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Supplementary Method 1: Minibatch unbalanced optimal trans-

port

Here we give a brief introduction to optimal transport (OT), which has attracted more and more

attention in the analysis of single-cell datasets recently. Suppose we have two single-cell datasets

X = {xi}nx
i=1,xi ∈ RK and Y = {yj}

ny

j=1,yj ∈ RK in a K-dimensional spaces. Two discrete

measures with weights a, b are defined as

a =

nx∑
i=1

aiδxi , b =

ny∑
i=1

biδyi
(1)

where δx is the Dirac at cell x, and a, b belong to the probability simplex: Σn
def
= {a ∈ Rn

+ :∑n
i=1 ai = 1}. Typically, we initialize a, b as uniform distribution with each element be the same,

that is a = 1
nx

1nx ,b = 1
ny
1ny . However, we also provide a user-guided reweight option in our

method if the importance of each cell for alignment is not the same.

The OT plan, i.e., cell-cell probabilistic coupling matrix, T ∈ Rnx×ny

+ , as well as a cost matrix

C ∈ Rnx×ny

+ , describes the probabilities of aligning cells and the distances between cells across

datasets, respectively. Consequently, the discrete OT problem is defined as follows

L(a,b)
def
= min

T∈Π(a,b)
⟨C,T⟩ = min

T∈Π(a,b)

∑
i,j

CijTij (2)

where Π(a,b)
def
= {T ∈ Rnx×ny

+ : T1ny = a, T⊤1nx = b}, and ⟨·, ·⟩ denotes Frobenius dot product.

Besides, in order to introduce some smoothness to the transport matrix, the approximate solution



according to the regularization parameter ϵ writes as

Lϵ(a,b)
def
= min

T∈Π(a ,b)
⟨C,T⟩ − ϵ

∑
i,j

Ti,j log(Ti,j) (3)

Equation (3) is strictly convex optimization problem and can be solved efficiently via iterative

Bergman projections [1]:

α(l+1) =
a

Gβ(l)
, β(l+1) =

b

G⊤α(l)
(4)

starting from β(0) = 1
ny
1ny , where Gij = e−Cij/ϵ, and the optimal transport plan T∗

ij = αiGijβj .

In uniPort, we employ a more robust and efficient inexact proximal point method (IPOT) [9] to

compute the OT plan. Concretely, uniPort replaces Gij with G′
ij = T

(l)
ij e

−Cij/ϵ in Eq. (4).

To combine OT with coupled-VAE, we utilize the minibatch unbalanced optimal transport

(Minibatch-UOT) [4], which is a geometrically robust version. Minibatch-UOT is computed be-

tween batches which is practical for large-scale datasets and deep learning applications, and also

decreases the influence of undesired outliers which makes it suitable for partially-overlap datasets.

Compared to classic OT, Minibatch-UOT changes the Eq. (3) as

min
T∈RBx×By

+

< C, T > −ϵH(T) + ρ
(
DKL(T1B∥a) +DKL(T

⊤1B∥b)
)

(5)

where Bx and By are minibatch sizes of datasets X and Y, and T and C are minibatch OT plan

and cost. DKL is KL divergence, and ρ is a marginal penalization. It should be noted that when

τ → ∞, the algorithm degenerates into balanced OT. Therefore, the corresponding Eq. 4 can be

rewritten as

α(l+1) = (
a

Gβ(l)
)

ρ
ρ+ϵ , β(l+1) = (

b

G⊤α(l)
)

ρ
ρ+ϵ (6)

Besides, uniPort computes the OT costC between the Gaussian mixture models {N (µxk
,σ2

xk
I)}Bx

k=1

and {N (µyk ,σ
2
yk
I)}By

k=1, instead of latent vectors zx and zy, where µ and σ are output of the prob-

abilistic encoder of coupled-VAE.

Definition 1 For two K-dimensional Gaussian distributions N (µx,Σx) and N(µy,Σy). The
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Wasserstein distance admits a closed-form expression [8]:

W (px, py) = ∥µx − µy∥2 + trace

(
Σx +Σy − 2(Σ

1
2
xΣyΣ

1
2
x )

1
2

)
(7)

When the covariance matrices are diagonal, i.e., Σ = diag(σ2), where σ ∈ RK
+ is the standard

deviation vectors, we can rewritten Wasserstein distance as [10]:

W (px, py) = ∥µx − µy∥2 + ∥σx − σy∥2 (8)

Therefore, according to Definition 1, the optimal transport cost Cij between i-th component in

{N (µxk
,σ2

xk
I)}Bx

k=1 and j-th component in {N (µyk ,σ
2
yk
I)}By

k=1 is defined as

Cij = ∥µxi − µyj∥2 + ∥σxi − σyj∥2 (9)

We provide a Python package for the implementation of uniPort at https://github.com/

caokai1073/uniPort. Parts of the code are based on modifications of SCALEX (https://github.

com/jsxlei/SCALEX) and RAE (https://github.com/HongtengXu/Relational-AutoEncoders).

Supplementary Method 2: Global OT plan for high-plex RNA

imaging-based and barcoding-based ST data

uniPort can output a global OT plan, i.e., cell-to-spot probabilistic matching matrix, that transfers

labels for deconvolution of spatial heterogeneous data across wide-ranging resolutions, such as 10X

Visium and microarray-based ST data. After obtaining the OT plan, we can directly use it for

deconvolution of mixed spots by summing the transport mass, i.e., probability, of every cluster

according to given labels in scRNA data for each spot, which can be written as a matrix M (row

for spot and column for cell cluster). Then we divide each column of M by the cell number of

the corresponding cluster. Users can also use a priori-biased cluster proportion by changing the

dividend. M can also be filtered by top percent clusters according to the user’s requirement.

3



Supplementary Method 3: Contrastive learning with reference guided

prior information

To improve the performance of integration, we also develop a contrastive learning [5] method to

incorporate cell type annotations or any cell-cell correspondence if available, which was introduced

in our former work, Pamona [2], and also proposed by MAT2 [11]. Following the definition in

MAT2, for cell xi in dataset X and cell yj in reference dataset Y, if they have the same cell-type

annotation or a prior correspondence, we regard the cell triplets as a positive anchor, and negative

conversely. We combine cell triplets with Minibatch-UOT, which is like the Joint Distribution

Optimal Transport (JDOT) [3]. Specifically, we define a prior matrix F ∈ RBx×By where

Fij =


α, if triplet (i, j) is negative

1, if triplet (i, j) is unknown

1/α, if triplet (i, j) is positive.

(10)

Here α ≥ 1 is a user-guided parameter reflecting the confidence of cell-type annotations or corre-

spondence, and larger α means better confidence. We multiply F with C to formulate the final

transport cost

Cij ← Cij ∗ Fij (11)

We added contrastive learning to uniPort for integrating datasets without common features and

applied it to integrate PBMC scRNA genes and scATAC peaks data (Supplementary Fig. 16c).

Results showed that the guided information of cell-type annotations improved the performance of

uniPort for this task, with most of the cell types aligned well.

Supplementary Method 4: Sample reweight during integration

Most single-cell data integrative methods give cells the same importance during integration. How-

ever, in some real-world tasks, rare cells in one modality deserve much attention and should be

matched with massive cells in other modalities. Therefore, we provide an option for user-guided

sample weights if cells should not uniformly matched. In this case, we set a and b in Minibatch
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UOT as weighted distributions p and q specified by users instead of uniform vectors and reweight

reconstruction loss in coupled-VAE as well. Specifically, if users want to give samples in dataset

X a new weight distribution p and samples in dataset Y a new q, then the Minibatch-UOT loss

becomes

min
T∈RBx×By

+

< C, T > −ϵH(T) + ρ
(
DKL(T1B∥p) +DKL(T

⊤1B∥q)
)

(12)

Supplementary Discussion 1: uniPort imputes genes in an online

manner

To explore uniPort’s ability for online imputation, we utilized the well-trained model of scRNA

and MERFISH data profiled from mouse #1 as a reference atlas and downloaded MERFISH data

profiled from mouse #2 with 59,651 cells and 155 genes. We selected the same 153 common genes

as in the above-referenced MERFISH data of mouse #2 and input them into the atlas. Then the

encoder projected MERFISH data of mouse #2 into the integrated latent space, and the decoder

reconstructed the corresponding 2,000 highly variable genes in scRNA from the cell embeddings.

Accordingly, the model proved to be especially powerful in that it could predict the expression of

genes in scRNA data, even though not measured in MERFISH data, in an online manner.

To assess the validity and qualification of online imputed scRNA data, we calculated the cor-

relation of mean gene expression of real and predicted scRNA data in different cell types (Sup-

plementary Fig. 6a). As a result, real and predicted scRNA data were significantly correlated,

according to the Pearson correlation coefficient R2 = 0.999 for all data, and ranged from 0.501 for

Ependymal cells to 0.990 for Inhibitory cells. Results showed that the high-expression regions of

common genes in MERFISH and generated scRNA were consistent in the latent space. Finally,

for verification of cell-type labels, we plotted the top differential marker gene expression for each

cell type in predicted scRNA data and observed consistent patterns of cell-type-specific expression

(Supplementary Fig. 6b). For example, Excitatory and Inhibitory cells are difficult to distinguish,

since, in essence, they belong to neural subtypes. However, our generated differential marker gene

expression exhibited significant differences between the two cell types, such as marker genes Ghrh

and Trh in Excitatory cells and Gal and Th in Inhibitory cells. We further demonstrated the high

Pearson correlation coefficient between predicted marker genes and real MERFISH marker genes
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(Supplementary Fig. 6c).

Supplementary Discussion 2: uniPort integrates datasets without

dataset-specific genes

We introduced a uniPort version that only used common genes for integration, named uniPort-cm

for convenience. Compared with uniPort-cm, uniPort leveraged common, ATAC- and RNA-specific

genes for integration and demonstrated better integration performance (Supplementary Fig. 9).

To intuitively show the importance of specific genes, we visualized the gene expression of RNA-

specific marker genes GATA3 and MAF, and ATAC-specific marker genes JAKMIP1 and LINCO495

(Supplementary Fig. 10). These marker genes showed high expression values in CD4 and CD8 cells,

which assisted in the identification and separation of corresponding cells.

Supplementary Discussion 3: Computational cost

We tested the scalability of uniPort to large-scale data by measuring both maximum memory usage

and total runtime (Supplementary Fig. 12). To test uniPort’s scalability against other methods, we

sampled PBMC data (11,259 cells) to create seven benchmark datasets with 5K, 10K, 20K, 40K,

80K, 160K and 320K cells. uniPort, SCALEX, scVI and Harmony scaled well beyond 320K cells,

while MultiMAP, Seurat and LIGER is not suitable for integration of datasets beyond 160K cells

in this case. In sum, the minibatch strategy in the deep learning framework dramatically reduced

uniPort’s time and memory consumption. For example, uniPort required only 19.4 gigabytes (GB)

for 320K cells, better than other methods except for Harmony. Although uniPort consumed more

runtime when cell number is less than 20K cells, which was about twice that of SCALEX owing

to the addition of optimal transport computation, it was still very efficient and consumed almost

constant runtime (about 11 minutes) with the cell number increased.

We further plotted the computational time of more compared methods on the PBMC example

(Supplementary Fig. 11). The result demonstrated that uniPort had competitive efficiency with

other VAE-based models, and took much less time than global optimal transport methods, such as

SCOT and Pamona.
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Supplementary Discussion 4: uniPort integrates datasets profiled

from the same cells

We also developed a method in uniPort for integrative clustering of multiple datasets simultaneously

profiled from the same cells (set mode=‘v’ in uniport.Run function in uniport Python package).

This aims to improve the clustering performance of one modality with the information of other

modalities. It takes one dataset as input and projects the data into a latent space using an

encoder. Then, uniPort reconstructs different modalities through different decoders, which revises

the clustering performance in the latent space. We tested the clustering performance of uniPort

with paired-cell CITE-seq [7] (Supplementary Fig. 14) and SNARE-seq data [6] (Supplementary

Fig. 15).

We used CITE-seq data to help improve the clustering performance of scRNA data. Results

showed that without the integration of CITE data, the Silhouette score of scRNA data in the

latent space through encoder was 0.621 (Supplementary Fig. 14b). However, if we involved the

information of CITE-seq data, the Silhouette score increased to 0.680 (Supplementary Fig. 14c).

We also tested the change of the Silhouette score with different balanced parameter λs, which

reflects the importance of CITE data (Supplementary Fig. 14d). The curve showed that with the

increase of λs, the Silhouette increased to 0.680 (λs = 0.2) first and then decreased. Therefore, we

suggest the parameter be set from 0 to 0.5.

We also used scRNA to help improve the cluster peformance of scATAC peaks in SNARE-

seq data [6]. Results showed that without the integration of scRNA data, scATAC demonstrated

completely chaotic in the latent space (Supplementary Fig. 15b). However, with the information

of scRNA, different scATAC clusters showed obvious separation (Supplementary Fig. 15c).

Supplementary Discussion 5: uniPort integrates datasets without

aligned common features

uniPort framework also involves a method for integration of datasets without common features

(set mode=‘d’ in uniport.Run function in uniport Python package). uniPort takes two single-

cell datasets with distinct features as input, which means there is no common gene as reference
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for alignment (Supplementary Fig. 16a). We employ two dataset-specific encoders ψx and ψy to

project the datasets into the same dimensional cell-embedding latent space and perform Minibatch-

UOT to align the cells. Afterwards, two dataset-specific decoders ϕx and ϕy are used to reconstruct

the inputs, respectively.

We tested the performance of uniPort with scRNA data and original scATAC peaks data instead

of gene activity matrix in PBMC datasets, which means the two modalities share no common

features. The results showed that uniPort successfully integrated some cell types, including CD4

Naive and CD14 Mono cells, but failed to integrate other cell types (Supplementary Fig. 16b),

which is reasonable owing to the lack of reference information, neither from cells nor genes.

Supplementary Discussion 6. uniPort is robust to the number of

selected common and dataset-specific HVGs.

we evaluated the robustness of uniPort on the number of common and data-specific HVG selected

on the paired PBMC example with three scenarios as follows: 1) We selected 8000, 4000, 2000,

1000 and 500 genes, respectively, for both common and dataset-specific HVGs for integration; 2)

We selected 8000, 4000, 2000, 1000 and 500 genes, respectively, for dataset-specific HVGs, while

maintained number of common HVGs as 2000 for integration; 3) We selected 8000, 4000, 2000,

1000 and 500 genes, respectively, for common HVGs, while maintained number of common HVGs

as 2000 for integration. The result showed that uniPort was robust to different choices of the

number of common and data-specific HVGs (Supplementary Fig. 17b).
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Supplementary Figures
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Supplementary Figure 2. UMAP visualization of different methods on the paired PBMC example.
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Supplementary Figure 6. Online gene imputation for mouse #2. a, Correlation of mean predicted and real expression
of RNA genes. b, Mean marker gene expression in different cell types. c, Pearson correlation coefficient between imputed
marker genes and real MERFISH marker genes of mouse #2 (two-sided t-test, p***< 0.001.).
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data. c, UMAP visualization of scRNA data with integration of CITE data. d, The change of Silhouette score with different
choices of λs parameter.
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Supplementary Figure 15. Vertical integration for SNARE data. a, uniPort takes scATAC data as input and projects
it into a low-dimensional latent space by a probabilistic decoder. Then uniPort reconstructs both scATAC and scRNA data
through their specific decoders from cell embeddings in the latent space. b, UMAP visualization of scATAC data without
integration of scRNA data. c, UMAP visualization of scATAC data with integration of scRNA data.

19



a

b

c

uniPort diagonal integration

uniPort diagonal integration with Contrastive learning

ATAC
RNA

ATAC
RNA

RNA genes

ATAC peaks ATAC peaks

RNA genes

Mini-batch UOT

Gradient

Gradient

Latent space

pe
ak

Cell

Cell

ge
ne

Xs

Ys

Xs

Ys

Encoder ψy

Encoder ψx Decoder ϕx

Decoder ϕy

Supplementary Figure 16. Diagonal integration. a, uniPort takes scATAC peaks and scRNA without aligned common
genes as input, and projects them into a common cell-embedding space by different encoders. Then uniPort minimizes the
Minibatch-UOT loss and reconstructs input through corresponding decoders. b, UMAP visualization of integration result of
PBMC by uniPort. c, UMAP visualization of PBMC data by uniPort with contrastive learning.
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Supplementary Figure 17. The robustness of uniPort corresponding to different choices of parameters over
the paired PBMC example. a, Evaluated scores of uniPort for different choices of λ, λs and γ over the paired PBMC
example. b, Evaluated scores of uniPort when selecting different numbers of common and/or specific HVG over the paired
PBMC example. c, Evaluated scores of uniPort for different choices of ρ over the paired PBMC and MERFISH examples.

21



Supplementary References

[1] Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
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