fMRI components to estimate the CNR of fMRI. They do not have apparent differences 

across sites/scanners. Below is the CNR of the four exemplar components that the 

reviewer labeled neural components (also as shown in the supplementary Fig. S7).



We selected four ICA components from our network results (B: the dorsal somatomotor I: 

the frontoparietal, J: the default-model, and K: the visual-related network) and compared 

their temporal CNR between the two datasets. No significant difference was found between 

the two sites (The Wilcoxon rank tests, p>0.05, N-ION=346, N-NIH=364).

In addition, there are not any assessments of 'noise’-like features in the fMRI datasets, 

which can be estimated by applying the first-level ICA and estimating variance of noise-

like components. Indeed, Fig S1 shows that there are significant slice-by-slice artifacts in 

the temporal SNR maps in both sites, which can be estimated by applying the first-level 

ICA and even removed by regressing out the spatio-temporal component. 



Thanks for the reviewer's suggestions. For the first-level ICA, we provided an example of 

first-level ICA on a single run, under the link “Single Run FSL-ICA” of

(https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html). 

The ICA-FIX has been used to remove noise-like components in an HCP-Style sequence 

for macaques brain imaging (Autio et al., 2020). This is significant progress for non-human 

primate neuroimaging. Indeed, when we started this project, we made a lot of effort in this 

direction. But unfortunately, as we mentioned in the last manuscript version, we cannot get 

the satisfying results by FSL ICA for denoising our marmoset brain dataset. 

The reviewer may directly view the HTML report generated by the FSL of the exemplar ICA 

analysis on a single run:

The reasons might be:

1) the FSL ICA-FIX was highly optimized for the human brain, which needs the specific 

optimization of marmoset datasets; 

2) Most importantly, ICA-FIX also required training datasets where marmoset versions 

were still unavailable.

Therefore, we chose the traditional regression method based on AFNI to denoise the data, 

which had been used widely in many studies of different species and was recommended 

by the AFNI group. Meanwhile, we could also get technical support from the AFNI team to 

solve issues when working with the marmoset dataset. However, since optimizing ICA-FIX 

or HCP-style preprocessing for the marmoset dataset requires more technical support from 

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


FSL or HCP rather than AFNI-team and us, it will be an actual research effort for our future. 

Therefore, we will widely connect with other labs working on an HCP-style preprocessing 

pipeline and keep updating the resource.

In addition, we admitted the shortages of our current preprocessing pipeline regarding our 

denoising approach compared with the HCP pipeline and widely discussed them in our 

latest manuscript version (Line 586-593). 

" A third refers to data preprocessing and denoising. The human connectome project (HCP) 

has released a sophisticated and standardized pipeline for denoising by ICA-FIX (Glasser 

MF, et al. 2013). Recently, the HCP-style pipeline was successfully transferred to the 

application of the macaque brain (Autio JA et al. 2020, 2021) and significantly accelerated 

the comparative studies between NHP and humans. As a marmoset version of ICA-FIX 

was unavailable, we adopted the traditional preprocessing method to denoise resting-state 

fMRI data. Therefore, developing HCP-style pipeline of the marmosets will be important to 

fully reveal the functional connectivity patterns of marmoset brains"

References:

Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for 

the Human Connectome Project. Neuroimage. 2013;80:105-124.

Autio JA, Glasser MF, Ose T, et al. Towards HCP-Style macaque connectomes: 24-

Channel 3T multi-array coil, MRI sequences and preprocessing. Neuroimage. 

2020;215:116800.

Autio JA, Zhu Q, Li X, et al. Minimal specifications for nonhuman primate MRI: Challenges 

in standardizing and harmonizing data collection. Neuroimage. 2021;236:118082.

In Fig S6, the authors revealed the signal-time series data, frequency spectrum data for 

signal components of group-wise ICA. However, the frequency spectrum does not very 



clearly show the 'neural like' features and likely have contamination of very low frequency 

noise. In particular, D, E, F, R are questionable if they are really neural, while B, I, J, K 

seem most promising neural components. With so much thresholding, it is hard to know 

what is going on in most of areas. 

Thanks for the reviewer's consideration. We had provided the un-thresholded ICA images 

for every component (named “atlas_MBMv4_networks_raw.nii.gz”) in our MBMv4 

resources: https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html

The example results of “questionable” components D, E, F, R are shown below:

We believed these components are neural-like signals, as these components were located 

in cortical gray matter regions and showed bilateral patterns (spatial patterns).

To further verify the possibility of contamination of very low-frequency noise, we also 

purposely re-performed the ICA on data with a high-pass filter (>0.01Hz).

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


Below are two examples of neural components, D (the “questionable” component) and B 

(the “promising” component), from the data with a high-pass filter (>0.01Hz). 

Below are the same examples of neural components D and B from the data without a high-

pass filter (from raw figures S6). 

Since the power peaks of these components are all above 0.01Hz, it is hard to say the 

contamination of very low-frequency noises. Therefore, we can still detect these four 

components after a high-pass filter (>0.01Hz). Furthermore. we have already tried to take 

the strict rule combining spectrum and spatial patterns to determine whether a component 

is neural or noise and our identified components should be reliable.

It is also strange that there is significant frequency band > 0.1 Hz although the authors 

described that band pass filtering (0.01 – 0.1 Hz) (but w/o nuisance regression) was applied 

before feeding into ICA. When applying ICA, removal of the brain signal mean is not very 

good idea because of difference in the biasfield across runs, and potential bias by global 

signal removal. The mean brain signal needs to be normalized to a fixed value (e.g. 100 in 

SPM or 10000 in FSL, HCP), followed by removal of the timeseries mean, detrending of 



signals and cross-run variance normalization are recommended.

Thank you for being so concerned. We did not apply any band-passing filtering on ICA. 

Instead, we fed into group-ICA for the data with minimal preprocessing (slice-time 

correction, motion correction, topup EPI distortion correction, and spatial registration). This 

part of the method had been described in the original manuscript, Lines 777-778 “First, 

preprocessed data without regression of nuisance covariates were group-ICA analyzed 

with increasing numbers of ICA components from 20 to 80 in steps of 10…”. The nuisance-

covariate regression included the band-pass filtering, which was treated as a regressor 

with other covariates. Sorry that the description was not clear and confused the reviewer. 

We modified it to a clearer statement: “First, preprocessed data without bandpassing and 

regression of nuisance covariates were group-ICA analyzed with increasing numbers of 

ICA components from 20 to 80 in steps of 10… ”

For the data normalizing, we also tested what the reviewer suggested, as well as other 

options of GIFTI, including "Remove Mean Per Timepoint - At each time point, image mean 

is removed.", "Remove Mean Per Voxel - Time-series mean is removed at each voxel", 

"Intensity Normalization - At each voxel, time-series is scaled to have a mean of 100." or 

"Variance Normalization - At each voxel, time-series is linearly detrended and converted to 

Z-scores (with mean brain signal scaled to 100)".` 

Despite preprocessing choices, we could obtain similar components described in the paper. 

We demonstrated four components (one local network B, one global network J, and two 

questionable networks D and E suggested by the reviewers) as examples here. The 

“Variance Normalization” has similar results as the "Remove Mean Per Voxel” and 

“Remove Mean Per Timepoint”.



Although the reviewer pointed out the potential difference of functional connectivity 

between sites/scanners (Fig. 3, S6), it is unfortunate that the authors did not assess the 

effect of the sites/scanners on the FC connectome or similarity of FC connectome between 

sites/scanners in this revision and no attempts were made for denoising and harmonization 

of the data across sites/scanners. This is probably the most significant drawback of this 

paper, since the valid analysis of the resting-state fMRI data relies on the ability to remove 

any potential noises and biases, since a major part of the fMRI signal variance (> 90 %) is 

dominated by structured and random noise.

We appreciate the reviewer's suggestions. To demonstrate the similarity of FC connectome 

between sites/scanners, we calculated the FC similarity (2-D correlation coefficient) across 

the subjects and the sessions from different sites/scanners (see below figure, also in 

manuscript supplementary figure S4).    



(A) The left heatmap represents the functional connectivity similarity matrix across subjects 

(we used the 2D Pearson correlation coefficient as the similarity metric). Subjects No. 1-

13 come from the ION dataset, and the rest subjects (No. 14-39) are from the NIH dataset. 

To demonstrate the high similarity across sites, we further made a histogram plot of the 

similarity metric for the subjects from the ION dataset (light blue), the NIH dataset (orange), 

cross ION-NIH dataset (Green). They present high similarity (ANOVA multiple comparison 

tests, df=2, F=0.92, p = 0.4008). (B) Same as the (A), we present the functional connectivity 

similarity matrix across sessions, Sessions No. 1-55 come from the ION dataset, and the 

rest sessions (No. 56-107) are from the NIH dataset. They present high similarity (ANOVA 

multiple comparison tests, df=2, F=97.63, p = 1.717) 

Dependence of the relationship between simulated and empirical FC on distance (Fig S9) 

is interesting. It demonstrates that major part of the variance of simulated functional 

connectivity (based on dMRI) is explained by the distance while this is not true when FC 

was simulated using neural tracer. This indicates correlation between simulated and 

empirical FC (Fig 7E) is largely dependent on distance via the error propagation from dMRI 



tractography. However, since a part of the authors demonstrated in their recent study that 

neural tracer data of marmosets reveals exponential distance rule (EDR) (Theodoni et al., 

2022) like in other species (macaque and rodent), the issue of distance-dependency of 

dMRI tractography may be carefully managed before simulating FC.

We appreciate the reviewer's suggestions. Before simulating FC, we now re-calculated the 

structural connectivity based on the exponential distance rule (EDR) (Theodoni et al., 

2022). The procedure was presented in the method part (lines 1024-1039)

“The resulting simulation of functional connectivity demonstrated the influence of the 

distance, especially for the diffusion MRI (see Fig. 7D). To decrease this impact maximumly, 

we added the Exponential Distance Rule (EDR) for a more accurate estimation of structural 

connectivity before the simulation. We first normalized the structural connectivity estimated 

by diffusion tractography to 0-1, then calculated the probability of structural connectivity 

according to the EDR rule (p(d)=ce−λd, λ≈0.3, c≈0.94 where d is the distance40) and also 

normalized to 0-1. Finally, we transformed the normalized structural connectivity to match 

the probability of structural connectivity. For simplicity, we defined a threshold as the 

Median Absolute Deviation for the normalized structural connectivity. If any value was 

larger than this threshold, it would be replaced by the corresponding probability of structural 

connectivity to reduce the impact of distance.”

The simulated results are shown in revised Fig. 7 (E,F), and described in results lines 440-

452: 



Figure 7. A computational framework links the structural-functional connectivity 

according to different parcellation. (A) The application of the whole-brain modeling, 

including the estimation of structural connectivity from the neuronal tracing, diffusion MRI 

(in-vivo or ex-vivo) according to the Paxinos atlas or MBMv4, the simulation of functional 

connectivity from structural connectivity by the Hopf bifurcation neurodynamical functions, 

and the similarity measure with empirical connectivity from resting-state fMRI. (B) 

Comparing the fitting effect based on Paxinos atlas and MBMv4 in different spatial scales. 

The round dot represents an example from individual in-vivo diffusion MRI, the polygon is 

from ex-vivo diffusion MRI, the star is from neuronal tracing, and the solid red line 

represents the diagonal line. (C) Examples of correlation between the simulated and 



empirical functional connectivity from (B); solid black lines represent marginal regression 

lines. (D) Comparing the fitting effect with (red) and without (blue) the correction by 

exponential distance rule (EDR). From left to right present the simulation results of the in-

vivo diffusion MRI from an example subject (solid circle in B), in-vivo diffusion MRI from all 

subjects (all circles in B), the ex-vivo diffusion MRI (the polygon in B), and the neuronal-

tracing dataset (the star in B). All dashed lines represent a 95% confidence interval. (E) 

Comparing the fitting effect with EDR correction based on Paxinos atlas and MBMv4 in 

different spatial scales. (F) Examples of correlation between the simulated and empirical 

functional connectivity from (E).

As the connection distance may affect the simulation results of the functional connectivity, 

we introduced the exponential distance rule (EDR) in the model to account for the distance 

effect (Fig. 7D), where the brain connection followed an exponential distribution of the 

projection length 38, 39, 40. Due to its inherent limitation for tracking long connections, the 

diffusion tractography were more affected by the distance for the modeling, where longer 

connections had lower FC fitting values (Fig. 7D). On the contrary, the modeling from 

neural tracing data was not affected by the distance, which suggested that the tracing data 

might be a more reliable bridge to link the structural and functional connections. Importantly, 

as shown in Fig. 7E-F, the EDR-constrained modeling based on MBMv4 fits the empirical 

functional data better than the Paxinos atlas (Wilcoxon paired signed-rank test: N=27, 

p=0.01947), similar as the modeling without EDR (Fig. 7B-C). Thus, MBMv4 preserves a 

crucial bridge for examining the structural and functional connectivity discrepancy.

As for asymmetry of the marmoset brain, reviewer described in the prior revision that it 

may be to a much smaller extent than in humans. However, the data in the revised 

manuscript does not address this issue. While number of parcellations was the same 

between hemispheres, there is likely left vs right differences in the cortical boundary maps 

in Fig 3. There is possibility that the areal size of the parcels may be different between 

hemispheres, but it was not evaluated in this revision. This can be achieved by invert 

warping the standard average surfaces to the subject's native space and calculating the 



surface areas of each parcel in subject's native space. The authors may want to make it 

clear if asymmetry is really smaller than in humans.

Thanks for the helpful suggestion. As the reviewer suggested, we registered the MBMv4 

atlas into every subject's native space and calculated the size of each parcel. Then, a 

paired two-sample t-test was performed between the left and the right for each parcel 

across subjects, and we found no significant differences between hemispheres (see the 

below figure and supplementary figure S9-C).

In addition, the issue regarding asymmetry had been investigated previously (James K, et 

al, 1999), which specifically pointed out that the brains become more asymmetrical as they 

grow in size during evolution:

James K, et al, Differential expansion of neural projection systems in primate brain 

evolution. Neuroreport. 1999 May 14; 10(7):1453-9.

In the revision, we cited this influential paper in the brain evolution literature and made it 

clear regarding the asymmetry:

 (Line 483-485) 



“Therefore, our results may reflect that the asymmetry in marmosets may be smaller than 

in humans, as expected from previous analyses based on anatomical measurements 

(James K, et al, 1999) and the evidence that the number of cortex subdivisions increases 

with brain volume (Changizi MA et al., 2005).”

James K, et al, Differential expansion of neural projection systems in primate brain 

evolution. Neuroreport. 1999 May 14; 10(7):1453-9.

Changizi MA, Shimojo S. Parcellation and area-area connectivity as a function of neocortex 

size. Brain Behav Evol 66, 88-98 (2005).



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The reviewer appreciates the authors’ great efforts in improving the manuscript. Overall, data 

acquisition of fMRI is in high quality and higher-level analysis is sophisticated (e.g. deep-learning 

parcellations, FC simulations). Registration of subject’s T2w volume to template was very nice. The 

reviewer encourages the authors to make further improvements as follows: 

1. The FIX-ICA was initially developed for resting-state MRI data in humans but can be used in any 

species. Indeed, it is also used in rodents (Zerbi et al 2015; Diao et al. 2021). The first-level ICA results 

shared with the reviewer in this version of rebuttal indicates that ICA is working well thus FIX-ICA should 

also work if the authors trained the classification of the components. The reviewer identified N=12 

components (1, 6, 7, 9, 11, 12, 13, 15, 16, 21, 22, 28) as neural, comprising 5.8% of total variance, and 

the rest of components (N=46) as structural artifacts (19.1% of total variance) and random noise (~75% 

of total variance), which means ~94% of total variance in the data is likely of uninterest. Training of the 

ICA components classifier on users’ own data is in general recommended (see usage of ICA-FIX), and if it 

was made publicly available, those who use animal MRI scanners in marmoset neuroscience may benefit 

greatly from it. Also, the fMRI input data has significant left vs right asymmetry of signals probably due 

to expansion and shrinkage of B0-distortion, which may also cause some issues when combining across 

scans for gICA but can be reduced by taking account into Jacobian when running topup. 

2. It is better to run group ICA (gICA) using cleaned fMRI datasets. The authors shared ‘raw 15 cortical 

network’ components (atlas_MBMv4_networks_raw.nii.gz). Among the ‘15-cortical network’, 

components 3, 4, 5 and 14 are likely structural artifacts (3: motion/registration error/bias, 4: imaging 

artifacts or registration error, 5: CSF, 14: CSF) and others are questionable or mixture of signal and noise 

(11: CSF and visual). Therefore, it is recommended to use uncleaned fMRI data to feed into gICA and to 

detail neurobiological and fair interpretations of each signal and artifactual components, which will have 

a significant impact in this field. It is also recommended to share the sub-cortical and artifactual 

components of gICA, as well as time signal, frequency spectrum data for all the components, since the 

classifying the components is not easy without having these data. The authors should consistently label 

(or number) all the ICA components including signals and noises in figures and data shared. It is not clear 

which dimensionality was actually applied in the final results (20?), although the authors applied “from 

20 to 80 in step of 10” as written in the method section. 

3. As for the optimal settings of gICA (variance normalization, remove per time point etc.). only spatial 

maps are shown but no data for time series and spectrum. Thus, it is difficult to see which is likely the 

optimal. 



Minor points 

It is not clear how CNR was calculated. Please describe it in method section. 

It is not clear why “adding the exponential distance rule to diffusion tractography should make more 

accurate estimation of structural connectivity”. Please elaborate it more in method section. 

In Fig. S5, the figure legend states that “We found 19 networks by group-ICA analysis”, but only 18 are 

presented in the figure. There are no labels that can be identified in the ICA components data shared. As 

suggested above, four are likely artifacts among ‘15 cortical-network’ of ICA. 

Line 605, “Finally, our parcellation only used the resting-state functional connectivity information, as in 

many human studies22, 29, 45.” - This is not correct. Glasser et al., (ref 29) used myelin maps, thickness, 

task fMRI and resting-state fMRI for parcellating human cerebral cortex. 

Data resource: It is not clear how CIFTI data was created, how symmetrization of the hemisphere, what 

surface registration was applied, and what number of meshes was used. There is no description on the 

label or number of ICA components that are consistent between the data and figure. No data for gICA 

components of sub-cortical structures and structural artifacts are shared. 



Response letter to Reviewer

In what follows, we provide point-by-point responses to reviewer#1's concerns. The review comments are in 
black font, and our responses are in blue. The resulting edits of the original manuscript are highlighted in red 
font in the revised manuscript.

The Reviewer appreciates the authors' great efforts in improving the manuscript. Overall, data acquisition of 
fMRI is in high quality and higher-level analysis is sophisticated (e.g. deep-learning parcellations, FC simulations). 
Registration of subject's T2w volume to template was very nice. The Reviewer encourages the authors to make 
further improvements as follows:

1. The FIX-ICA was initially developed for resting-state MRI data in humans but can be used in any species. 
Indeed, it is also used in rodents (Zerbi et al 2015; Diao et al. 2021). The first-level ICA results shared with the 
Reviewer in this version of rebuttal indicates that ICA is working well thus FIX-ICA should also work if the authors 
trained the classification of the components. The Reviewer identified N=12 components (1, 6, 7, 9, 11, 12, 13, 
15, 16, 21, 22, 28) as neural, comprising 5.8% of total variance, and the rest of components (N=46) as structural 
artifacts (19.1% of total variance) and random noise (~75% of total variance), which means ~94% of total 
variance in the data is likely of uninterest. Training of the ICA components classifier on users' own data is in 
general recommended (see usage of ICA-FIX), and if it was made publicly available, those who use animal MRI 
scanners in marmoset neuroscience may benefit greatly from it. 

We created and shared the ICA-FIX version to meet the Reviewer's request

For the ICA-FIX, we followed the Reviewer's request to provide the version of ICA-FIX preprocessed data (and 
the associated manually training datasets and training-weighted files), which will be released online as a 
supplementary resource of our MBMv4 upon the publication of the manuscript. In addition, for review 
purposes, we uploaded the gICA results with/without ICA-FIX cleaning to facilitate the Reviewer for the 

comparison（both under the setting of ICA=30）.

To create the ICA-FIX version of data, we ran first-level ICA on each fMRI run, randomly selected 24 runs from 
24 animals (12 runs from the ION dataset and 12 runs from the NIH dataset), and manually classified the noise 
components based on spatial patterns and the power spectrum. Note that the ICA-FIX recommended a training 
dataset of at least 10; here, we made 24 training datasets to improve our ICA-FIX classifier significantly, which 
means that the trained-weights file (trainingMBMv4.RData) is comprised of two trained-weights files from the 
ION dataset (trainingION.RData, using 12 ION training datasets) and the NIH (trainingNIH.RData, using 12 NIH 
training datasets) respectively. Then, the trained-weighted file (trainingMBMv4.RData) was used to clean all 
fMRI data using three different sensible-value thresholds (5, 10, and 20; the ICA-FIX recommended a threshold 
in the range of 5-20, so for a fair comparison, we select three thresholds) and thus created three different 
versions of ICA-FIX cleaned datasets. In addition, we provided the mask files to allow the ICA-FIX to work on 
the marmoset data since the ICA-FIX has several steps that use human-default settings and files, which are 
incompatible with the marmoset data. The ICA-FIX data can be downloaded via 
(https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html) and will be publically accessed after the 
paper's publication.

It is worth noting that, due to the inherent limitation of the single-run ICA on our data, the ICA failed to 
decompose the unsmoothed data (and data with 0.5mm FWMH smoothing from our animal MRI imaging 
resolution) into enough components for us to classify noise components. We also uploaded an example of a 
single-run ICA on unsmoothed data to prove this point as below:

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


 (https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html), which showed that the single-run ICA 
only decomposed the data into 6 components with a mixture of single and noises. Thus, all the ICA-FIX here we 
provide requires data with 1mm FWMH smoothing (which was also for the example we shared with the 
Reviewer in the previous round of revision). 

Nevertheless, we have successfully applied ICA-FIX in our dataset and still obtained similar results as the report 
without ICA-FIX. For example, the following figure directly demonstrates these components that the Reviewer 
regarded as artifacts because we did not use ICA-FIX can still be robustly detected and high consistent with our 
result without ICA-FIX reporting in our paper.  

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html




Also, the fMRI input data has significant left vs right asymmetry of signals probably due to expansion and 
shrinkage of B0-distortion, which may also cause some issues when combining across scans for gICA but can be 
reduced by taking account into Jacobian when running topup.

The distortion issue was answered in the previous round.

We kindly refer the editor to our answer in the first round (see below) for the question of distortion, which has 
already demonstrated a good spatial correction.  



2. It is better to run group ICA (gICA) using cleaned fMRI datasets. The authors shared 'raw 15 cortical 
network'components (atlas_MBMv4_networks_raw.nii.gz). Among the '15-cortical network', components 3, 4, 
5 and 14 are likely structural artifacts (3: motion/registration error/bias, 4: imaging artifacts or registration error, 
5: CSF, 14: CSF) and others are questionable or mixture of signal and noise (11: CSF and visual). Therefore, it is 
recommended to use uncleaned fMRI data to feed into gICA and to detail neurobiological and fair 
interpretations of each signal and artifactual components, which will have a significant impact in this field. It is 
also recommended to share the sub-cortical and artifactual components of gICA, as well as time signal, 
frequency spectrum data for all the components, since the classifying the components is not easy without 
having these data. The authors should consistently label (or number) all the ICA components including signals 
and noises in figures and data shared. It is not clear which dimensionality was actually applied in the final results 
(20?), although the authors applied "from 20 to 80 in step of 10" as written in the method section. 

We must say that the Reviewer's question confuses us a lot since it has internally conflicting suggestions. Initially, 
he/she suggests that, "It is better to run group ICA (gICA) using cleaned fMRI datasets." Later, he/she indicates 
that "Therefore, it is recommended to use uncleaned fMRI data to feed into gICA and to detail neurobiological 
and fair interpretations of each signal and artifactual components, which will have a significant impact in this 
field."  Still, we have run all of these analyses back and forth for several rounds of the revisions, and these 
components, which the Reviewer considers artifacts, can be detected robustly no matter which method is 
adopted. 

In the first round of revisions, it was requested from us to run gICA on uncleaned data preprocessing 
with/without bandpassing. These components are robust (as below).  



In the second round of revisions, it was requested from us to run gICA on uncleaned fMRI data preprocessing 
under different normalizations. Again, these components are robust (as below).  



Now, in the third round of revision, the reviewer asks us to run ICA-FIX  because we did not use this denoise 
method. Following the request, we created the ICA-FIX version of preprocessed data and ran the gICA on data 
with the ICA-FIX cleaning dataset. Again, these components are robust (as below). As mentioned above, we 
uploaded the raw ICA results (with 30 components setting) with/without ICA-FIX for the comparison by the 
Reviewer (https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html).

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html


At this point, it is fair to conclude that our detected components are not artifacts, as the Reviewer assumed. 
Besides that, we also provide further evidence, as detailed below.



1) The components are located in meaningful cortical areas, given present knowledge of primate brain 
anatomy and physiology: They are located in gray matter regions with clear anatomical structures, which are 
unaffected by imaging distortion. Also, their spatial ICA patterns matched their connectivity patterns.e.g. the 
frontal-pole area had a low correlation with any distant area (reference Liu et al., 2019 ). If these components 
were removed as the Reviewer thinks, a large portion of the cortical regions (highlighted in red overlay) would 
not have a functional network (see below):

References: 
Liu C, et al. Anatomical and functional investigation of the marmoset default mode network. Nature 
Communications. 2019, 10(1), 1-8.

2) Reported and replicated in the previous paper: The components have been reported in previous papers 
including ICA analysis on marmoset data. For example, similar components of the frontal pole, the orbitofrontal 
component, and the cerebellum have been reported in awake marmosets (Belcher, et al, 2013), and a similar 
orbitofrontal component has been reported in anesthetized marmoset (Ghahremani, et al, 2016).

https://www.nature.com/articles/s41467-019-09813-7


References: 
Belcher AM, et al. Large-scale brain networks in the awake, truly resting marmoset monkey. J. Neurosci. 
2013;33:16796–16804. doi: 10.1523/JNEUROSCI.3146-13.2013.

Ghahremani M, Hutchison RM, Menon RS, Everling S. Frontoparietal Functional Connectivity in the Common 
Marmoset. Cereb Cortex. 2017;27(8):3890-3905.

3) Statistical thresholds required for ICA: The Reviewer argued that noise and artifacts contaminated these 
components. However, since any ICA method cannot 100% separate signals from noises, our ICA software 
implemented a stringent statistical threshold by default to show the most significant parts of the components. 
The results with or without ICA-FIX provide a good example. Although ICA-FIX denoising reduced noise level, 
the spatial pattern of the group ICA results is virtually identical to that obtained without ICA-FIX denoising. After 
the statistical thresholds, these components were all in the gray matter, and CSF or artifact parts were removed 



from our final network parcellations. 

3. As for the optimal settings of gICA (variance normalization, remove per time point etc.). only spatial maps 
are shown but no data for time series and spectrum. Thus, it is difficult to see which is likely the optimal.

We must kindly remind the Reviewer that the different normalizations for the data (variance normalization, 
removal per time point, etc.) could not change the frequency property of the data because the data did not 
undertake any frequency filter. So the components (under different normalization) with similar spatial patterns 
should result in a similar power spectrum and time series after ICA decomposing. Thus, we have already 
provided the default normalization power spectrum in the previous response letter and supplementary data 
(as below). They should be similar.

"It is not clear which dimensionality was actually applied in the final results (20?), although the authors applied 
"from 20 to 80 in step of 10" as written in the method section."

Different dimensionality should result in similar patterns of components, although some components might be 
separated into two or more at high dimensionality. Therefore, the question becomes which dimensionality is 
the better presentation for a network. For us, the final network parcellation was based on the ICA results of the 
20 and 30. We also did manual correction before creating the final network parcellation; for example, when the 
left and right parts of the same network were separated into two components, we would merge them into one 
network by averaging. We added the above details in the revised methods (Line 755-770).

Minor points
It is not clear how CNR was calculated. Please describe it in method section.

Following the Reviewer's suggestion in the last round that CNR should be calculated as the variance of the 
resting state fMRI component after ICA, which are optimal contrasts of interests (see the Reviewer's previous 
common below), 



We selected the fMRI ICA components which the review thinks are "optimal" (see the Reviewer's suggestions 
in the last round, where he/she indicates that components B, I, J, K are optimal). Then, we calculated the 
variance of these components in contrast with the noise component for each dataset (ION and NIH) and 
compared their similarity. 

We have added this description to our figure legend and to our Methods section (L737-748, see below). 

We calculated a series of indices to test the data harmonization across different datasets (NIH and ION). They 

include the Single time points, mean images (average across time for one fMRI run), temporal Signal Noise Ratio 

(tSNR, from one fMRI run), contrast to Noise Ratio (CNR, the mean of the gray matter intensity values minus 

the mean of the white matter intensity values divided by the standard deviation of the values outside the brain), 

temporal contrast to Noise Ratio (tCNR, the variance of optimal resting-state fMRI components after ICA 

contrast to the noise), the Fiber (Foreground to Background Energy Ratio: the variance of voxels inside the brain 

divided by the variance of voxels outside the brain), head motion and the whole-brain functional connectivity 

across subjects and sessions.

It is not clear why "adding the exponential distance rule to diffusion tractography should make more accurate 
estimation of structural connectivity". Please elaborate it more in method section. 

We have already elaborated on the procedure in our Methods section (L1037-1053) in the previous round



So the procedure can be summarized as below:

1) Normalization of structural connectivity matrix estimated by diffusion MRI into 0-1. 

2) Calculate another matrix of structural connectivity probability in the same size according to the EDR rule 
since we have already known the surface distance between regions and normalized it into 0-1. 

3) Through the threshold calculated by the Median Absolute Deviation of the normalized structural connectivity 
matrix, we replace the abnormal values from the normalized structural connectivity matrix with the values from 
the structural connectivity probability. 

In Fig. S5, the figure legend states that "We found 19 networks by group-ICA analysis", but only 18 are presented 
in the figure. There are no labels that can be identified in the ICA components data shared. As suggested above, 
four are likely artifacts among '15 cortical-network' of ICA. 

Since our paper focus on cortical connectivity, we removed all the subcortical networks from the supplementary 
data to avoid confusion in the revision and reported the 15 cortical networks only. Again, in response to the 
previous questions, these components are not artifacts but significant biological components reported in the 



previous marmoset ICA studies. 

Line 605, "Finally, our parcellation only used the resting-state functional connectivity information, as in many 
human studies22, 29, 45." - This is not correct. Glasser et al., (ref 29) used myelin maps, thickness, task fMRI 
and resting-state fMRI for parcellating human cerebral cortex.

We corrected the description of the citation in the revised manuscript.

Data resource: It is not clear how CIFTI data was created, how symmetrization of the hemisphere, what surface 
registration was applied, and what number of meshes was used. There is no description on the label or number 
of ICA components that are consistent between the data and figure. No data for gICA components of sub-
cortical structures and structural artifacts are shared.

The surface data were created directly using wb_command, similar to what the HCP data did. First, We have a 
description for this part in Methods 665-694 of the previous revision, and in the current revision, we added 
more details to the manuscript (Lines 668-690). Second, we had already answered the question twice regarding 
the surface registration in the previous response letter (first round), in which we used volume registration to 
map all data to the MBMv3 template and then mapped all data to the MBMv3 surface (see below). Third, the 
details of how MBMv3 surface creation have been detailed described in the published article (Liu, et al, 2021), 
with a total of 76068 meshes for the cortex in the CIFTI data and the subcortical data can be directly 
distinguished from the cortical data by the connectome workbench. Thus, we kindly refer the Reviewer to the 
original research articles.

Reference: C Liu, CCC Yen, D Szczupak, X Tian, D Glen, AC Silva, Marmoset Brain Mapping V3: Population 
multi-modal standard volumetric and surface-based templates, Neuroimage 226, 117620, 2021

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3PKQSYkAAAAJ&citation_for_view=3PKQSYkAAAAJ:0EnyYjriUFMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=3PKQSYkAAAAJ&citation_for_view=3PKQSYkAAAAJ:0EnyYjriUFMC


Furthermore, all the component files (volume, surface, etc.) in the resource use the same number between the 
label and the labeled files to describe which component is which. 

Our paper is all about the "cortical" ICA parcellation and connectivity. Thus we showed only cortical ICA results 
in the manuscript, and the resource provided the raw ICA maps for the cortical network parcellation. We also 
removed the sub-cortical components from the supplementary data to avoid confusion. The raw/preprocessed 
data have been all released to allow replication of our results. 

Again, for the Reviewer's interests in structural artifacts, we uploaded the raw group-ICA results of a setting of 
30 components, with and without ICA-FIX denoising
(https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html). This shows the structural artifacts and 
the components/timecourses/spectrum, which can be directly viewed via GIFT software
(https://trendscenter.org/software/gift). 

https://marmosetbrainmapping.org/data_for_MBMv4_reviews.html)

