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REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

The manuscript proposes a new method uniPort for integrating unpaired single-cell
multiomics data based on variational autoencoder (VAE). The architecture of uniPort
contains separate decoders for genes common to the datasets as well as dataset-specific
genes, and achieves alignment in the latent space through optimal transport (OT). I find
the method contains a few interesting points. However, given the rapidly increasing
collection of published methods on single-cell multiomics integration, I am wondering if the
authors can further justify the novelty and unique contributions of uniPort.

- Comparison with recent integration method (VAE based) for unpaired data. [1] below is
an example, where the VAE achieves both integration and regulatory inference, and does
not require conversion of ATAC-seq features into gene activity scores. Discussions about
conceptual differences and ideally benchmarking on the PBMC example will be helpful.

- Different versions of OT are commonly used in for single-cell integration and trajectory
inference. Is the OT used in uniPort different from the existing literature? If not, giving
references would help with providing a context for the current method.

- Could the authors comment on the use of gene activity scores and whether it results in
any information loss for determining subtle cell states.

- For the PBMC example, commonly used metrics such as FOSCTTM should be used to assess
whether two modalities from the same cell have been paired properly.

- Computing the correlation between the predicted and real mean gene expression in Fig 3c
is not particularly informative. It would be more helpful to compare the correlations of
different marker genes between predicted and real. How sensitive are the results to the
number of common and data-specific HVG selected? What happens if the query data
contains cell types not contained in the reference?

- In terms of the applications, I find the spatial transcriptomics ones more interesting.
However, at the same time, deconvolution of spatial data is again a field with a plethora of
methods, some of which require matching scRNA-seq data while others do not. Does
uniPort provide novel functionalities lacking in the other methods? Discussions and
benchmarking would be helpful here.

1. Cao, Zhi-Jie, and Ge Gao. "Multi-omics single-cell data integration and regulatory
inference with graph-linked embedding.” Nature Biotechnology (2022)

Reviewer #2 (Remarks to the Author):

In this work, Cao et al. present uniPort, a new framework to integrate single-cell multi-
omics data. The framework combines a coupled variational autoencoder (coupled-VAE) and
a mini-batch unbalanced optimal transport (minibatch-UOT) plan, which are added together
to define the total loss function to optimize. The authors compare uniPort to several
established frameworks for single-cell integration, such as Seurat, LIGER, MultiMap, and
scVI, to a range of useful case studies. In particular, the authors demonstrate uniPort’s
advantages in cell type classification when integrating single-cell transcriptomics,
chromatin accessibility and spatially resolved transcriptomic data



The combination of a variational autoencoder and optimal transport—two frameworks that
are becoming increasingly prominent in single-cell analysis—is interesting and the methods
and results are well presented. Furthermore, the choice of datasets for comparison is
entirely appropriate and varied. However, I think the reasoning for why combining the VAE
and OT frameworks is useful need to be expanded upon significantly. In addition, the paper
needs to consider and compare more recent multi-omic integration methods, as UOT has
been used for integration of multi-omics data.

There are several comments I wish the authors to address:
Major comments:

e Comparing uniPort to a wider range of multi-omics-based methods is critical. In
particular, it would be worth considering: more recent methods in Seurat
(https://www.cell.com/cell/fulltext/S0092-8674(21)00583-3); scMC
(https://doi.org/10.1186/s13059-020-02238-2); while the scVI-tools framework has a
tool, totalVI, that is specifically for multi-omic integration
(https://doi.org/10.1038/s41592-020-01050-x).

e It would be worthwhile to compare uniPort to other OT-based methods, such as SpaOTsc
(https://doi.org/10.1038/s41467-020-15968-5) and SCOT
(http://doi.org/10.1089/cmb.2021.0446), which are used for spatial deconvolution and
multi-omics integration, respectively, as uniPort is the first method that I know of that uses
mini-batch UOT for single-cell analysis.

e The authors state that minibatch OT is used to allow uniPort to be applied to larger
datasets, which are common in single-cell analysis. However, I do not see any comparison
of runtime between the different considered integration frameworks. I think that would
help strengthen the methods benchmarking.

e One of the proposed features of uniPort is online prediction after constructing a reference
atlas, which is demonstrated by predicting scRNA-seq gene expression onto spatial
MERFISH data, which has significantly lower gene coverage. I think comparing uniPort to
other methods specialized for mapping scRNA-seq gene expression onto spatial data, such
as Tangram or gimVI, which were considered in a recent benchmarking study
(https://doi.org/10.1038/s41592-022-01480-9).

e For Minibatch-UOT, the parameter p related to marginal penalization in equation (4) plays
an important role on the integration, especially when there are rare cell types that are
present in only one dataset. What is the reason to set p=1? When the value of p is changed,
can uniPort still separate Ependymal cells, which are only observed in MERFISH data? Do
the results of Figure 3a change significantly?

e The input and output of uniport is unclear, e.g. XC , XS... in Figure 1, as the notation for
input and output is the same. Similarly, in the Methods section, uniPort also requires XS, YS
as input, suggesting that uniPort does not generate data-specific genes but rather requires
them as input.

e To predict genes in scRNA-seq data by the trained reference atlas (Line 197), only 153
common genes are used as input. How do the authors consider and deal with possible batch
effects between samples?

e When using evaluation metrics for benchmarking, I think it would help that the authors
were clearer about the comparison. For example, are the authors evaluating known
clustering vs predicted clustering? For the single-cell RNA-sequencing and single-cell ATAC-
sequencing data of peripheral mononuclear blood cells, do the authors consider the
consistency of paired single cell labels?

Minor comments:



e Please double check the figure captions. For example, in Figure 3a, only the integration
results from uniPort are shown, rather than the results from Harmony, Seurat, SCALEX or
scVI.

e It is good to see the comparison between gene expressions in MERFISH and predicted
RNA as in Supplementary Fig 7. What about the real single cell RNA expression? It seems
like the authors only show the comparison the mean expressions between real and
predicted RNA.

e In the Supplementary information, line 55: ‘bisaed’, which I think should be ‘biased’. I
think this is the only spelling error, but please do check over the rest of the manuscript to
make sure.



Responses to Reviewers:

We would like to thank the reviewers for their thoughtful comments and valuable
suggestions on our manuscript. The manuscript has been fully revised by following the
reviewers’ comments and suggestions, making our results more solid and convincing.

The point-by-point responses to the reviewers’ comments and suggestions are as
follows and our responses are in red color.

Reviewer #1:

Overall comments

R1: The manuscript proposes a new method uniPort for integrating unpaired single-
cell multiomics data based on variational autoencoder (VAE). The architecture of
uniPort contains separate decoders for genes common to the datasets as well as
dataset-specific genes, and achieves alignment in the latent space through optimal
transport (OT). | find the method contains a few interesting points. However, given
the rapidly increasing collection of published methods on single-cell multiomics
integration, | am wondering if the authors can further justify the novelty and unique
contributions of uniPort.

Response:
We sincerely appreciate the highly insightful and constructive suggestions by Reviewer
#1 so that we can improve the manuscript accordingly.
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work in both methods and applications.

In terms of methods, we have innovatively introduced minibatch unbalanced
optimal transport into VAE to overcome the limitation on conventional VAE for
single-cell heterogeneous and/or unpaired data integration. To the best of our
knowledge, uniPort is the first method to use minibatch unbalanced optimal
transport in single-cell genomics analysis.

In terms of applications, our uniPort is an accurate, robust and efficient
computational platform that can not only accurately integrate heterogeneous
single-cell datasets, but also impute genes to enhance the resolution of spatial
data as a generative model, and deconvolute barcoding-based spatial data
through an optimal transport plan.

We provided the detailed one-to-one responses below.

Major comments:

R1.1: Comparison with recent integration method (VAE based) for unpaired data.

[1] below is an example, where the VAE achieves both integration and regulatory
inference, and does not require conversion of ATAC-seq features into gene activity
scores. Discussions about conceptual differences and ideally benchmarking on the
PBMC example will be helpful.

Response: We thank the reviewer for the valuable advice. There are several
conceptual differences between uniPort and GLUE:




1. uniPort used the gene activity score of scATAC by MAESTRO or Signac (lines
337-348 on page 13), while GLUE developed a sophisticated knowledge-based
graph that models regulatory signals of scCATAC instead of using the gene activity
score.

2. GLUE used a discriminator to align the latent distributions of different modalities
with a complex mechanism introduced for unbalanced matching. In comparison,
uniPort employed an efficient unbalanced optimal transport to align the
distributions.

3. GLUE is specifically designed for multi-omics integration with a prior gene
regulatory relationship, while uniPort can not only integrate multi-omics data, but
also impute marker genes for one modality by another as well as deconvolute
barcoding-based spatial transcriptomics data.

Benchmark:

In the revised version, we further benchmarked uniPort against GLUE on scATAC and
scRNA from two datasets of PBMC and one dataset of mouse spleen (Figs. 2, 3, 4 and
Supplementary Figs. 2, 3). uniPort achieved comparable results with GLUE on the two
PBMC datasets and outperformed GLUE on the mouse spleen dataset, essentially in
the case of integrating heterogeneous datasets. For more details about the
comparison, please see lines 120-143 and lines 157-165 on pages 5-6. For details on
GLUE implementation, please see lines 567-573 on page 21.









R1.2: Different versions of OT are commonly used in for single-cell integration and
trajectory inference. Is the OT used in uniPort different from the existing literature?
If not, giving references would help with providing a context for the current method.

Response: We thank the reviewer for this insightful comment. In the revised
manuscript, we extensively discussed and compared uniPort with existing OT-based
methods. Our method is significantly different from the existing OT methods for single-
cell analysis. To the best of our knowledge, prevalent OT-based methods for single-
cell analysis are based on global optimal transport. In this manuscript, we first
introduced a minibatch unbalanced OT and combined it with the VAE model for this
field, which reduces the computational cost of both time and memory of OT. We
emphasized the differences in the revised manuscript through the following points.

® We benchmarked uniPort against SCOT and SpaOTsc.
SCOT and SpaOTsc are two state-of-the-art OT-based methods for single-cell
multi-omics integration and spot deconvolution, respectively. We compared uniPort
with SCOT on the integration of two datasets of PBMC and one dataset of mouse
spleen. We found uniPort outperformed SCOT in data integration on all examples
(lines 120-143 on pages 5-6) while consuming much less computational time than




SCOT (Supplementary Fig. 11). We also compared uniPort with SpaOTsc for
deconvolution of the synthetic STARmap data, and we found that uniPort achieved
higher accuracy and is more robust in performance using the evaluation metrics
(Supplementary Fig. 7; lines 225-233 on page 9).

® We provided a new paragraph for OT methods comparison.

In the revised manuscript, we added a new paragraph (lines 327-336 on page 12):
“To the best of our knowledge, prevalent OT-based methods for single-cell analysis
are based on global optimal transport, e.g., SCOT and Pamona for single-cell multi-
omics data integration, SpaOTsc and novoSpaRc for spatial positions
reconstruction, and Waddington-OT for trajectory inference. Global optimal
transport makes the computation very expensive. To resolve this drawback, our
uniPort firstly introduces a Minibatch-UOT into a VAE-based framework for single-
cell genomics analysis, which only needs to solve a mini-batch transport plan at
each iteration, thus significantly reducing the computational cost. Therefore, it is
scalable to large datasets (Supplementary Fig. 11, 12). Additionally, in general, our
coupled-VAE and Minibatch-UOT-based uniPort is more accurate than other OT-
based methods, such as SCOT, Pamona and SpaOTsc in different tasks.”

R1.3: Could the authors comment on the use of gene activity scores and whether it
results in any information loss for determining subtle cell states.

Response: We thank the reviewer for pointing out the issue of modeling gene activity
scores.

In the revised version, we addressed this issue of the importance of modeling gene
activitvy scores throuah a new task: we tested uniPort’s performance when the aene



activity score was calculated by different models of MAESTRO and Signac,
respectively. The integration result showed that uniPort achieved better performance
on gene activity score by MAESTRO with all evaluated metrics higher than that by
Signac (Supplementary Fig. 13), which demonstrated the importance of modeling gene
activity score.

In the revised manuscript, we commented on the use of gene activity scores as follows
(lines 337-348 on page 13):

“Given that our integration of scCATAC is based on gene activity score, we also tested
uniPort's performance when gene activity score is calculated in different approaches.
We employed two methods to form the gene activity score introduced by Signac and
MAESTRO, respectively. Signac defines gene activity score for scATAC as the read
count in the gene body and promoter region. MAESTRO calculates gene activity score
as a weighted sum of nearby cis-regulatory elements (REs), where the weight is an
exponentially decreasing function of distances of REs and target genes. The
integration result showed that uniPort achieved better performance on the gene activity
score by MAESTRO with all evaluated scores higher than that by Signac
(Supplementary Fig. 13), which demonstrated the importance of modeling the gene
activity score. It is worth noting that, GLUE, which is developed based on a
sophisticated knowledge-based graph that explicitly and accurately models regulatory
signals of scATAC, instead of using gene activity score, provides an important
technique for analyzing scATAC data.”






R1.4: For the PBMC example, commonly used metrics such as FOSCTTM should
be used to assess whether two modalities from the same cell have been paired

properly.

Response: We thank the reviewer for the suggestion of the FOSCTTM metric for the
evaluation of paired data integration. In the revised version, we employed the average
FOSCTTM for performance evaluation as follows.

® We added the description of the average FOSCTTM in the main text (lines 624-
630 on page 24)

® We evaluated the average FOSCTTM on the paired PBMC example in Fig. 2e.
uniPort achieved an average FOSCTTM of 0.0694, ranked second among 11
compared methods, slightly below GLUE (0.0441) while significantly higher than
other methods (lines 124-126 on page 5).



Fig. 2: e, Comparison of average FOSCTTM of different methods.

R1.5: Computing the correlation between the predicted and real mean gene
expression in Fig 3c is not particularly informative. It would be more helpful to
compare the correlations of different marker genes between predicted and real.

Response: We thank the reviewer for the suggestion. To better test the accuracy of
gene prediction by uniPort, we made modifications by adding the following revisions.

1. We predicted RNA genes by MERFISH data for mouse 2, and as suggested, we
further calculated the Pearson correlation coefficient (PCC) between MERFISH
marker genes and the predicted RNA marker genes (Supplementary Fig. 6¢). The



result demonstrated high PCC between the same genes.

Supplementary Fig. 6: ¢, Pearson correlation coefficient between imputed marker genes and real
MERFISH marker genes of mouse 2.

2. We further conducted a new task as another reviewer suggested (lines 183-212 on
pages 7-8). We followed the scheme of gimVI to impute missing genes in
MERFISH from scRNA. To be specific, we first randomly selected 80% (i.e.,
122/153) genes in MERFISH as training genes and reserved the remaining 20%
(i.e., 31/153) genes as testing genes. We repeated the above steps twelve times
and obtained 12 training and testing gene sets. Afterwards, we trained the uniPort
network with each training gene set, and then imputed the corresponding testing



gene set. We compared our results with two state-of-the-art gene-imputing
methods: gimVI and Tangram. We applied uniPort, gimVI and Tangram to impute
testing genes, and used UMAP to visualize both training and testing genes (Fig.
5e). With an imputation framework like that of gimVI, we also excepted imputed
values of uniPort to carry gene-specific biases from scRNA genes. Therefore, for
performance evaluation, we followed gimVI and reported the median and average
Spearman correlation coefficients (MSCC and aSCC), as well as the median and
average Pearson correlation coefficients (mPCC and aPCC) over imputed and
ground truth testing genes. uniPort provided a significant improvement over the
two compared methods on the MERFISH dataset. For example, uniPort separated
different cell types in the UMAP visualization of imputed genes with a better result
(Fig. 5e), and demonstrated the highest mSCC (0.259), aSCC (0.26), mPCC
(0.249) and aPCC (0.294) (Fig. 5f), significantly above those of gimVI (mSCC of
0.221, aSCC of 0.24, mPCC of 0.201 and aPCC of 0.242) and Tangram (mSCC of
0.188, aSCC of 0.206, mPCC of 0.202 and aPCC of 0.231).



Fig. 5: e, UMAP visualization of imputed MERFISH genes of Tangram, gimVI and uniPort.; f,
Median and average Spearman correlation coefficient (SCC) and Pearson correlation coefficient
(PCC) between real and imputed MERFISH genes.

R1.6: How sensitive are the results to the number of common and data-specific
HVG selected?

Response: We thank the reviewer for the valuable suggestion. In the revised version,

we evaluated the robustness of uniPort on the number of common and data-specific

HVG selected on the paired PBMC example with three scenarios as follows

(Supplementary Fig. 17b):

(1) We selected 8000, 4000, 2000, 1000, and 500 genes, respectively, for both
common and dataset-specific HVGs for integration;

(2) We selected 8000, 4000, 2000, 1000, and 500 genes, respectively, for dataset-
specific HVGs, while maintaining the number of common HVGs as 2000 for
integration;

(3) We selected 8000, 4000, 2000, 1000, and 500 genes, respectively, for common
HVGs, while maintaining the number of common HVGs as 2000 for integration.
The result shows that uniPort is robust to different choices of the number of common

and data-specific HVGs (lines 449-451 on page 17; Supplementary Result 6).




Supplementary Fig. 17: b, evaluated scores of uniPort when selecting different numbers of common
and specific HVG over the paired PBMC example.

R1.7: What happens if the query data contains cell types not contained in the
reference?

Response: We thank the reviewer for pointing out this issue.

uniPort maps query data to reference data in the latent space by minimizing minibatch
unbalanced optimal transport loss. Therefore, if a cell type in the query is unique, the
cells of this type can be identified as unbalanced parts and have low transport mass to
any cell in the reference dataset. In the revised manuscript, we evaluated uniPort on
this scenario with two supporting experimental results:

1. Inthe MERFISH example, ependymal cells are unique in the MERFISH data, while
we set the scRNA data as a reference. uniPort accurately separated ependymal
cells from other cell types (Fig. 5a, b; see lines 176-178 on page 7).



Fig. 5: a, UMAP visualization of MERFISH and scRNA data before integration; b, UMAP
visualization of MERFISH and scRNA data after uniPort integration.

2. We additionally evaluated uniPort on two unbalanced matching tasks on the mouse
spleen dataset (lines 147-165 on page 6): To evaluate the performance of uniPort
on heterogeneous data integration, we conducted two unbalanced matching tasks
by removing some cell types from scATAC or scRNA of mouse spleen, separately.
We found that uniPort is more robust than the other methods when heterogeneity
is presented in the datasets.



uniPort integration. e, Comparison of total scores of ARI, NMI and F1 of different methods in three cases. d, Comparison of
Batch Entropy scores and Silhouette coefficients of different methods in three cases.

R1.8: In terms of the applications, | find the spatial transcriptomics ones more
interesting. However, at the same time, deconvolution of spatial data is again a field
with a plethora of methods, some of which require matching scRNA-seq data while
others do not. Does uniPort provide novel functionalities lacking in the other
methods? Discussions and benchmarking would be helpful here.

Response: \We annreciate the reviewer’'s comment about outr aoolications in the



deconvolution of spatial data.

uniPort does provide novel functionalities lacking in the other method. For example,
online data integration ability is becoming increasingly important for single-cell
experiments. uniPort is a generative model based on the VAE model, which enables
it to integrate single-cell data and impute genes in an online manner. We exemplified
this function of uniport on lines 208-212 of page 8. In contrast, to the best of our
knowledge, prevalent deconvolution methods (e.g., those which were benchmarked in
a recent benchmarking study ([29] in our reference)) cannot perform such a task in an
online manner. We will further develop new functionalities which can be facilitated by
the date generative framework of uniPort.

Meanwhile, in the revised manuscript, we benchmarked uniPort on a synthetic
STARmap against two state-of-the-art spatial deconvolution methods: Tangram and
SpaOTsc, as another reviewer suggested (lines 213-233 on pages 8-9). uniPort
achieved better performance than another OT-based method SpaOTsc.



Reviewer #2

Overall comments

R2: In this work, Cao et al. present uniPort, a new framework to integrate single-
cell multi-omics data. The framework combines a coupled variational autoencoder
(coupled-VAE) and a mini-batch unbalanced optimal transport (minibatch-UOT)
plan, which are added together to define the total loss function to optimize. The
authors compare uniPort to several established frameworks for single-cell
integration, such as Seurat, LIGER, MultiMap, and scVI, to a range of useful case
studies. In particular, the authors demonstrate uniPort’s advantages in cell type
classification when integrating single-cell transcriptomics, chromatin accessibility
and spatially resolved transcriptomic data.

The combination of a variational autoencoder and optimal transport—two




frameworks that are becoming increasingly prominent in single-cell analysis—is
interesting and the methods and results are well presented. Furthermore, the choice
of datasets for comparison is entirely appropriate and varied. However, | think the
reasoning for why combining the VAE and OT frameworks is useful need to be
expanded upon significantly. In addition, the paper needs to consider and compare
more recent multi-omic integration methods, as UOT has been used for integration
of multi-omics data.

Response: We sincerely appreciate the highly insightful and constructive suggestions
by Reviewer #2 so that we can improve the manuscript accordingly.

In the revised manuscript, we expanded the discussion of our proposed framework of
combing VAE and OT, and compared it with other OT-based methods (see lines 315-
336 on page 12).

We provided the detailed one-to-one responses below.

Major comments:

R2.1: Comparing uniPort to a wider range of multi-omics-based methods is critical.
In particular, it would be worth considering: more recent methods in Seurat

(https://www.cell.com/cell/fulltext/S0092-8674(21)00583-3); scMC
(https://doi.org/10.1186/s13059-020-02238-2); while the scVI-tools framework has a
tool, total VI, that is specifically for multi-omic integration

(https://doi.org/10.1038/s41592-020-01050-X).

Response: We thank the reviewer for the valuable suggestion. We revised the
manuscript by benchmarking more multi-omics methods (lines 114-165 on pages 5-6).



We included scMC on two datasets of PBMC examples (Fig. 2; Supplementary
Figs. 2, 3) and a dataset of the mouse spleen example (Figs. 3, 4), while we
ignored scMC in MERFISH data as we encountered the problem of insufficient
memory. scMC showed state-of-the-art performance on batch effect correction of
one modality but has not been benchmarked on single-cell multi-omics data
integration. Our result showed that scMC had similar performance with SCALEX
in the PBMC example, which accurately preserved the data distribution. For the
mouse spleen example, scMC achieved comparable results with uniPort.

We also added GLUE and SCOT into comparison, which are the most advanced
methods designed for single-cell multi-omics data integration, on the two PBMC
(Fig. 2; Supplementary Figs. 2, 3) and the mouse spleen examples (Figs. 3, 4).
We found that uniPort achieved comparable results with GLUE on the two PBMC
examples and outperformed GLUE on the mouse spleen example. uniPort
outperformed SCOT on all examples.

In this study, we included the latest version of Seurat (v4.1.0) instead of using
version 3. Fortunately, the updates from version 3 to version 4 are not relevant to
our paper. The updates regard the processing of paired multi-omics datasets
(different omics measured in the same cell), whereas our method and
benchmarking and analysis are for the much more common situation of unpaired
multi-omics datasets (different omics measured in different cells). Although one
paired dataset was utilized, paired information was only used in the evaluation of
performance, but not in training,
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for the integration of RNA and surface proteins with CITE-seq. Therefore, we also
did not include totalVI in our comparison.

For details on scMC, SCOT, and GLUE implementations, please see lines 562-580 on
pages 21-22, and for details on Seurat implementations, please see lines 517-532 on
pages 19-20.

R2.2: It would be worthwhile to compare uniPort to other OT-based methods,
such as SpaOTsc (https://doi.org/10.1038/s41467-020-15968-5) and SCOT
(http://doi.org/10.1089/cmb.2021.0446), which are used for spatial deconvolution
and multi-omics integration, respectively, as uniPort is the first method that | know
of that uses mini-batch UOT for single-cell analysis.

Response: We thank the reviewer for the valuable comment and suggestions. In the
revised manuscript, we made the following improvements:

® We benchmarked OT-based integration methods, SCOT, on the PBMC and mouse
spleen examples (Figs. 2, 3, Supplementary Fig. 3). We found that the
performance of SCOT is unstable as it integrated the paired PBMC dataset well
with the third highest Silhouette coefficient and the second highest Batch Entropy
score, but failed to align the mouse spleen dataset with low evaluated scores. For
details on SCOT implementation, please check lines 574-580 on pages 21-22.

® We benchmarked uniPort against SpaOTsc and Tangram on a synthetic
STARmap dataset from a recent benchmarking paper




(https://doi.org/10.1038/s41592-022-01480-9) (lines 213-233 on pages 8-9;
Supplementary Fig. 7). Tangram is a global matrix optimization method, which
aims to find a mapping matrix to project scRNA data to spot. SpaOTsc applies
unbalanced and structured Gromov-Wasserstein optimal transport to find an
optimal transport plan between scRNA-seq data and spot. We benchmarked the
results of uniPort, Tangram, and SpaOTsc with four metrics: Pearson correlation
coefficient (PCC), structural similarity index (SSIM), root mean square error
(RMSE), and Jensen-Shannon divergence (JSD). Higher PCC and SSIM and
lower RMSE and JSD, indicate better performance. We adopted the results of
Tangram and SpaOTsc directly from the benchmarking paper. Overall, uniPort
performed competitively with the two methods: uniPort performed favorably with
PCC of 0.449, RMSE of 0.157, and JSD of 0.569, which is below Tangram (PCC
of 0.619, RMSE of 0.147, and JSD of 0.524) while above SpaOTsc (PCC of
0.409, RMSE of 0.197, and JSD of 0.573) (Supplementary Fig. 7).




R2.3: The authors state that minibatch OT is used to allow uniPort to be applied to
larger datasets, which are common in single-cell analysis. However, | do not see
any comparison of runtime between the different considered integration
frameworks. | think that would help strengthen the methods benchmarking.

Response: We thank the reviewer for the valuable suggestion. We added a runtime
benchmark on the paired PMBC example in Supplementary Fig. 11. We found that
uniPort has comparable runtime with VAE-based models, e.g., scVI, SCALEX, and
GLUE, and consumes much less computational time than those by global optimal
transport-based methods, e.g., SCOT and Pamona (10+ minutes vs. 100+ minutes for

10K cells).




R2.4: One of the proposed features of uniPort is online prediction after constructing
a reference atlas, which is demonstrated by predicting scRNA-seq gene expression
onto spatial MERFISH data, which has significantly lower gene coverage. | think
comparing uniPort to other methods specialized for mapping scRNA-seq gene
expression onto spatial data, such as Tangram or gimVI, which were considered in
a recent benchmarking study (https://doi.org/10.1038/s41592-022-01480-9).

Response: We thank the reviewer for the valuable suggestions. Our online gene
prediction for mouse #2 is derived from MERFISH data of mouse #2 and a pre-trained
network by data of mouse #1. This is based on the feature of the generative model.
However, Tangram used a cell-to-cell probabilistic matching matrix between scRNA
and MERFISH, which can only be used for imputing genes for training MERFISH data
of mouse #1, rather than MERFISH data from another mouse #2.

Therefore, to better benchmark uniPort against Tangram and gimVI, we further added
a new task (lines 184-207 on pages 7-8) which included both Tangram and gimVI for
performance comparisons. To be specific, we have added the following comparison.

® We followed the scheme of gimVI to impute missing genes for MERFISH.
we first randomly selected 80% (i.e., 122/153) genes in MERFISH as training
genes and reserved the remaining 20% (i.e., 31/153) genes as testing genes. We
repeated the above steps twelve times and obtained 12 training and testing gene
sets. Afterwards, we trained the uniPort network with each training gene set and
then imputed the corresponding testing gene set.
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We applied uniPort, gimVI, and Tangram to impute testing genes, and used UMAP
to visualize both training and testing genes (Fig. 5). With an imputation framework
like that of gimVI, we also excepted imputed values of uniPort to carry gene-
specific biases from scRNA genes. Therefore, for performance evaluation, we
followed gimVI and reported the median and average Spearman correlation
coefficients (mSCC and aSCC), as well as the median and average Pearson
correlation coefficients (mPCC and aPCC) over imputed and ground truth testing
genes. uniPort provided a significant improvement over the two compared
methods on the MERFISH dataset. For example, uniPort separated different cell
types in the UMAP visualization of imputed genes with a better result (Fig. 5e),
and demonstrated the highest mSCC (0.259), aSCC (0.26), mPCC (0.249), and
aPCC (0.294), significantly above those of gimVI (mSCC of 0.221, aSCC of 0.24,
mPCC of 0.201, and aPCC of 0.242) and Tangram (mSCC of 0.188, aSCC of
0.206, mPCC of 0.202, and aPCC of 0.231) (Fig. 5f).




Fig. 5: e, UMAP visualization of imputed MERFISH genes of Tangram, gimVI and uniPort.; f,
Median and average Spearman correlation coefficient (SCC) and Pearson correlation coefficient
(PCC) between real and imputed MERFISH genes.

R2.5: For Minibatch-UOT, the parameter p related to marginal penalization in
equation (4) plays an important role on the integration, especially when there are
rare cell types that are present in only one dataset. What is the reason to set p=17?
When the value of p is changed, can uniPort still separate Ependymal cells, which



are only observed in MERFISH data? Do the results of Figure 3a change
significantly?

Response: We thank the reviewer for the robustness of uniPort on varying p. In the
revised manuscript, we calculated the values of F1, NMI, ARI, Batch Entropy score,
and Silhouette coefficients for uniPort with different choices of p values (p=0.0625,
0.125, 0.25, 0.5, 1, 2, 4, 8, 16) for both cell type balanced paired PBMC and cell type
unbalanced MERFISH data (Supplementary Fig. 17c¢). We found that uniPort achieved
robust performance under different choices of p.

Supplementary Fig. 17: ¢, evaluated scores of uniPort for different choices of p over the paired PBMC
and MERFISH example.

We also visualized the results of MERFISH integration in the cases of p=0.125 and
p=8, respectively. uniPort still accurately separated ependymal cells of MERFISH data
in the two cases, with negligible alterations on the data visualization structures shown
below (figures not shown in the manuscript).
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R2.6: The input and output of uniport is unclear, e.g., XC, XS... in Figure 1, as the
notation for input and output is the same. Similarly, in the Methods section, uniPort

also requires XS, YS as input, suggesting that uniPort does not generate data-
specific genes but rather requires them as input.

Response: We thank the reviewer for pointing out this issue.
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Huic 1TviotU VeI olull, WE LiallliTu UUl TTPIToTHlalivil Uy 1HIUUllyllly uic vuiput a -, A -,
Y€, YSas X¢, X3, Y€, Y to distinguish the input and reconstruction data in Fig. 1b. We
also clarified this in the corresponding main text (lines 411-414, on page 16).

When training the model, uniPort does need X® and Y* as training data. However, after
model training, we can use the trained network to impute data-specific genes by
common genes.

Fig. 1: b, uniPort projects input datasets into a cell-embedding latent space through a shared
probabilistic encoder. Then uniPort minimizes a Minibatch-UOT loss between cell embeddings
across different datasets. Finally, uniPort reconstructs two terms. The first consists of input datasets
by a decoder with different DSBN layers. The second consists of highly variable gene sets
corresponding to each dataset by dataset-specific decoders.



R2.7:To predict genes in scRNA-seq data by the trained reference atlas (Line 197),
only 153 common genes are used as input. How do the authors consider and deal
with possible batch effects between samples?

Response: We thank the reviewer for pointing out the existence of possible batch
effects. We agree with the reviewer that imputed values by uniPort or other methods
(e.g., gimVI) may carry batch effects between samples, which was also pointed out by
gimVI [see page 4 of gimVI paper (https://romain-lopez.github.io/publication/gim-vi)].
To deal with possible batch effects during performance evaluation, we, therefore,
followed gimVI to consider using the Pearson/Spearmen correlation coefficients
between imputed and ground truth gene values, instead of using mean square errors
of the imputed absolute values (see lines 198-207 on page 8).

R2.8: When using evaluation metrics for benchmarking, | think it would help that the
authors were clearer about the comparison. For example, are the authors
evaluating known clustering vs predicted clustering? For the single-cell RNA-
sequencing and single-cell ATAC-sequencing data of peripheral mononuclear
blood cells, do the authors consider the consistency of paired single cell labels?

Response: We thank the reviewer for pointing out this issue. In the revised version,
we clarified the Evaluation metrics in the main text with more details added as follows:

® Add details about calculating evaluation metrics
We added details about how to calculate the evaluated F1, ARI, and NMI scores
through predicted and real cell type annotations (lines 593-599 on page 22):
“To be specific, we trained a k-Nearest-Neighbor (kNN) classifier by the
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ONICAITLTITIYHVUTO.ININTIYlTIVUl ouidoolliTl  TUuliviuvull vaotu Ull LTI~y Yo allliviatullio
and UMAP coordinates of reference data (e.g., scBRNA) embeddings in the
common latent space. Then, we applied the well-trained kNN classifier to predict
cell-type annotations of query dataset (e.g., sScATAC/MERFISH) embeddings, and
calculated the ARI, NMI and F1 scores by real and predicted query cell type
annotations.”

® Add the average FOSCTTM to consider the consistency of the paired cells.

For the paired PBMC example, we added the average FOSCTTM score as
another reviewer suggested, to test the consistency of paired cells. FOSCTTM
refers to the “fraction of samples closer than the true match”. It is used to measure
the preservation of cell-cell correspondence across datasets. We evaluated the
average FOSCTTM on the paired PBMC example in Fig. 2e. We found that uniPort
achieved an average FOSCTTM of 0.0694, ranked second among 11 compared
methods, slightly below GLUE. For more details about the average FOSCTTM
(see lines 624-630 on page 24).

Minor comments:

R2.9: Please double check the figure captions. For example, in Figure 3a, only the
integration results from uniPort are shown, rather than the results from Harmony,
Seurat, SCALEX or scVI.

Response: We thank the reviewer for pointing out these typos. In the revised
manuscript, we checked the figure captions. We corrected the caption of the original
Figure 3a by removing ‘Harmony, Seurat, SCALEX and scV/I’ (now Fig. 5).




R2.10: It is good to see the comparison between gene expressions in MERFISH
and predicted RNA as in Supplementary Fig 7. What about the real single cell RNA
expression? It seems like the authors only show the comparison the mean
expressions between real and predicted RNA.

Response: We thank the reviewer for the valuable comment.

We did not have paired cell-to-cell scRNA data for MERFISH profiled from mouse #2.
Therefore, we can only calculate the correlation between mean expressions instead of
the same samples.

We trained the MERFISH data from mouse #1 with scRNA data from other mice and
predicted scRNA genes through MERFISH data from mouse #2. These predicted
scRNA genes are used to enhance the resolution of MERFISH genes of mouse #2, as
MERFISH can only measure a small number of genes.

Besides, we also performed another imputation task as stated in R2.4. The result also
demonstrated the uniPort’s ability for gene imputation.

R2.11: In the Supplementary information, line 55: ‘bisaed’, which | think should be
‘biased’. | think this is the only spelling error, but please do check over the rest of
the manuscript to make sure.

Response: Thank you for pointing out this typo. In the revised supplementary, we
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REVIEWERS' COMMENTS
Reviewer #1 (Remarks to the Author):

The authors have thoroughly addressed my questions.

Reviewer #2 (Remarks to the Author):

The authors have addressed my comments.



Responses to Reviewers:

We would like to thank the reviewers for their valuable time and efforts on our
manuscript. The point-by-point responses to the reviewers’ comments and
suggestions are as follows and our responses are in red color.

Reviewer #1:
The authors have thoroughly addressed my questions.
Response: We sincerely thank the reviewer for the comment.

Reviewer #2:
The authors have addressed my comments.
Response: We sincerely thank the reviewer for the comment.






