Supplementary materials:

Supplementary Fig. 1. Production test of *S. tsukubaensis* WT in production medium MG with addition of different lysine concentrations. The exogenous supplementation of higher lysine concentrations leads to inhibited FK506 production.

Supplementary Fig. 2. Genetic complementation of the $\Delta fkbL$ *S.tsukubaensis* mutant with lysine cylodeaminase genes from *S. tsukubaensis* WT, *S. pristinaespiralis* and *A. friuliensis*. each of the lysine cyclodeaminase genes was expressed heterologously in the $\Delta fkbL$ mutant under the control of the constitutive *ermE** promoter.

Supplementary Fig. 3. HPLC chromatograms for the detection of tacrolimus after three days of cultivation in MG medium. A) FK506 in the *S. tsukubaensis* WT. B) no FK-506 in the *S. tsukubaensis* $\Delta fkbL$ mutant. C) FK506 production in *S. tsukubaensis* $\Delta fkbL$ after the addition of pipecolate. Y-axis: absorbance in mAU, X-axis: retention time (minutes).

В

Suppl. Fig. 4. A. Structure of the ornithine cyclodeaminase from *Presudomonas putida* (1X7D), B. Comparision of the ornithine cyclodeaminase (1X7D) with the lysine cyclodeaminase from *Streptomyces pristinaespiralis* (5QZJ). Key amino acid residues are marked in red, blue and brown (1X7D) and black (5QZJ).

In the OCD of *P. putida* (1X7D), oligomerization results in a 14-stranded, closed β-barrel and each subunit contributes residues, namely Phe4, Tyr66, Phe68, Tyr70, Phe88, Tyr98, Pro99, and Trp325 (A, red) to the barrel interior in the substrate-binding domain. Moreover, the substrate carboxyl group interacts with the side chains of Arg45, Lys69, and Arg112 (A, blue) and the ammonia leaving group hydrogen bonds to the side chain of Asp228 (A, brown) (after Kim & Park, 2007; Goodman at al., 2004).

A

В

С

Suppl. Fig. 5. A. Structure of the lysine cyclodeaminase from *Streptomyces pristinaespiralis* (5QZJ); B. Comparision of the the lysine cyclodeaminase (5QZJ) with the model of the lysine cyclodeaminase Pip_{Af}, C. Model

of the lysine cyclodeaminase from *Actinoplanes friuliensis*. Key amino acid residues are marked in black (5QZJ) and green (Pip_{Af}).

In the PipA_{Sp} structure (5QZJ) the β-barrel is similarly structured involving at the same place residues Val5, Trp64, Leu76, Thr78, Thr97, Ala107, Leu108 and His333 compared to 1X7D. The substrate carboxyl group side chains include Arg49, Lys77 and Arg121 and the side chain for the ammonia leaving group the residue Ala235 (Suppl. Fig. 4, B, black; Suppl. Fig. 5, A). Comparisons with PipA_{Sp} demonstrated that in the lysine cyclodeaminase Pip_{Ar} from *A. friuliensis* the β-barrel is similarly but not identically structured involving at the same place residues Leu5, Pro63/His65, Leu73, Leu75, Thr94, His104, Leu105, Leu330 (Suppl. Fig. 5, B, C, light green) compared to 5QZJ (Suppl. Fig. 3, A, B, black). The substrate carboxyl group side chains include Pro44/Pro45, Lys74, Arg118 and the side chain for the ammonia leaving group the residue Asp233 in the Pip_{Ar} structure (Suppl. Fig. 5, B, C, light green).

А

Suppl. Fig. 6. A. Comparision of the the lysine cyclodeaminase from *S. pristinaespiralis* (5QZJ) with the model of the lysine cyclodeaminase FkbL, B. Model of the lysine cyclodeaminase from *Streptomyces tsukubaensis*. Key amino acid residues are marked in black (5QZJ) and purple (FkbL).

In the lysine cyclodeaminase FkbL from *S. tsukubaensis* the composition β -barrel differs from Pip_A, but is almost identical to PipA_S involving at the same place residues Ile5, Phe64, Met76, Thr78, Thr97, Ser107, Leu108, Thr333 (Suppl. Fig. 6, A, B, purple) compared to 5QZJ (Suppl. Fig. 6, A, black). The substrate carboxyl group side chains include Arg49, Lys77, Arg121 and the side chain for the ammonia leaving group the residue Ala235 in the FkbL structure (Suppl. Fig. 6, A, B).

Suppl. Fig.7. Pip_{Af} (yellow) with NADH and lysine superposed with Pip_{Af} with only NADH (grey).

Data collection statistics

	Pip _{Af}	Pip _{Af} complex with Lys
Beamline	SLS X06DA	SLS X06DA
Wavelength λ [Å]	1.000	1.000
Detector	Pilatus 2M	Pilatus 2M
Detector distance [mm]	135	120
Space group	P212121	P212121
Unit cell: [Å]	59.2 89.9 137.3	59.5 89.2 139.1
[degree]	90.0 90.0 90.0	90.0 90.0 90.0
Resolution [Å]	50 – 1.4 (1.49 – 1.4)	50.0 - 1.3 (1.38 - 1.3)
No. of reflections		
	1318869 (195149)	1306889 (186423)
	145265 (23022)	181827 (28151)
R _{meas} [%]	10.3 (153.4)	6.7 (112.7)
CC1/2	59.1	72.2
Completeness (%)	99.8 (98.8)	99.3 (96.0)
Multiplicity	9.1 (8.5)	7.2 (6.6)
<i>/<σ(I)></i>	12.1 (1.35)	14.5 (1.62)
Wilson Factor [Å ²]	24.2	22.9
Crystal Mosaicity [°]	0.076	0.083

Refinement statistics

	Pip _{Af}	Pip _{Af} complex with Lys
Resolution range [Å]	50 – 1.3	50 - 1.4
R _{Cryst}	0.219	0.205
R _{free} (test set of 5%)	0.242	0.226
No. of non-H atoms (partial occupancy)		
	2552 / 2551	2552/2547
	88	88

	-	50
	212	205
Average isotropic B-Factor [Å ²]	20.7	22.8
	24.7 / 18.7	20.6 / 18.4
	26.9 / 21.2	23.3 / 20.9
	17.9	16.3
	-	21.2
	23.5	23.0
Rmsd for bond lengths [Å]	0.006	0.006
Rmsd for bond angle [°]	1.15	1.11
Ramachandran regions		
	97.9	97.9
	1.9	2.0
	0.1	0

Suppl. Table. 1: Crystallographic data collection and refinement statistics

Strains/Plasmids	Genotype/Phenotype	Reference
<i>E. coli</i> NovaBlue	recA1, endA1, gyrA96, thi-1, hsdR17 (rK12-,mK12+) supE44, relA1, lac [F', proAB, lacl ^q , lacZΔM15, Tn10] (Tet ^R)	Novagen
<i>E. coli</i> BL21(DE3)pLysS	F-, <i>ompT</i> , <i>hsdS</i> B (rB-mB-), <i>gal</i> , <i>dcm</i> , (DE3), pLysS, Cam ^R , pLysS	Novagen
<i>E. coli</i> Rosetta 2(DE3) pLysS	Derivate of BL21, pRARE2: 7 rare tR- NAs; rare <i>E. coli</i> codons: arginine (AGA, AGG, CGA) glycine (GGA), isoleucine (AUA), leucine (CUA), pro- line (CCC)	Novagen
<i>E. coli</i> ET12567/pUZ8002	Methylation deficient strain <i>E. coli</i> with pUZ8002, F-, <i>dam</i> - 13::Tn9, <i>dcm</i> -6, <i>hsdM</i> , <i>hsdR</i> , <i>lacY</i> 1, Cam ^R , Kan ^R	MacNeil et al.1992

<i>E. coli</i> ET12567/pUB307	Methylation deficient strain E. coli with	Bennett et al., 1977;
	pUB307, F-, <i>dam</i> -13::Tn9, <i>dcm</i> -6, <i>hsdM</i> , <i>hsdR</i> , <i>lacY</i> 1, Cam ^R , Kan ^R , Tet ^R	MacNeil et al., 1992
S. coelicolor M145	<i>S. coelicolor</i> A3(2) without native plasmids	Kieser et al., 2000
S. pristinaespiralis Pr11	Pristinamycin producer wild type	Aventis Pharma
Streptomyces tsukubaensis	STP1 STP2	Martinez-Castro et al.,
NRRL18488		2012
Streptomyces tsukubaensis	Derivate of S. tsukubensis WT; fkbL	This work
ΔfkbL	replaced by Apr ^R ; deficient in FK506 production	
pRM4	pSET152 _p ermE with artificial RBS, Apr ^R	Menges et al., 2007
pRM4/fkbL	pRM4 Derivate with fkbL (from S.	This work
	tsukubaensis), Apr ^R	
pRM4/fkbP	pRM4 Derivate with <i>fkbP</i> (from <i>S. tsukubaensis</i>), Apr ^R	This work
pRM4/fkbL fkbP	pRM4 Derivate with <i>fkbL</i> , <i>ermE</i> and <i>fkbP</i> (from <i>S. tsukubaensis</i>), Apr ^R	This work
pRM4/ <i>pipA</i>	pRM4 Derivate with <i>pipA</i> (from <i>S</i> .	This work
	pristinaespiralis), Apr ^R	
pRM4/ <i>pip</i>	pRM4 Derivate with <i>pip</i> (from <i>A. friuliensis</i>). Apr ^R	This work
pRM4/ <i>pip</i> * E60A	pRM4 Derivate with <i>pip</i> * ^{E60A} , Apr ^R	This work
pRM4/ <i>pip</i> * I91V	pRM4 Derivate with $pip * PIV$, Apr ^R	This work
pRM4/ <i>pip</i> * D233N	pRM4 Derivate with <i>pip</i> * ^{D233N} , Apr ^R	This work
pRM4/ <i>pip</i> * L234A	pRM4 Derivate with $pip * L^{234A}$, Apr ^R	This work

pRM4 kan/fkbL	pRM4/fkbL-Derivate with additional Kan ^R , Apr ^R	This work
pRM4 kan/ <i>pipA</i>	pRM4/ <i>pipA</i> -Derivate with additional Kan ^R , Apr ^R	This work
pRM4 kan/ <i>pip</i>	pRM4/ <i>pip</i> -Derivate with additional Kan ^R , Apr ^R	This work
pRM4/ask	pRM4-Derivate with <i>ask</i> (from <i>S. tsukubaensis</i>), Apr ^R	This work
pRM4/ask *	pRM4-Derivate with mutated <i>ask</i> *S301Y (from <i>S. tsukubaensis</i>), Apr ^R	This work
pRM4/lysC *	pRM4-Derivate with deregulated <i>lysC</i> * (from <i>C. glutamicum</i>), Apr ^R	This work
pRM4/dapA	pRM4-Derivate with <i>dapA</i> (from <i>S. tsukubaensis</i>), Apr ^R	This work
pRM4/dapA lysC *	pRM4-Derivate with <i>dapA</i> , <i>ermE</i> und <i>lysC</i> *, Apr ^R	This work
pSET152	pUC18 <i>lacZα</i> , <i>oriT</i> (RK2), RP4 <i>mob</i> region, ΦC31 <i>int</i> and attP, Apr ^R	Bierman, et al., 1992; Schmitt-John & Engels, 1992
pDRIVE	T7 RNA-Polymerase Promotor, SP6 RNA-Polymerase promoter, pUC origin, phage f1 origin of replication, $lacZ\alpha$, Amp ^R , Kan ^R	Qiagen
pJET 1.2/blunt	rep (pMB1),T7 RNA-Polyerase pro- moter, modified P _{lac} promoter for ex- pression of <i>eco47IR</i> and positive se- lection (PlacUV5), Amp ^R	Fermentas
рК18	pUC-derived, $LacZ'$ α -complementa-	Pridmore et al., 1987

	tion system, (Kan ^R) + <i>oriT</i>	
ΔpK18oriT <i>fkbL</i> apra	pk18-Derivate with the inactivation	This work
	construct for <i>fkbL</i> , Kan ^R	
рҮТ9	pJOE2775-Derivate, Amp ^R	Tiffert et al., 2008
pET30 Ek/LIC	Ligation Independent Cloning (LIC),	Novagen
	T7 promoter, T7 start of transcription,	
	phage f1 origin of replication, N-termi-	
	nal His-tag and S-tag, C-terminal His-	
	tag, T7 terminator, <i>lacl</i> coding se-	
	quence, pBR322 <i>ori</i> , Kan ^R	
pET30/ <i>pip</i>	Derivate pET30 with pip (from A.	This work
	friuliensis), Kan ^R	
pET30/ <i>pip</i> * ^{E60A}	Derivate pET30 with <i>pip</i> ^{*E60A} , Kan ^R	This work
pET30/ <i>pip</i> * ^{E60Q}	Derivate pET30 with <i>pip</i> ^{*E60Q} , Kan ^R	This work
pET30/ <i>pip</i> * ^{E60L}	Derivate pET30 with <i>pip</i> ^{*E60L} , Kan ^R	This work
pET30/ <i>pip</i> ^{* ⊮}	Derivate pET30 with <i>pip</i> ^{*191V} , Kan ^R	This work
pET30/ <i>pip</i> * ^{D233N}	Derivate pET30 with <i>pip</i> ^{* D233N} , Kan ^R	This work
pET30/ <i>pip</i> * ^{V58L}	Derivate pET30 with <i>pip</i> ^{* V58L} , Kan ^R	This work
pET30/ <i>pip</i> ^{* v58A}	Derivate pET30 with <i>pip</i> * V58A, Kan ^R	This work

Suppl. Tab 2. Strains and plasmids used in this study.

Oligonucleotides	Sequences 5´-3´	Reference
pipAfwNdeI	CATATGATGGAGACCTGGGTCCTGG	This work

pipArevBgIII	AGATCTTCAGTGGGCGGGGGC	This work
pipfwNdeI	CATATGATGGATACGCTCCTGCTGAC	This work
piprevEcoRI	GAATTCGGTCAGCTGTAGGGGTTGAG	This work
fkbLEX_fwNdel	CATATGATGCAGACCAAGATCCTGCGTG	This work
fkbLEX_revBgIII	AGATCTTCACCACGGCAGCGAGTAGG	This work
fkbPEX_Ndel	CATATGGTGACACCGGACGGCAAGAG	This work
fkbPEX_neuHindIII	AAGCTTCTACTCGCTTCCCACGG	This work
fkbLup_fw	TCTAGAGCCGGGAGGGCCAGCGC	This work
fkbLup_rew	CATATGGTGGTGACGCCGGCCGGG	This work
fkbLdown_neu_fw	TGATATCGAGCGTCGTGGTGGTG	This work
fkbLdown_neu_rew	AAGCTTCGGCGCAACACTCGATAC	This work
Apranewfw	TAACATATGGGAGGCCAAACGGCATTG	This work
Apranewrev	ACAGATATCGGCCCACAGAATGATGTCAC	This work
oriT_A	GCTAGCGGCCTCCGACTAACGAAAAT	This work
oriT_B	GCTAGCTCTTTTCCGCTGCATAACCC	This work
dapAfw_NdeI	CATATGATGGCTCCGATCCCCACTC	This work
dapArev_BgIII	AGATCTTCAGAGCTGGACGCCTCCG	This work
Kanfw_BlpI	AAGCTCAGCGCTTCACGCTGCCGCAAGCACTCA	This work
NeurevKanBlpl	TGCTGAGCAGGGGTGGGCGAAGAACTCCAGCAT	This work
lysC_fw_Ndel	CATATGGTGGGCCTTGTCGTGCAG	This work
lysC_rev_HindIII	AAGCTTTCATCGGCCGGTGCCTC	This work

LysCTyrfw	GAATGTGTACGCGGCCACCACCGCTCTGACCGAC	This work
LysCTyrrew	GGTGGCCGCGTACACATTCTGGACGATCATGTCCAG	This work
erme_lysC_Bam1	GGATCCTTAGCGTCCGGTGCCTG	This work
erme_lysC_Bam2	GGATCCCGCGTTGGCCGATTC	This work
pippETfw	GACGACGACAAGATGGATACGCTCCTGCTGAC	This work
PippETrew	GAGGAGAAGCCCGGTCAGCTGTAGGGGTTGAG	This work
Glu60Glnfw	GCGTCATCCAGTGGATGCCGCACC	This work
Glu60GInrew	CATCCACTGGATGACGCCGGTGTCAC	This work
Glu60Leufw	GCGTCATCCTGTGGATGCCGCACC	This work
Glu60Leurew	CATCCACAGGATGACGCCGGTGTCAC	This work
Glu60Alafw	GCGTCATCGCCTGGATGCCGCACC	This work
Glu60Alarew	CATCCAGGCGATGACGCCGGTGTCAC	This work
Asp233Asnfw	CGGCGCCAACCTCGTCGGCAAGTTCG	This work
Asp233Asnrew	GACGAGGTTGGCGCCGATCGCGTTG	This work
Val58Leufw	GACACCGGCCTGATCGAGTGGATGC	This work
Val58Leurew	CACTCGATCAGGCCGGTGTCACCGGG	This work
Val58Alafw	GACACCGGCGCCATCGAGTGGATGC	This work
Val58Alarew	CACTCGATGGCGCCGGTGTCACCGGG	This work
lle91Valfw	CCGACGGTCATCGGCACGCTGACC	This work

lle91Valrew	CCGATGACCGTCGGCAGGTTGAGG	This work
lle91Valrew	CCGATGACCGTCGGCAGGTTGAGG	This work

Suppl. Tab. 3. Oligonucleotides used in this study