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Data treatment

For our linear modeling exercise, after the data processing phase (see the Data
processing Section of the main text), we further manipulated the data as fol-
lows. Honey bee stressor variables such as “Varroa destructor”, “other pests
and parasites”, “diseases”, “pesticides”, and “other” were modeled taking the
logit transformation of the proportion of colonies affected by these stressors
(similarly to what we did for the response variable; see Statistical model Section
of the main text). Regarding honey bee status and stressor data, uninfor-
mative predictors for honey bee colony loss were excluded from the analysis,
namely: “number of initial colonies”, “percentage of lost colonies”, “percentage
of renovated colonies”, “unknown”, “number of added colonies”, and “number
of renovated colonies” (see Table S1). For the weather indexes that we built
(see Table S2), “alpha indexes”, and “kurtosis” of weather variables and the
“green-area index” (see Table S3) were log-transformed to mitigate the skew-
ness of their distributions (see Fig. S7). The “precipitation alpha index” was
not considered in our analysis due to its extremely concentrated distribution,
and we divided the “norms” of weather indexes by a factor of 104 to limit
their scale. Observations with any missing entry were excluded from the anal-
ysis, bringing the sample size from n = 880 to n = 674. Furthermore, due to
strong correlations in the collection of weather indexes that we built in our
up-scaling procedure (see Fig. S8), some features were removed at the outset.
Specifically, if the absolute pairwise Pearson correlation between two predic-
tors exceeded the cut-off of 0.9, then the variable with higher mean absolute
correlation (with respect to all the remaining features) was excluded from the
model. This was performed through the findCorrelation() function of the
caret R package (Kuhn, 2009). The predictors excluded in this way include:
“minimum temperature mean”, “maximum temperature entropy”, “maximum
temperature alpha index”, “precipitation mean”, and “precipitation kurtosis”.
See Table S4 for a description of the predictors used in the linear modeling
exercise described in the main text.

Robust feature selection parameter tuning

We used mixed-integer programming (MIP) techniques for simultaneous fea-
ture selection and outlier detection developed by our group (Insolia et al., 2021)
to obtain the regression results presented in Table 1 of the main text (see also
the Statistical model Section of the main text). Operationally, one has to esti-
mate a suitable level of trimming kn, which represents the number of points
not affecting the fit, as well as a sparsity parameter kp, controlling the number
of estimated regression coefficients which are non-zero. We explored several
combinations of kn and kp values; in the following we present the results for
kn/n ranging from 0 to 15% (with a step size of 5%), and kp ranging from
1 to 30 (with a step size of 1 and counting each dummy variable separately
although we use group constraints). For each combination of kn and kp values,
we let the MIP algorithm run for 5,000 seconds or stop at a 1% optimality gap.

..
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To measure the overall goodness of fit, we computed the robust informa-
tion criterion discussed in Insolia et al. (2021) with an additional correction
factor based on the truncated normal as in Riani et al. (2022). Figure S16
shows the robust Akaike information criterion (rAIC) path across different
trimming levels, where we report kn/n on the x-axis. For each trimming level,

we estimate the best model of size 1 ≤ k̂p ≤ 30, and then select the one with
minimum rAIC. Here, we see that lower levels of trimming favor sparser solu-
tions, which is likely due to the effects of outlying cases, and that there is little
difference in terms of minimum rAIC for trimming levels equal to 5% or 10%.
For this reason, instead of picking the solution associated with the overall min-
imum rAIC, we also compared predictive performance to guide our choice for
the trimming level. Specifically, we randomly split the data and used 80% of
the observations as a training set and the remaining 20% as a testing set. For
each combination of kn and kp values, this procedure was repeated 8 indepen-
dent times, and we computed the trimmed root mean square prediction error
(TRMSPE) on testing data across models selected by rAIC (with upper trim-
ming equal to the trimming level in use). The left panel of Figure S17 compares
the medians plus/minus median absolute deviations (MAD) of the TRMSPE
across the 8 random splits for MIP against the ones obtained by the sparseLTS
(Alfons et al., 2013) – the latter is an heuristic algorithm for robust feature
selection and is computed through the sparseLTS() function of the robustHD
R package (Alfons, 2021). The TRMSPE is typically non-increasing, and our
MIP procedure outperforms sparseLTS as the trimming level reaches 10%.
Moreover, the TRMSPE for MIP has a much smaller variability (which is mea-
sured by the MAD) as the contamination level reaches 10%, indicating that
this solution is more stable than others. We also took the sparsity of the MIP
and sparseLTS solutions into account when comparing predictive performance.
The right panel of Figure S17 compares medians and MADs of the selected
models of size k̂p, for each trimming level, across the 8 random splits. For a
10% trimming, MIP not only performs better than sparseLTS in terms of pre-
dictive power, but also provides sparser and thus more interpretable solutions
(lower median and narrower MAD). Here the median sparsity level for MIP is
close to the one that we have found on the full data set (see Figure S16), and
it is much more stable than the solutions with a 5% trimming – whose MAD
is approximately twice as large.

In light of all these findings, we chose to present the results for a 10%
trimming, and we verified that different trimming levels (say, from 5 up to
15%) provide results which are consistent with the ones discussed in the main
text. Furthermore, Figure S18 contains several regression diagnostics support-
ing the fact that the model selected by rAIC with a 10% trimming satisfies the
underlying assumptions (for the set of non-outlying cases), and highlights the
presence of outlying cases which deserve further investigation (e.g., the pres-
ence of some residuals which are 6 standard deviations away from the robust
fit). Figure S20 and Table S6 provide further analyses on the outlying cases
detected by our MIP.
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Computations for this research were performed on the Roar supercomputer
of the Institute for Computational and Data Sciences at the Pennsylvania
State University. The content of the research is solely the responsibility of
the authors and does not necessarily represent the views of the Institute for
Computational and Data Sciences. We used basic memory option on the ACI-
B cluster with an Intel Xeon 24 core processor at 2.2 GHz and 128 GB of
RAM. The multi-thread option in R and Gurobi was limited to a maximum of
24 threads.
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Fig. S1: Contiguous United States climatic regions identified by the National Cli-
mate Data Center (Karl and Koss, 1984). They are aggregated as follows. West
region: California and Nevada; Northwest region: Washington, Oregon and Idaho;
Southwest region: Utah, Colorado, Arizona and New Mexico; West North Cen-
tral region: Montana, Wyoming, North and South Dakota, and Nebraska; South
region: Kansas, Oklahoma, Texas, Arkansas, Louisiana and Mississippi; Southeast
region: Alabama, Florida, Georgia, North and South Carolina, and Virginia; Central
regional : Missouri, Illinois, Indiana, Kentucky, Tennessee, Ohio and West Virginia;
East North Central region: Iowa, Minnesota, Wisconsin and Michigan; Northeast
region: Pennsylvania, Washington D.C., Maryland, Delaware, New Jersey, Connecti-
cut, Rhode Island, Massachusetts, New Hampshire, Vermont and Maine. The map
has been generated by the authors in ArcGIS Pro 2.8.3 Redlands (2021).
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Fig. S2: Box plots of normalized colony loss (number of lost colonies over the maxi-
mum number of colonies) for each quarter between 2015 and 2021 across the United
States; the second quarter of 2019 was not reported by the United States Depart-
ment of Agriculture. The figure highlights a stable pattern across the years, showing
that the first quarter typically accounts for a sensibly higher proportion of losses and
has a larger variability. The second quarter of each year (which is missing for 2019)
generally accounts for lowest levels of losses and reports a lower variability compared
to other quarters. Losses tend to increase again during the third and fourth quarters.
Only in 2015 median losses across the third quarter are higher than the ones during
the fourth quarter, but they have larger variability.
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Fig. S3: Box plots of the normalized colony loss (number of lost colonies over the
maximum number of colonies) in the first quarter of the years 2015-2021 for different
states of the United States aggregated according to climatic regions. It is possible
to distinguish a pattern, where states belonging to the same climatic region tend
to behave quite similarly. The West North Central and Northwest regions report
sensibly lower losses (whose medians are smaller than 10%) characterized by a much
smaller variability. On the other hand, many states in the Central region, as well
as New Mexico (which has the highest median and variability), Arkansas, Kansas,
Pennsylvania, Massachusetts, Ohio and Illinois, report a median loss which is higher
than 20%.
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Fig. S4: Box plots of the normalized colony loss (number of lost colonies over the
maximum number of colonies) in the second quarter of the years 2015-2021 (2019
data were not reported by the United States Department of Agriculture) for different
states of the United States aggregated according to climatic regions. The findings are
similar to the ones discussed in Fig. S3, although colony loss is generally lower and
the differences are less marked. Alabama reports high extreme losses, whose highest
level is achieved during 2020 and is also associated to the largest number of added
and renovated colonies (results not shown).
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Fig. S5: Box plots of the normalized colony loss (number of lost colonies over the
maximum number of colonies) in the third quarter of the years 2015-2021 for different
states of the United States aggregated according to climatic regions. Similar findings
to the ones discussed in Fig. S3 hold also here, although less markedly. West North
Central and Northwest regions report higher losses compared the first quarter (whose
medians are typically higher than 10%), and most states in Central region report
their lowest levels of losses among all quarters.
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Fig. S6: Box plots of the normalized colony loss (number of lost colonies over the
maximum number of colonies) in the fourth quarter of the years 2015-2021 for differ-
ent states of the United States aggregated according to climatic regions. The findings
are similar to the ones discussed in Fig. S3, although also here honey bee loss is gen-
erally lower for most states and the differences are less marked. Kansas reports high
levels of losses, which are sensibly higher than other states in the South region and
somehow more stable compared to the ones of New Mexico. The latter has a long left
tail and reports median losses which are comparable to most states in the Southwest
region.



Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States 11

kurt.prec
(n:880; NA:0)

green.urban
(n:880; NA:0)

mean.prec
(n:880; NA:0)

sd.prec
(n:880; NA:0)

norm.prec
(n:880; NA:0)

ent.prec
(n:880; NA:0)

skew.prec
(n:880; NA:0)

norm.tmax
(n:880; NA:0)

ent.tmax
(n:880; NA:0)

skew.tmax
(n:880; NA:0)

kurt.tmax
(n:880; NA:0)

alpha.geom.tmax
(n:880; NA:0)

skew.tmin
(n:880; NA:0)

kurt.tmin
(n:880; NA:0)

alpha.geom.tmin
(n:880; NA:0)

mean.tmax
(n:880; NA:0)

sd.tmax
(n:880; NA:0)

other
(n:833; NA:47)

mean.tmin
(n:880; NA:0)

sd.tmin
(n:880; NA:0)

norm.tmin
(n:880; NA:0)

ent.tmin
(n:880; NA:0)

lost_colonies
(n:836; NA:44)

varroa_mites
(n:835; NA:45)

other_pests_parasites
(n:826; NA:54)

diseases
(n:793; NA:87)

pesticides
(n:809; NA:71)

2 4 6 1 2 3 4 5

0 2 4 6 8 0 5 10 15 20 0 1 2 3 0 1 2 3 4 10 20 30

0 2 4 6 4 5 6 7 8 -2 -1 0 1 1.0 1.5 2.0 0 1 2 3

-2 -1 0 1 0.5 1.0 1.5 2.0 0 1 2 3 -10 0 10 20 30 3 6 9 12

-6 -4 -2 0 -20 -10 0 10 20 2.5 5.0 7.5 10.0 0 1 2 3 4 4 5 6 7 8

-6 -4 -2 0 -5.0 -2.5 0.0 2.5 -5.0 -2.5 0.0 -5.0 -2.5 0.0 2.5 -5.0 -2.5 0.0

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

1.25

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.00

0.25

0.50

0.75

1.00

0.00

0.02

0.04

0

1

2

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.5

1.0

1.5

0.0

0.3

0.6

0.9

1.2

0.0

0.5

1.0

0.0

0.1

0.2

0.3

0.4

0.00

0.01

0.02

0.03

0.04

0.05

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.2

0.4

0.6

0.8

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.3

0.6

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0.8

value

d
e

n
s
it
y

Fig. S7: Distribution of the response variable (lost colonies) and continuous pre-
dictors included into our linear modeling exercise for the years 2015-2019 after their
transformation (before the removal of collinear predictors). Kernel density estimates
are superimposed to histograms (red lines), and the number of points (n) as well as
the number of missing data (“NA”) are provided for each feature.
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Fig. S9: Scatter matrix and univariate densities for weather indexes created from
the distribution of minimum temperatures across the United States climatic regions.
These data cover the years 2015-2021.
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Fig. S10: Scatter matrix and univariate densities for weather indexes created from
the distribution of maximum temperatures across the United States climatic regions.
These data cover the years 2015-2021.
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Fig. S11: Scatter matrix and univariate densities for weather indexes created from
the distribution of precipitations across the United States climatic regions. These
data cover the years 2015-2021.
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Fig. S12: Spatial representation of the median for second quarter data in the years
2015-2021 (2019 was not reported by the United States Department of Agriculture).
(a) Normalized colony loss. (b) Mean of minimum temperatures. (c) Kurtosis of
minimum temperatures. (d) Skewness of minimum temperatures. The map has been
generated by the authors in R 3.6.2 R Core Team (2021).
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Fig. S13: Spatial representation of the median for third quarter data in the years
2015-2021. (a) Normalized colony loss. (b) Mean of minimum temperatures. (c) Kur-
tosis of minimum temperatures. (d) Skewness of minimum temperatures. The map
has been generated by the authors in R 3.6.2 R Core Team (2021).
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Fig. S14: Spatial representation of the median for fourth quarter data in the years
2015-2021. (a) Normalized colony loss. (b) Mean of minimum temperatures. (c) Kur-
tosis of minimum temperatures. (d) Skewness of minimum temperatures. The map
has been generated by the authors in R 3.6.2 R Core Team (2021).
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from 1 to 30 with a step size of 1 (which is reported in the x-axis of each panel),
and the trimming proportion kn/n increases from 0% to 15% with a step size of 5%
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Fig. S18: Regression diagnostics for the model selected by our mixed-integer pro-
gramming (MIP) approach (Insolia et al., 2021) with a 10% trimming. (a) Scaled
residuals for outlying (red) and non-outlying (blue) cases. (b) Square root of abso-
lute scaled residuals for outlying (red) and non-outlying (blue) cases. (c) Residuals
for outlying (red) and non-outlying (blue) cases against fitted values (or predicted
values for outlying cases). (d) Fitted values for non-outlying cases (blue) and pre-
dicted values for outlying cases (red) against the observed value of the response
variable. (e) Scaled residuals against a robust measure of outlying-ness in the pre-
dictors’ space. The latter is computed using the minimum covariance determinant
estimator (Rousseeuw and Driessen, 1999) in the rrcov R package (Todorov and
Filzmoser, 2009) where the trimming proportion is set to 10% as for MIP estimates
and we used the 0.975 quantile of a chi-square distribution to flag leverage points
(i.e., outliers in the predictors’ space). Points are grouped as non-outlying cases and
non-leverage points (NO-NL, green), outliers but non-leverage points (O-NL, pur-
ple), leverage points and non-outlying cases (NO-L, red), and outliers and leverage
points (O-L, blue). (f) Normal QQ-plot for the scaled residuals of non-outlying cases.
These results are based on data for the years 2015-2019.
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Fig. S19: Scatter matrix, marginal correlations and univariate densities across dif-
ferent quarters for the response variable and continuous predictors selected by our
mixed-integer programming approach (Insolia et al., 2021) with a 10% trimming.
These plots are based on data covering the years 2015-2019.
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Fig. S20: Box plots for the response variable and continuous predictors selected by
our mixed-integer programming approach (Insolia et al., 2021) with a 10% trimming,
contrasting outlying and non-outlying case. Red, green and blue boxes represent
points estimated as outliers with positive and negative residuals, and non-outlying
cases, respectively. The values of each feature are scaled to have zero median and
unit median absolute deviation. These results are based on data covering the years
2015-2019.
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Fig. S21: Feature importance based on random forest (Breiman, 2001), which is
computed through the ranger R package (Wright and Ziegler, 2017), for the same set
of variables used in our linear modeling exercise. We compared an increasing number
of trees (from 1000 to 5000 with a step size of 1000) and number of variables to
possibly split at in each node (ranging from 5 to 15). Feature importance is based on
a permutation approach (Wright et al., 2017). This result is based on data covering
the years 2015-2019.
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Table S1: Honey bee (Apis mellifera) colonies status and stressor data descrip-
tion. Adapted from the annual Honey Bee Colonies Loss Report released by
the United States Department of Agriculture, National Agricultural Statistics
Service (2022) – data downloaded from: https://usda.library.cornell.edu/concern/
publications/rn301137d?locale=en. The data are collected by the National Agri-
cultural Statistics Service through the Colony Loss Survey and recorded by states
and quarters (January-March, April-June, July-September, October-December)
for the years 2015-2021. Only operations with five or more total colonies are
included in the survey, and beekeepers need to meet criteria on the defi-
nition of a farm (e.g., an agricultural product turnover higher than $1,000
per year). Data for Nevada, New Hampshire, Rhode Island and Delaware
are not reported, as well as the second quarter of 2019. The questionnaire
can be found at: https://www.nass.usda.gov/Publications/Methodology and Data
Quality/Honey Bee Colonies/index.php. A complete description of the methodol-
ogy can be found in the Honey Bee Colonies Methodology and Quality Measures
document, available at: https://www.nass.usda.gov/Publications/Methodology and
Data Quality/Honey Bee Colonies/10 2021/hbclqm21.pdf.

Variable Type Description

Maximum colonies Count Number of colonies on the first day of a quarter, plus all colonies that moved into
that state during the quarter. Colonies that were added, lost, or renovated are not
included, and colonies are counted in every state they were in during each quarter

Lost colonies Count Number of colonies no longer viable (e.g., completely failed colony, loss of most
workers, and possibly the queen)

Percent lost Percentage Number of lost colonies divided by the maximum colonies

Added colonies Count Number of added colonies

Renovated colonies Count Number of surviving colonies that were requeened or received new honey bees
through nuc or package

Percent renovated Percentage Number of renovated colonies divided by the maximum colonies

Varroa destructor Percentage Number of colonies affected by Varroa destructor divided by the maximum colonies

Other pests and parasites Percentage Number of colonies affected by tracheal mites, nosema, hive beetle, wax moths, etc.
divided by the maximum colonies

Diseases Percentage Number of colonies affected by certain diseases divided by the maximum colonies.
Diseases include American and European foulbrood, chalkbrood, stonebrood, paral-
ysis (acute and chronic), kashmir, deformed wing, sacbrood, IAPV, Lake Sinai II,
etc.

Pesticides Percentage Number of colonies affected by pesticides divided by the maximum colonies

Other Percentage Number of colonies affected by other events divided by the maximum colonies.
These events include weather, starvation, insufficient forage, queen failure, hive
damage/destroyed, etc.

Unknown Percentage Number of colonies affected by unknown causes divided by the maximum colonies

https://usda.library.cornell.edu/concern/publications/rn301137d?locale=en
https://usda.library.cornell.edu/concern/publications/rn301137d?locale=en
https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Honey_Bee_Colonies/index.php
https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Honey_Bee_Colonies/index.php
https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Honey_Bee_Colonies/10_2021/hbclqm21.pdf
https://www.nass.usda.gov/Publications/Methodology_and_Data_Quality/Honey_Bee_Colonies/10_2021/hbclqm21.pdf
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Table S2: Weather indexes description. The weather indexes that we built are
based on Parameter-elevation Regressions on Independent Slopes Model (PRISM)
data (PRISM Climate Group, 2022) – raw data downloaded from https://prism.
oregonstate.edu/. The PRISM 4-kilometer-squared gridded daily temperature and
precipitation data were used to generate weather-related variables covering 2015-2021
and the whole United States (by states and quarters). For each combination of day
and element of the grid, the maximum and minimum temperature were extracted, as
well as total precipitation (given by the combination of rain and melted snow). See
the Data processing Section of the main text for further details on the computation
of these indexes.

Variable Description

Min./Max. temp. mean Mean minimum and mean maximum temperature
Min./Max. temp. std. dev. Standard deviation of the minimum and maximum temperature

Min./Max. temp. norm L2-norm for minimum and maximum temperature

Min./Max. temp. entropy Entropy for minimum and maximum temperature

Min./Max. temp. skewness Skewness of the minimum and maximum temperature

Min./Max. temp. kurtosis Kurtosis of the minimum and maximum temperature

Min./Max. temp. alpha index Tail exponent α of the minimum and maximum temperature

Precipitation mean Mean precipitation

Precipitation std. dev. Standard deviation of precipitation

Precipitation norm L2-norm of precipitation

Precipitation entropy Entropy of precipitation

Precipitation skewness Skewness of precipitation

Precipitation kurtosis Kurtosis of precipitation

Precipitation alpha index Tail exponent α of precipitation

https://prism.oregonstate.edu/
https://prism.oregonstate.edu/
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Table S3: Land use data description. Adapted from the Cropland Data Layer (CDL)
which is provided by the National Agricultural Statistics Service of the United States
Department of Agriculture (Boryan et al., 2011) – data downloaded from https:
//www.nass.usda.gov/Research and Science/Cropland/sarsfaqs2.php. CDL data are
collected annually and cover the whole United States at the resolution of a 30-
meter-squared grid. They were used to generate annual land-use data for the years
2015-2021 across states of the United States. The original land-use categories were
grouped in 6 major classes: “developed”, “forest”, “pasture”, “rangeland”, “crop”,
and “water”. Following the approach in Naug (2009), the “water” class was excluded
from our analysis.

Variables Group

Developed Developed, Developed/High Intensity, Developed/Low Intensity, Developed/Medium
Intensity, Developed/Open Space

Forest Deciduous Forest, Evergreen Forest, Mixed Forest, Forest

Pasture Grassland/Pasture, Pasture/Grass

Rangeland Nonag/Undefined, Shrubland, Sod/Grass Seed, Herbs

Crop

Alfalfa, Almonds, Apples, Apricots, Aquaculture, Asparagus, Barley, Barren, Blueber-
ries, Broccoli, Buckwheat, Cabbage, Camelina, Caneberries, Canola, Cantaloupes, Car-
rots, Cauliflower, Celery, Cherries, Chick Peas, Christmas Trees, Citrus, Clover/Wild-
flowers, Corn, Cotton, Cranberries, Cucumbers, Dbl Crop Barley/Corn, Dbl Crop
Barley/Sorghum, Dbl Crop Barley/Soybeans, Dbl Crop Corn/Soybeans, Dbl Crop
Durum Wht/Sorghum, Dbl Crop Lettuce/Barley, Dbl Crop Lettuce/Cantaloupe, Dbl
Crop Lettuce/Cotton, Dbl Crop Lettuce/Durum Wht, Dbl Crop Oats/Corn, Dbl Crop
Soybeans/Cotton, Dbl Crop Soybeans/Oats, Dbl Crop WinWht/Corn, Dbl Crop Win-
Wht/Cotton, Dbl Crop WinWht/Sorghum, Dbl Crop WinWht/Soybeans, Dry Beans,
Durum Wheat, Eggplants, Fallow/Idle Cropland, Flaxseed, Garlic, Gourds, Grapes,
Greens, Honeydew Melons, Hops, Lentils, Lettuce, Millet, Mint, Misc Vegs & Fruits,
Mustard, Nectarines, Oats,Olives, Onions, Oranges, Other Crops, Other Hay/Non
Alfalfa, Other Small Grains, Other Tree Crops, Peaches, Peanuts, Pears, Peas, Pecans,
Peppers, Pistachios, Plums, Pomegranates, Pop or Orn Corn, Potatoes, Prunes, Pump-
kins, Radishes, Rape Seed, Rice, Rye, Safflower, Sorghum, Soybeans, Speltz, Spring
Wheat, Squash, Strawberries, Sugarbeets, Sugarcane, Sunflower, Sweet Corn, Sweet
Potatoes, Switchgrass, Tobacco, Tomatoes, Triticale, Turnips, Vetch, Walnuts, Water-
melons, Winter Wheat

Water Herbaceous Wetlands, Open Water, Perennial Ice/Snow, Water, Wetlands, Woody Wet-
lands

https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php
https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php
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Table S4: Explanatory variables included in our linear modeling exercise (excluding
the intercept term) for the years 2015-2019. For each variable we provide informa-
tion regarding its nature before any possible transformation (e.g., percentage, count,
continuous or binary), as well a reference to the dataset it refers to (i.e., a table or
figure where it is discussed in more detail).

# Variable Type Reference

1 Year 2015 binary Tables S1, S2, S3
2 Year 2016 binary Tables S1, S2, S3
3 Year 2017 binary Tables S1, S2, S3
4 Year 2018 binary Tables S1, S2, S3
5 Year 2019 binary (reference category) Tables S1, S2, S3
6 Region Central binary (reference category) Figure S1
7 Region East North Central binary Figure S1
8 Region Northeast binary Figure S1
9 Region Northwest binary Figure S1
10 Region South binary Figure S1
11 Region Southeast binary Figure S1
12 Region Southwest binary Figure S1
13 Region West binary Figure S1
14 Region West North Central binary Figure S1
15 Quarter 1 binary Tables S1, S2
16 Quarter 2 binary Tables S1, S2
17 Quarter 3 binary Tables S1, S2
18 Quarter 4 binary (reference category) Tables S1, S2
19 Varroa destructor percentage Table S1
20 Other pests and parasites percentage Table S1
21 Diseases percentage Table S1
22 Pesticides percentage Table S1
23 Other percentage Table S1
24 Min. temp. std. dev. continuous Table S2
25 Min. temp. norm continuous Table S2
26 Min. temp. entropy continuous Table S2
27 Min. temp. skewness continuous Table S2
28 Min. temp. kurtosis continuous Table S2
29 Min. temp. alpha index continuous Table S2
30 Max. temp. mean continuous Table S2
31 Max. temp. std. dev. continuous Table S2
32 Max. temp. norm continuous Table S2
33 Max. temp. skewness continuous Table S2
34 Max. temp. kurtosis continuous Table S2
35 Precipitation std. dev. continuous Table S2
36 Precipitation norm continuous Table S2
37 Precipitation entropy continuous Table S2
38 Precipitation skewness continuous Table S2
39 Green-area index continuous Table S3
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Table S5: F -tests (Hastie and Pregibon, 1992) on the contribution of weather
indexes for the years 2015-2019. Comparisons across nested fits for the Gaussian –
both with and without the 10% outliers detected by our mixed-integer programming
approach (Insolia et al., 2021) – and quasi-Poisson models: sample size (n), num-
ber of features (p), residual degree of freedom and residual deviance (residual sum
of squares for the Gaussian models), difference in the degree of freedom between
nested models, deviance (sum of squares for the Gaussian case), F -statistic, and
p-value. For minimum and maximum temperatures, as well as precipitation, the asso-
ciated reduced models exclude the following weather indexes that we built: ”norm”,
”entropy”, ”skewness”, ”kurtosis”, and ”alpha index”.

Model n p Resid. Df Resid. Dev Df Dev F Pr(> F )

Gaussian 674 37 637 168.78
(with MIP outliers) 674 26 648 174.20 -11 -5.42 1.86 0.0417

Gaussian 607 37 570 80.37
(without MIP outliers) 607 26 581 86.79 -11 -6.42 4.14 < 10−4

Quasi-Poisson 674 37 637 618935.58
(with MIP outliers) 674 26 648 643098.12 -11 -24162.54 2.17 0.0144

Quasi-Poisson 674 37 570 348561.16
(without MIP outliers) 674 26 581 371029.26 -11 -22468.10 3.30 0.0002
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Table S6: Spatio-temporal information for outlying cases with unexpectedly higher
or lower losses (i.e., large positive or negative residuals, respectively) detected by
our mixed-integer programming approach (Insolia et al., 2021) with a 10% trimming
for the years 2015-2019. We consider scaled residuals exceeding a given quantile of
the standard normal distribution (first column), and for these points we report the
number of observations belonging to each climatic region, state, year and quarter.

Quantile Region # Obs. State # Obs. Year # Obs. Quarter # Obs.

> Φ−1(0.975) South 11 Kansas 5 2015 9 1 5
West North Central 9 Nebraska 4 2016 7 2 6
Central 5 Arkansas 3 2017 7 3 16
Northeast 5 Massachusetts 3 2018 8 4 8
Northwest 3 South Dakota 3 2019 4
Southeast 1 Washington 3
(Other) 1 (Other) 14

> Φ−1(0.999) X South 4 Kansas 2 2015 4 1 3
Central 3 South Dakota 2 2016 2 2 2
Northeast 3 Arkansas 1 2017 4 3 9
West North Central 3 Illinois 1 2018 1 4 0
Northwest 1 Louisiana 1 2019 3
East North Central 0 Maine 1
(Other) 0 (Other) 6

< Φ−1(0.025) Northeast 9 Vermont 4 2015 9 1 6
South 7 Oklahoma 3 2016 9 2 7
Southwest 4 Louisiana 2 2017 5 3 9
Central 3 New Jersey 2 2018 3 4 10
Northwest 3 Oregon 2 2019 6
East North Central 2 Utah 2
(Other) 4 (Other) 17

< Φ−1(0.001) Northeast 6 Oklahoma 2 2015 6 1 2
South 4 Vermont 2 2016 3 2 3
Central 2 Arkansas 1 2017 3 3 6
Southwest 2 Connecticut 1 2018 1 4 4
Northwest 1 Idaho 1 2019 2
East North Central 0 Kentucky 1
(Other) 0 (Other) 7
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Table S7: Regression results for the colony loss response against the sole predic-
tor “other pests and parasites” (Model 1), against the sole predictor V. destructor
(Model 2), against both “other pests and parasites” and V. destructor (Model 3),
and finally against these two predictors and “other” (Model 4) for the years 2015-
2019. For each predictor in each fit, we report the corresponding coefficient estimate,
standard error, t-statistic and p-value. Outlying cases detected by our mixed-integer
programming approach (Insolia et al., 2021) based on a 10% trimming were excluded
from the analysis. While the marginal regressions in Models 1-2 have positive coef-
ficients, the coefficient for “other pests and parasites” changes sign in Model 3,
and becomes negative and significant after the inclusion of the variable “other” in
Model 4.

Model Coefficient Estimate Std. Error t value Pr(> |t|)

1 (Intercept) -1.9608 0.0498 -39.34 < 2× 10−16

Other pests and parasites 0.0564 0.0180 3.14 0.0018

2 (Intercept) -1.9348 0.0294 -65.77 < 2× 10−16

Varroa destructor 0.1957 0.0229 8.54 < 2× 10−16

3 (Intercept) -1.9672 0.0475 -41.43 < 2× 10−16

Other pests and parasites -0.0169 0.0195 -0.87 0.3853
Varroa destructor 0.2064 0.0260 7.92 1.11× 10−14

4 (Intercept) -1.5086 0.0686 -22.00 < 2× 10−16

Other pests and parasites -0.0450 0.0186 -2.42 0.0158
Varroa destructor 0.1555 0.0252 6.17 1.25× 10−9

Other 0.1976 0.0224 8.82 < 2× 10−16
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Table S8: Comparison of estimated regression coefficients’ signs across different
estimation methods and models (negative/positive signs are reported as red/green
cells) for the years 2015-2019. For our linear modeling exercise, as the one used by our
mixed-integer programming (MIP) approach (Insolia et al., 2021) in the main text,
we consider: OLS : ordinary least squares; glmnet : elastic-net penalty with mixing
parameter α = 0.8 (Simon et al., 2011); SCAD : smoothly-clipped absolute deviations
penalty (Breheny and Huang, 2011); sparseLTS : lasso penalty with least trimmed
of squares loss based on a 10% trimming (Alfons, 2021). For the same model using
count data as a response variable (i.e., the number of lost colonies per state and
quarter) and an additional offset to capture different scales (i.e., the logarithm of
maximum number of colonies per state and quarter), we compare: glmnet-Poisson:
elastic-net penalty for Poisson models with mixing parameter α = 0.8 (Simon et al.,
2011); snet-NB : SCAD penalty with a ridge-like parameter (also here we set α = 0.8)
for negative binomial models (Breheny and Huang, 2011). Overall, these results are
fairly consistent across different methods, and with the ones discussed in the main
text for MIP. However, MIP provides a sparser and more interpretable solution.

Coefficient OLS glmnet SCAD sparseLTS glmnet-Poisson snet-NB

(Intercept)
Year 2015
Year 2016
Year 2017
Year 2018

East North Central
Northeast
Northwest

South
Southeast
Southwest

West
West North Central

Quarter 1
Quarter 2
Quarter 3

Varroa destructor
Other pests and parasites

Diseases
Pesticides

Other
Min. temp. std. dev.

Min. temp. norm
Min. temp. entropy

Min. temp. skewness
Min. temp. kurtosis

Min. temp. alpha index
Max. temp. mean

Max. temp. std. dev.
Max. temp. norm

Max. temp. skewness
Max. temp. kurtosis

Precipitation std. dev.
Precipitation norm

Precipitation entropy
Precipitation skewness

Green-area index
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Table S9: Comparison of regression coefficients’ signs (negative/positive signs are
reported as red/green cells) across different estimation methods and models as in
Table S8 for the years 2015-2019. Here each fit is computed on the set of non-
outlying cases detected by our mixed-integer programming (MIP) approach (Insolia
et al., 2021) with a 10% trimming. In this setting, results are more consistent across
methods and models, and they resemble more closely the ones discusses in the main
text based on MIP.

Coefficient OLS glmnet SCAD sparseLTS glmnet-Poisson snet-NB

(Intercept)
Year 2015
Year 2016
Year 2017
Year 2018

East North Central
Northeast
Northwest

South
Southeast
Southwest

West
West North Central

Quarter 1
Quarter 2
Quarter 3

Varroa destructor
Other pests and parasites

Diseases
Pesticides

Other
Min. temp. std. dev.

Min. temp. norm
Min. temp. entropy

Min. temp. skewness
Min. temp. kurtosis

Min. temp. alpha index
Max. temp. mean

Max. temp. std. dev.
Max. temp. norm

Max. temp. skewness
Max. temp. kurtosis

Precipitation std. dev.
Precipitation norm

Precipitation entropy
Precipitation skewness

Green-area index
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Table S10: Features selected by our mixed-integer programming approach (Inso-
lia et al., 2021) with a 10% trimming, for the years 2015-2019, using state-level
controls as opposed to climatic regions. The results are consistent with the ones dis-
cussed in the main text, with the difference that the “green-area index” switches sign
and results as non-significant, as it partially accounts for state-level variability (see
Figure S15). Model with R2 = 0.65.

Coefficient Estimate Std. Error t value Pr(> |t|)

(Intercept) -1.7738 1.2278 -1.44 0.1491
Arizona 0.1094 0.6708 0.16 0.8705
Arkansas -0.1449 0.1861 -0.78 0.4366
California -0.4107 0.1659 -2.48 0.0136
Colorado -0.1148 0.5634 -0.20 0.8387
Connecticut -0.8277 0.7260 -1.14 0.2548
Florida -0.1767 0.6687 -0.26 0.7916
Georgia -0.2331 0.2654 -0.88 0.3801
Idaho -0.4450 0.8212 -0.54 0.5881
Illinois -0.1902 0.2538 -0.75 0.4541
Indiana -0.2053 0.2186 -0.94 0.3480
Iowa -0.4332 0.1438 -3.01 0.0027
Kansas 0.0145 0.2774 0.05 0.9583
Kentucky -0.0120 0.1416 -0.08 0.9327
Louisiana -0.7142 0.2495 -2.86 0.0044
Maine -0.1318 0.4264 -0.31 0.7573
Maryland -0.5815 0.5958 -0.98 0.3295
Massachusetts -0.6169 0.7822 -0.79 0.4307
Michigan -0.3856 0.3301 -1.17 0.2432
Minnesota -0.1950 0.1465 -1.33 0.1836
Mississippi -0.2392 0.1645 -1.45 0.1463
Missouri -0.4262 0.1529 -2.79 0.0055
Montana -0.6731 0.9057 -0.74 0.4577
Nebraska -0.5472 0.4478 -1.22 0.2223
New Jersey -0.7514 1.0338 -0.73 0.4677
New Mexico 0.5507 1.0350 0.53 0.5949
New York -0.4051 0.2001 -2.02 0.0434
North Carolina -0.2622 0.3058 -0.86 0.3916
North Dakota -0.4851 0.3613 -1.34 0.1800
Ohio -0.2840 0.3602 -0.79 0.4308
Oklahoma 0.0389 0.2360 0.16 0.8693
Oregon -0.6303 0.5853 -1.08 0.2820
Pennsylvania -0.2796 0.2742 -1.02 0.3082
South Carolina -0.2622 0.3031 -0.86 0.3875
South Dakota -0.6196 0.5678 -1.09 0.2757
Tennessee 0.0044 0.1884 0.02 0.9814
Texas -0.3294 0.1684 -1.96 0.0509
Utah 0.0866 0.8043 0.11 0.9143
Vermont -0.1514 0.2965 -0.51 0.6097
Virginia -0.2159 0.1976 -1.09 0.2751
Washington -0.5987 0.2100 -2.85 0.0045
West Virginia -0.1110 0.1650 -0.67 0.5012
Wisconsin -0.2413 0.1517 -1.59 0.1122
Wyoming -0.1348 1.1873 -0.11 0.9096
Year 2016 -0.1228 0.0485 -2.53 0.0116
Year 2017 -0.1347 0.0477 -2.82 0.0049
Year 2018 -0.1526 0.0503 -3.03 0.0025
Year 2019 -0.1352 0.0568 -2.38 0.0178
Quarter 2 -0.7523 0.0489 -15.39 < 10−4

Quarter 3 -0.3639 0.0756 -4.82 < 10−4

Quarter 4 -0.4088 0.0476 -8.58 < 10−4

Varroa destructor 0.1743 0.0221 7.90 < 10−4

Other pests and parasites -0.0711 0.0169 -4.20 < 10−4

Pesticides 0.0223 0.0127 1.75 0.0802
Other 0.1578 0.0181 8.71 < 10−4

Min. temp. std. dev. 0.0557 0.0208 2.68 0.0076
Min. temp. skewness 0.1861 0.0497 3.74 0.0002
Min. temp. kurtosis 0.5509 0.1196 4.60 < 10−4

Min. temp. alpha index -0.2016 0.0735 -2.74 0.0063
Max. temp. kurtosis 0.2344 0.1097 2.14 0.0331
Precipitation entropy 0.0710 0.0351 2.02 0.0435
Green-area index -0.0645 0.4965 -0.13 0.8967
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Table S11: Ordinary least squares fit computed on the sets of non-outlying cases
and selected features by our mixed-integer programming (MIP) approach (Insolia
et al., 2021) based on a 10% trimming, for the years 2015-2019, with additional
lagged variables for stressors and weather indexes. Lags are computed according to
data for the previous quarter (if available). The model contains p = 25 predictors
(including the intercept term), and after the removal of outliers detected by MIP and
missing data the sample size reduces to n = 437. For each predictor, we report the
corresponding coefficient estimate, standard error, t-statistic and p-value. The model
has an R2 = 0.58. The results are consistent with the ones discussed in the main
text for MIP, and only a few lagged terms report a significant coefficient; namely:
“lagged V. destructor”, “lagged skewness of minimum temperatures”, and “lagged
kurtosis of minimum temperatures”.

Coefficient Estimate Std. Error t value Pr(> |t|)

(Intercept) -3.4644 0.4066 -8.52 < 10−4

Region East North Central -0.1574 0.0720 -2.19 0.0292
Region Northeast -0.2360 0.0702 -3.36 0.0009
Region Northwest -0.6493 0.1083 -5.99 < 10−4

Region South -0.2815 0.0828 -3.40 0.0007
Region Southeast 0.0142 0.0655 0.22 0.8290
Region Southwest -0.1416 0.1246 -1.14 0.2565
Region West -0.4405 0.1270 -3.47 0.0006
Region West North Central -0.5165 0.1130 -4.57 < 10−4

Year 2015 0.1750 0.0830 2.11 0.0356
Year 2016 0.0618 0.0763 0.81 0.4183
Year 2017 0.0472 0.0743 0.64 0.5255
Year 2018 0.0141 0.0755 0.19 0.8521
Quarter 1 0.2986 0.0903 3.31 0.0010
Quarter 2 -0.3394 0.0889 -3.82 0.0002
Quarter 3 -0.0040 0.1030 -0.04 0.9689
Varroa destructor 0.1826 0.0257 7.11 < 10−4

Other pests and parasites -0.0664 0.0195 -3.40 0.0007
Pesticides 0.0400 0.0150 2.67 0.0079
Other 0.1278 0.0216 5.93 < 10−4

Min. temp. std. dev. 0.0324 0.0231 1.40 0.1622
Min. temp. skewness 0.1887 0.0606 3.11 0.0020
Min. temp. kurtosis 0.6139 0.1455 4.22 < 10−4

Min. temp. alpha index -0.2574 0.0989 -2.60 0.0096
Max. temp. kurtosis 0.2826 0.1245 2.27 0.0238
Precipitation entropy 0.0899 0.0365 2.46 0.0143
Green-area index 0.1056 0.0463 2.28 0.0231
Lagged Varroa destructor 0.0472 0.0261 1.81 0.0718
Lagged Other pests and parasites -0.0071 0.0196 -0.36 0.7187
Lagged Pesticides 0.0001 0.0150 0.01 0.9956
Lagged Other -0.0270 0.0219 -1.23 0.2191
Lagged Min. temp. std. dev. 0.0349 0.0257 1.36 0.1744
Lagged Min. temp. skewness 0.1447 0.0624 2.32 0.0209
Lagged Min. temp. kurtosis 0.3927 0.1404 2.80 0.0054
Lagged Min. temp. alpha index -0.0527 0.0861 -0.61 0.5404
Lagged Max. temp. kurtosis 0.1133 0.1224 0.93 0.3550
Lagged Precipitation entropy -0.0349 0.0356 -0.98 0.3273
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Table S12: Ordinary least squares fit for the features selected by glmnet (Simon
et al., 2011) – with mixing parameter α = 0.8 and enforcing the inclusion of features
selected by our mixed-integer programming (MIP) approach (Insolia et al., 2021) –
for a model as in Table 1 of the main text, covering the years 2015-2019, with 55 addi-
tional pairwise interaction terms computed among continuous features only (p = 82).
Interaction terms with a marginal correlation larger than 0.7 were removed at the
outset (as described in the Data treatment Section of the Supplementary Informa-
tion), reducing the number of predictors to p = 48. Outlying cases detected by our
MIP based on a 10% trimming were excluded from the analysis (n = 607). The model
has an R2 = 0.62. Most predictors selected by MIP remain significant, such as “V.
destructor”, “pesticides”, “kurtosis of maximum temperatures”, “entropy of precipi-
tations”, “green-area index”, etc. The interaction terms with a significant coefficient
include the interaction of the “green-area index” with “other”, “standard deviation
of minimum temperatures”, “entropy of precipitations”, and “skewness of minimum
temperature”, as well as the interaction of the “alpha index of minimum temper-
atures” with “V. destructor” and “standard deviation of minimum temperatures”.
Overall, these results are consistent with the ones based on MIP which are discussed
in the main text.

Coefficient Estimate Std. Error t value Pr(> |t|)

(Intercept) -4.4525 0.4915 -9.06 < 10−4

Year 2015 0.1205 0.0563 2.14 0.0329
Year 2016 0.0199 0.0550 0.36 0.7177
Year 2017 0.0161 0.0540 0.30 0.7658
Year 2018 -0.0295 0.0538 -0.55 0.5837
Region East North Central -0.1733 0.0609 -2.85 0.0046
Region Northeast -0.1210 0.0611 -1.98 0.0480
Region Northwest -0.5910 0.0859 -6.88 < 10−4

Region South -0.1448 0.0641 -2.26 0.0242
Region Southeast 0.0197 0.0569 0.35 0.7290
Region Southwest -0.0464 0.0943 -0.49 0.6225
Region West -0.2023 0.1088 -1.86 0.0634
Region West North Central -0.5694 0.0856 -6.65 < 10−4

Quarter 1 0.3942 0.0480 8.22 < 10−4

Quarter 2 -0.3772 0.0532 -7.10 < 10−4

Quarter 3 0.0023 0.0750 0.03 0.9758
Varroa destructor 0.2510 0.0372 6.75 < 10−4

Other pests and parasites -0.1911 0.0735 -2.60 0.0096
Pesticides 0.0303 0.0122 2.49 0.0130
Other 0.0860 0.1003 0.86 0.3915
Min. temp. std. dev. 0.1822 0.0456 4.00 0.0001
Min. temp. skewness -0.1940 0.1506 -1.29 0.1982
Min. temp. kurtosis 0.5573 0.1240 4.49 < 10−4

Min. temp. alpha index -0.1040 0.1081 -0.96 0.3365
Max. temp. kurtosis 0.8358 0.2693 3.10 0.0020
Precipitation entropy 0.2311 0.0838 2.76 0.0060
Green-area index 0.4456 0.1263 3.53 0.0005
Varroa destructor :Min. temp. skewness -0.0392 0.0502 -0.78 0.4347
Varroa destructor :Min. temp. alpha index -0.1002 0.0571 -1.75 0.0799
Other pests and parasites:Min. temp. alpha index 0.0346 0.0446 0.78 0.4381
Other pests and parasites:Max. temp. kurtosis 0.0869 0.0773 1.12 0.2616
other:Max. temp. kurtosis 0.1298 0.0836 1.55 0.1211
Other:Green-area index -0.0285 0.0171 -1.67 0.0958
Min. temp. std. dev.:Min. temp. alpha index -0.0411 0.0248 -1.65 0.0988
Min. temp. std. dev.:Green-area index -0.0433 0.0143 -3.02 0.0026
Min. temp. skewness:Green-area index 0.1303 0.0546 2.39 0.0174
Precipitation entropy:Green-area index -0.0530 0.0285 -1.86 0.0638

..
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Table S13: Features selected using the mixed-integer programming procedure
described in Insolia et al. (2021) for the years 2015-2021, with corresponding coef-
ficient estimates, standard errors, t-statistics and p-values computed on a subset
encompassing 90% of the observations (745 out of 828 are selected as “non-outlying”,
concurrently with the feature selection). Group-constraints are used to ensure that
categorical controls for quarter and climatic region, e.g., the three terms represent-
ing quarters, are either all selected or all excluded. Moreover, we imposed the control
for years to be retained in the model – as this would at least partially mitigate the
effects of any anomalies in the last two years on the overall fit (here the reference
category is the year 2021). Overall, this extended analysis confirms the main findings
from Table 1 of the main text. The model has an R2 = 0.56.

Coefficient Estimate Std. Error t value Pr(> |t|)

(Intercept) -2.2583 0.2173 -10.39 < 10−4

Year 2015 0.1306 0.0596 2.19 0.0288
Year 2016 0.0234 0.0596 0.39 0.6952
Year 2017 0.0404 0.0592 0.68 0.4949
Year 2018 0.0382 0.0589 0.65 0.5167
Year 2019 0.0022 0.0647 0.03 0.9726
Year 2020 -0.0728 0.0679 -1.07 0.2841
Region East North Central -0.2090 0.0630 -3.32 0.0010
Region Northeast -0.2157 0.0585 -3.69 0.0002
Region Northwest -0.7430 0.0781 -9.51 < 10−4

Region South -0.0870 0.0647 -1.34 0.1795
Region Southeast 0.1219 0.0589 2.07 0.0391
Region Southwest -0.0616 0.0918 -0.67 0.5027
Region West -0.2881 0.1026 -2.81 0.0051
Region West North Central -0.5780 0.0799 -7.23 < 10−4

Quarter 1 0.2691 0.0505 5.33 < 10−4

Quarter 2 -0.2607 0.0704 -3.71 0.0002
Quarter 3 0.0377 0.1031 0.37 0.7147
Varroa destructor 0.1711 0.0196 8.74 < 10−4

Other pests and parasites -0.0682 0.0157 -4.33 < 10−4

Pesticides 0.0258 0.0116 2.23 0.0260
Other 0.1858 0.0163 11.37 < 10−4

Min. temp. skewness 0.1053 0.0461 2.28 0.0227
Min. temp. kurtosis 0.4844 0.1083 4.47 < 10−4

Min. temp. alpha index -0.2571 0.0620 -4.15 < 10−4

Max. temp. mean -0.0129 0.0056 -2.31 0.0212
Max. temp. kurtosis 0.1535 0.0939 1.64 0.1024
Precipitation entropy 0.0764 0.0332 2.30 0.0215
Precipitation skewness 0.0157 0.0079 1.98 0.0477
Green-area index 0.1527 0.0333 4.59 < 10−4

..
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Data

The Supplementary Information includes the dataset that we built covering
the years 2015-2021 in the bee data.csv file.

Source code

The Supplementary Information includes the source code to reproduce our
analyses in the code.zip file.
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