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Figure S1. Induction of 6mA levels and activation of METTL4 by hypoxia/HIF-
1a, and other characterizations of m°’Am, N6AMT1, HIF-2a, and HIF-1p and
Actinomycin experiments.

(a) The relative LC peaks of 6mA and dA in the representative sample were verified
by 6mA and dA standards with each MRM transition. The amount of 6mA and dA were
determined by UPLC-EIS-MS/MS analysis as a representative chromatogram and
quantified by their integrated area in the corresponding chromatogram. Peaks for
sample (gDNA digested by FADU cells under hypoxia) and 6mA/dA standard were
shown, respectively.

(b) The calibration curves were generated by commercial 6mA and dA standards.

(c) Among the various stress conditions, only hypoxia induced detectable nuclear 6mA
levels in FADU and BFTC909 cells by UPLC-ESI-MS/MS analysis (upper panel). The
6mA/dA ratio of each sample was calculated with quantified 6mA and dA values in
accordance with the calibration curves obtained from dA and 6mA standards. RNA and
protein expression levels of METTL4 after treatment with various stress conditions
were shown in the bottom. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control group. The non-treated condition was used as a
control. Corresponding 6mA dot blots with methyl blue loading controls were shown
together with bar graphs.

(d) Hypoxia increased the nuclear 6mA levels of KTCC28M. The 6mA/dA ratios of
KTCC28M gDNAs were evaluated from the results of UPLC-ESI-MS/MS
quantification. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control conditions. N, normoxia; H, hypoxia. Normoxic condition
was used as a control. Corresponding 6mA dot blots with methyl blue loading controls
were shown together with bar graphs.

(e) The efficiency of removing mitochondrial DNA from the genomic DNA extraction
step was quantified by quantitative real-time PCR analysis using mitochondrial and
nuclear specific primers in FADU, BFTC909, and KTCC28M cell lines. The quality of
the extraction was assessed by comparing the fold change of mitochondrial DNA versus
genomic DNA using the ACt method.

(f) No 6mA levels were detectable in all the reagents by UPLC-ESI-MS/MS analysis.
N, normoxia; H, hypoxia. Normoxic condition was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control conditions.
Corresponding 6mA dot blots with methyl blue loading controls were shown together
with bar graphs.

(g) Immunofluorescence staining showed the consistently increased nuclear and
cytoplasmic staining of 6mA in FADU, BFTC909, and KTCC28M cells under hypoxia

with or without antigen retrieval procedure. Cell nuclei were stained by DAPI.



Mitochondria were stained by MitoTracker. Bar graph represented the percentage of
cells containing nuclear or cytoplasmic 6mA signals. N, normoxia; H, hypoxia.
Normoxic condition was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control conditions. N.S., not
statistically significant.

(h) Immunofluorescence staining showed the increased nuclear staining of 6mA in
BFTC909 and KTCC28M cells under hypoxia. 6mA signals still remained under RNase
treatment, but mostly disappeared under DNase or RNase+DNase treatment, indicating
the specific nuclear 6mA signals. Cell nuclei were stained by DAPI. Mitochondria were
stained by MitoTracker. N, normoxia; H, hypoxia. Normoxic condition was used as a
control.

(i) Bar graph represented the percentage of cells containing nuclear or cytoplasmic 6mA
signals. N, normoxia; H, hypoxia. Normoxic condition was used as a control. The
asterisk (*) indicated statistical significance (P<0.05) between experimental and control
conditions.

(j) MS/MS fragmentation profiling confirmed that no 6mA levels were detected in all
the reagents tested. Detected 6mA and dA in gDNAs were verified by product ion
conformation spectra (PICS) fit to the spectrum generated from each standard. Parental
ion of 6mA was m/z 266 with major daughter ion m/z 150. Parental ion of dA was m/z
252 with major daughter ion m/z 136.

(k) Hypoxia increased METTL4 levels (mRNAs and proteins) in FADU, BFTC909,
and KTCC28M cell lines. The quantification of METTL4 protein levels induced by
hypoxia are listed below the lane. B-actin was used as a loading control. The asterisk
(*) indicated statistical significance (P<0.05) between experimental and control
conditions. N, normoxia; H, hypoxia. Normoxic condition was used as a control.

() Immunofluorescence staining showed the increased nuclear METTL4 levels under
hypoxia in KTCC28M cells. Cell nuclei were stained by DAPI. Mitochondria were
stained by MitoTracker. N, normoxia; H, hypoxia. Normoxic condition was used as a
control.

(m) Overexpression of METTL4, but not the enzymatically inactive mutant, increased
the 6mA levels in FADU and BFTC909 cell lines by UPLC-ESI-MS/MS analysis. The
cell clone transfected with the control vector was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control groups.
Corresponding 6mA dot blots with methyl blue loading controls were shown together
with bar graphs.

(n) Immunofluorescence staining showed the staining of METTL4 under hypoxia and
abolishment of METTL4 staining under METTL4 knockdown in BFTC909, FADU,
and KTCC28M cell lines. Three different siRNAs were used to knockdown METTLA.



Knockdown using the scrambled siRNA under normoxia condition was used as a
control. Cell nuclei were stained by DAPI. N, normoxia; H, hypoxia.

(o) Knockdown of N6AMT1 decreased the N6AMTI mRNA and protein levels in FADU
and BFTC909 cells by qRT-PCR and Western blot analysis. N, normoxia; H, hypoxia.
Knockdown using the scrambled siRNA under normoxia condition was used as a
control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups.

(p) Knockdown of N6AMTI showed that the induction of 6mA by hypoxia still
maintained in the presence of N6AMT1 knockdown using UPLC-ESI-MS/MS analysis
in FADU and BFTC909 cells. N, normoxia; H, hypoxia. Knockdown using the
scrambled siRNA under normoxia condition was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control groups.
Corresponding 6mA dot blots with methyl blue loading controls were shown together
with bar graphs.

(q) Hypoxia increased the U2 snRNA m6Am levels of FADU and BFTC9009 cells. The
quantity of m®Am and Adenosine of digested U2 snRNAs of FADU cells was
determined by UPLC-ESI-MS/MS analysis as the representative chromatograms. The
nucleosides of digested U2 snRNAs were identified using LC retention with MS/MS
spectra and quantified based on the ion mass transitions; m°Am (m/z): 296 to 150 and
adenosine (m/z): 268 to 136 in MRM mode. Peaks for normoxia and hypoxia samples
of FADU cells were shown. Detected m6Am and A in U2 snRNAs were verified by
product ion conformation spectra (PICS) fit to the spectrum generated from each
standard. Parental ion of m6Am was m/z 296 with major daughter ion m/z 150. Parental
ion of A was m/z 268 with major daughter ion m/z 136. The m®Am/A ratios of FADU
and BFTC909 RNAs (U2 snRNA or RP11-390F4.3) were evaluated from the results of
UPLC-ESI-MS/MS quantification. N, normoxia; H, hypoxia. Normoxic condition was
used as a control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control condition.

(r) The amount of m°Am and adenosine of U2 snRNA and RP11-390F4.3 digested by
FADU and BFTC909 cells were determined by UPLC-ESI-MS/MS analysis. Results
showed that mutation of the enzymatic site of METTL4 abolished the U2 snRNA m®Am
modifying activity in FADU and BFTC909 cells. The cell clone transfected with the
control vector was used as a control. The asterisk (*) indicated statistical significance
(P<0.05) between experimental and control groups.

(s) In vitro RNA methylation assays showed mutation of the enzymatic site of METTL4
abolished the U2 snRNA m°Am levels.

(t) Hypoxia and overexpression of a constitutively active HIF-1a(AODD) under
normoxia activated METTL4 expression. N, normoxia; H, hypoxia.



(u) Knockdown of HIF-1a abolished the activation of METTL4 induced by hypoxia
by Western blot analysis. N, normoxia; H, hypoxia. Knockdown using the scrambled
siRNA was used as a control.

(v) Reporter gene assays showed the identification of HRE (hypoxia response element)
in the proximal promoter of METTL4 and hypoxia/HIF-1a activated the METTL4
promoter activity. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups. The luciferase/renilla activities of FADU cells co-
transfected with reporter construct and pcDNA3 control vector under normoxia were
used as the baseline control.

(w) Chromatin immunoprecipitation (ChIP) assays showed the direct binding of HIF-
la to the HRE located in METTL4 promoter under hypoxia in FADU and BFTC909
cells. N, normoxia; H, hypoxia. No antibody/normoxia condition was used as a control.
The binding of HIF-1a to the VEGF promoter was used as a positive control. The
asterisk (*) indicated statistical significance (P<0.05) between experimental and control
groups.

(x) Knockdown of HIF-2a did not abolish the activation of METTL4 induced by
hypoxia by Western blot analysis. Knockdown of HIF-1/ abolished the activation of
METTL4 induced by hypoxia by Western blot analysis. N, normoxia; H, hypoxia.
Knockdown using the scrambled siRNA was used as a control.

(y-z) Actinomycin D treatment significantly decreased the activation of METTL4 (at
the mRNA and protein levels) under hypoxia. N, normoxia; H, hypoxia. Treatment with
dimethyl sulfoxide (DMSO) under normoxic condition was used as a control. The
asterisk (*) indicated statistical significance (P<0.05) between experimental and control
groups. Actinomycin D (Act. D; 2 pg/ml) in DMSO was used to study transcriptional
regulation.

The error bars represented the standard deviation (SD). Student’s t-test was used to

compare two groups of independent samples. For details, see method section.
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Figure S2. The critical role of METTL4 in inducing EMT and metastasis,
induction of tumorigenicity and in vitro migration/invasion activity by METTLA4,
the critical role of METTL4 in EMT and in vitro migration/invasion activity in two
other cell lines, the set of EMT regulators activated by hypoxia, analysis of
xenografted tumor samples after sorting by real-time PCR analysis and UPLC-
ESI-MS/MS measurement of 6mA levels, the essential role of enzymatic activity of
METTLA4 in hypoxia-induced EMT, and increased expression of METTL4, 6mA
and HIF-1a in the tumor samples of UTUC patients.

(a) Overexpression of METTL4 induced EMT by immunofluorescence staining of E-
cadherin and vimentin. Green, E-cadherin; red, vimentin. Cell nuclei were stained by
DAPI. The cell clone transfected with the control vector was used as a control.

(b) Knockdown of METTL4 decreased the METTL4 mRNA and protein levels in
FADU, BFTC909, and KTCC28M cells by qRT-PCR and Western blot analysis. Three
different siRNAs were used to knockdown METTL4. The quantification of METTL4
protein levels after METTL4 knockdown are listed below the lane. B-actin was used as
a loading control. Knockdown using the scrambled siRNA was used as a control. The
asterisk (*) indicated statistical significance (P<0.05) between experimental and control
groups.

(c-d) Western blot analysis and immunofluorescence staining showed that knockdown
of METTL4 abolished the hypoxia-induced EMT in different cell lines. Three different
siRNAs were used to knockdown METTL4. Knockdown using the scrambled siRNA
was used as a control. N, normoxia; H, hypoxia. Cell nuclei were stained by DAPI.
Green, E-cadherin; red, vimentin.

(e) METTLA4 overexpression induced the in vitro migration and invasion activity of two
different cell lines. Representative photos of the in vitro migration and invasion activity
were shown in this panel. The cell clone transfected with the control vector was used
as a control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups.

(f) Knockdown of METTL4 significantly decreased the in vitro migration and invasion
activity of three different cell lines. Representative photos of the in vitro migration and
invasion activity were shown in this panel. Three different siRNAs were used to
knockdown METTL4. Knockdown using the scrambled siRNA under normoxic
condition was used as a control. The asterisk (*) indicated statistical significance
(P<0.05) between experimental and control conditions. N, normoxia; H, hypoxia.

(g) METTL4 overexpression activated the expression of EMT regulator genes in
BFTC909 cells and METTL4 knockdown abolished the activation of EMT regulator
gene expression induced by hypoxia in FADU and BFTC909 cells by Western blot
analysis. Three different siRNAs were used to knockdown METTL4. Knockdown using



the scrambled siRNA was used as a control. N, normoxia; H, hypoxia.

(h) Knockdown of METTL4 reversed the mesenchymal phenotypes of H1299 cells by
Western blot and immunofluorescence staining experiments. Knockdown using the
scrambled siRNA was used as a control. Cell nuclei were stained by DAPI. Green, E-
cadherin; red, vimentin.

(i) Knockdown of METTL4 significantly decreased the in vitro migration and invasion
activity of H1299 cells. Representative photos of the in vitro migration and invasion
activity were shown on the top. Knockdown using the scrambled siRNA was used as a
control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups.

(j) Knockdown of METTL4 decreased the RNA levels of Glutl and REDD]Igenes in
three different cell lines. The measurement was assayed under normoxia vs. hypoxia in
the FADU and BFTC909 cells (epithelial phenotype cells) and under normoxic
condition in H1299 cells (mesenchymal phenotype cells). Measurement of Glutl (upper
panel) and REDDI (lower panel) gene expression by real-time PCR analysis was
performed. Knockdown using the scrambled siRNA under normoxic condition was
used as a control for all cell lines. The asterisk (*) indicated statistical significance
(P<0.05) between experimental and control groups.

(k) Overexpression of METTL4 increased the cell proliferation rates of FADU,
BFTC909, and KTCC28M cells. The cell clone transfected with the control vector was
used as a control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups.

() Knockdown of METTL4 significantly decreased the cell proliferation rates of three
different cell lines under hypoxia. Knockdown using the scrambled siRNA under
hypoxia condition was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control groups.

(m) METTL4 knockdown followed by rescue experiments showed that the METTL4-
NLSmut only partially rescued the cell proliferation rates that were decreased by
METTL4 knockdown under hypoxia compared with the full rescue by METTL4 wild
type in FADU, BFTC909, and KTCC28M cells. Knockdown using the scrambled
siRNA under hypoxia condition was used as a control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups.

(n) Overexpression of METTL4 increased the tumor volume of FADU, BFTC909, and
KTCC28M cells using xenograft implantation assays. The cell clone transfected with
the control vector was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control groups.

(o) HIF-1a-overexpression induced tumor volume increase in three different cell lines,

and the HIF-1a-induced increase in tumor volume was abolished by knockdown of



METTL4 using three different siRNA vectors. Knockdown using the scrambled siRNA
in overexpressing a constitutively active HIF-1a(AODD) cells were used as a control.
The asterisk (*) indicated statistical significance (P<0.05) between experimental and
control groups.

(p) Hypoxic tumor cells sorted from xenografted tumors from FADU cells were shown
by FACSCalibur instrument. Two-color staining with pimonidazole and Hoechst 33342
as the representative chromatograms. The hypoxic cell population was defined as
Hoechst 33342+ and pimonidazole+ cells (Area P2), and the normoxic cell population
was defined as Hoechst 33342+ and pimonidazole- cells (Area P1).

(q) Hypoxic tumor cells sorted from xenografted tumors from KTCC28M cells showed
the increased HIF-la and METTL4 protein levels together with increased HIF-1a
target gene expression (METTL4, RP11-390F4.3, and Glutl expression were measured;
left panel). Hypoxic tumor cells sorted from xenografted tumors from KTCC28M cells
showed an increase in the 6mA levels by UPLC-ESI-MS/MS measurement. Glutl
activation was used as a positive control. N, normoxia; H, hypoxia. Normoxic condition
was used as a control. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups. Corresponding 6mA dot blots with methyl
blue loading controls were shown together with bar graphs.

(r) Immunofluorescence staining showed the co-localization of HIF-1a,, METTL4, and
6maA in three different cell lines cells. Green fluorescence represented staining of HIF-
la; red fluorescence represented staining of METTL4 or 6mA. Cell nuclei were stained
by DAPI. H, highly colocalized area; L, less colocalized area. Notably, HIF-1a signal
was highly colocalized with METTL4 or 6mA signal.

The error bars represented the standard deviation (SD). Student’s #-test was used to

compare two groups of independent samples. For details, see method section.
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Figure S3. Testing of the enzymatic activity of METTL4 in its ability to induce
gene expression and induction of EMT phenotypes, examination of various
activities of nuclear localization mutant of METTL4, and identification of KPNA7
as a nuclear transporter of METTLA4.

(a) Sequencing results showed the prime-editing CRISPR-Cas9 approach to mutate the
enzymatic site (DPPW changed to APAW) of endogenous METTL4 in BFTC909 and
FADU cells. The METTL4 wild-type cells were used as controls.

(b) Mutation of the enzymatic site of endogenous METTL4 by a prime-cutting
CRISPR-Cas9 approach in FADU cells abolished the induction of hypoxia-regulated
gene expression, 6mA levels, and EMT phenotypes by RNA-seq, UPLC-ESI-MS/MS,
and Western blot analysis. Corresponding 6mA dot blots with methyl blue loading
controls were shown together with bar graphs. N, normoxia; H, hypoxia. The normoxic
condition for METTL4 wild-type cells was used as a control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups.

(¢) Immunofluorescence staining showed the co-localizations of 6mA and METTL4
induced by hypoxia in BFTC909 and FADU cells. The cells with endogenous mutation
of METTL4 enzymatic site did not mediate 6mA deposition and no co-localizations of
6mA and METTL4 could be shown. Cell nuclei were stained by DAPI. Lines indicate
the plot profiles shown to the right. Lines were only placed inside nucleus. The
percentage and fluorescence intensity of 6mA and METTL4 co-localized signals in the
nucleus were shown next to the immunofluorescence images.

(d) Mutation of the enzymatic site of endogenous METTL4 by a prime-cutting
CRISPR-Cas9 approach in FADU and BFTC909 cells abolished the induction of the in
vitro migration and invasion activity by hypoxia. Representative photos of the in vitro
migration and invasion activity were shown in the panel.

(e) Immunofluorescence staining showed overexpressiion of METTL4-NLSmut could
not increase nuclear levels of METTL4 in FADU and BFTC909 cells. Cell nuclei were
stained by DAPI. The cell clone transfected with the control vector was used as a control.
(f) Overexpression of METTL4, but not METTL4-NLSmut, increased 6mA levels and
induced EMT phenotypes in two different cell lines. The cell clone transfected with the
control vector was used as a control. The asterisk (*) indicated statistical significance
(P<0.05) between experimental and control groups. Corresponding 6mA dot blots with
methyl blue loading controls were shown together with bar graphs.

(g) Immunofluorescence staining showed the inability of a nuclear-localization
defective METTL4 mutant (METTL4-NLSmut) to induce EMT in the BFTC909 and
FADU cells. Green fluorescence represented staining of E-cadherin; red fluorescence
represented staining of vimentin. Cell nuclei were stained by DAPI. The cell clone

transfected with the control vector was used as a control.



(h) Overexpression of METTL4, but not METTL4-NLSmut, induced EMT phenotypes
in two different cell lines. Representative photos of the in vitro migration and invasion
activity were shown in this panel. The cell clone transfected with the control vector was
used as a control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups.

(i) In vitro DNA methylation assays showed an increase in the 6mA levels by incubating
METTLA4 (wild type or NLS mutant) with genomic DNAs from FADU or BFTC909
cells. Either using the METTL4-NLSmut or not incubating with SAM did not induce
any measurable 6mA levels. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups. Corresponding 6mA dot blots with methyl
blue loading controls were shown together with bar graphs.

(j-k) Hypoxia or overexpression of either METTL4-WT or METTL4-NLSmut
increased 6mA levels of mitochondrial DNA in two different cell lines by UPLC-ESI-
MS/MS analysis. N, normoxia; H, hypoxia. Normoxic condition and the cell clone
transfected with the control vector were used as a control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups.

() Hypoxia induced the KPNA7 mRNA levels by real-time PCR analysis in BFTC909
and FADU cells. N, normoxia; H, hypoxia. Normoxic condition was used as a control.
The asterisk (*) indicated statistical significance (P<0.05) between experimental and
control groups.

(m) Knockdown of KPNA7 abolished the KPNA7 levels induced by hypoxia in
BFTC909 and FADU cells by Western blot analysis. N, normoxia; H, hypoxia.
Knockdown using the scrambled siRNA was used as a control.

(n-0) Knockdown of KPNA7 abolished the nuclear translocation of METTL4 induced
by hypoxia by nuclear fractionation (Western blot) analysis and immunofluorescence
staining. N, normoxia; H, hypoxia. Knockdown using the scrambled siRNA was used
as a control. Histone H3 and GAPDH was used as a nuclear and cytoplasmic marker,
respectively. Cell nuclei were stained by DAPI.

The error bars represented the standard deviation (SD). Student’s #-test was used to

compare two groups of independent samples. For details, see method section.
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Figure S4. GSEA of RNA-seq datasets, DE analysis of RNA-seq datasets, Western
blot analysis of EMT regulators, signaling connection of METTL4 and IncRNA
RP11-390F4.3, heatmap analysis of hypoxia-activated IncRNAs, quality control
and correlation analysis of 6mA signals between different conditions, 6mA signal
analysis and profiling using two different comparisons, consensus sequences of
6mA signal regions, examples of 6mA-deposited genes, profiling of differential
RNA splicing events, confirmation of splicing event pattern changes, and
knockdown of U2 snRNA followed by various assays.

(a-b) Gene Set Enrichment Analysis (GSEA) showed two major gene sets (hypoxia and
EMT) could be positively enriched in our RNA-seq results (hypoxia vs normoxia), and
negatively enriched with knockdown of METTL4 under hypoxia.

(c) Differential (DE) gene analysis showed the numbers of significantly regulated genes
under hypoxia or METTL4 knockdown under hypoxia in FADU and BFTC909 with the
consideration of 1.3 positive/negative fold change with p-value < 0.05.

(d) Western blot analysis showed the multiple EMT regulators (Snai2, FOXC2, etc) that
were not activated by IncRNA RP11-390F4.3 overexpression in two different cell lines.
The cell clone transfected with the control vector was used as a control.

(e) Knockdown of METTL4 decreased the expression of IncCRNA RP11-390F4.3 under
hypoxia in two different cell lines by real-time PCR analysis. Knockdown using the
scrambled siRNA was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control conditions.

(f) Heatmap analysis showed that most of the reported hypoxia-activated IncRNAs were
up-regulated, but only some of them were regulated by METTLA4.

(g) Gene ontology of different biological processes were shown for repressed genes co-
regulated by hypoxia and METTL4 (left panel). Gene Set Enrichment analysis (GSEA)
showed that mitochondrial process, chromatin stability, and tRNA metabolic process
were enriched in repressed genes co-regulated by hypoxia and METTLA4.

(h) Quality control of 6mA-ChIP-exo-seq results showed the enriched fragment
numbers from different sequencing datasets. The bar plot showed that a higher
percentage of A could be enriched in 6mA ChIP-exo-seq (including WGA control).
Genome-wide 6mA signal profiling across the genes in different conditions including
normoxia (black), hypoxia (red) and hypoxic status undergoing METTL4 knockdown
(blue). Right lower panel showed the 6mA signals in hypoxia condition after subtracting
WGA background signals.

(i) Correlation of differential 6mA region analysis between hypoxia and METTL4
knockdown status under hypoxia showed a significant negative correlation in both
results of comparison 1 and 2, indicating significant gain-of-6mA regions in red dots

(comparison 1, n = 8,265; comparison 2, n = 76,695).



(j) Graph showed the log2 fold change of 6mA signals generated from hypoxia-induced
6mA signal regions (after subtracting 6mA WGA control signals). Venn diagram
showed the number of intersected 6mA signal regions between comparison 1,
comparison 2, and hypoxia 6mA signal regions (after subtracting 6mA WGA control
signals) and 3673 6mA signal regions were identified after the triple dataset overlapping.
(k) Correlation of hypoxia-induced/ METTL4 dependent 6mA regulated regions with
gene activation or gene repression was comparable. Graph showed the log2 fold change
of different RNA-seq comparison results of hypoxia vs. normoxia or hypoxic status
undergoing METTL4 knockdown vs. hypoxia after correlating hypoxia-
induced/METTL4 dependent 6mA to gene expression. In the result of hypoxia vs.
normoxia, 408 increased-expression genes and 256 decreased-expression genes were
shown. In the result of hypoxic status undergoing METTL4 knockdown vs. hypoxia,
342 increased-expression genes and 387 decreased-expression genes were shown.

() Venn diagram showed that after overlapping gene expression data with hypoxia-
induced/METTL4 dependent gain-of-6mA regions, 263 genes were identified as
hypoxia-induced/METTL4 dependent 6mA regulated genes. Analyses of 6mA ChIP-
exo-seq and RNA-seq datasets from FADU cells were performed. The top 10 enriched
KEGG pathways in hypoxia-induced/METTL4 dependent 6mA regulated genes were
shown.

(m) After overlapping hypoxia-induced/METTL4 dependent 6mA regulated genes with
HIF-1a ChIP-seq data, 54 HIF-lo assembly-dependent genes and 209 HIF-1a
assembly-independent genes were categorized. After functional gene ontology
annotation of genes without HIF-1a assembly to their loci, three major cellular
functional pathways induced by hypoxia (angiogenesis, stemness, and cancer
metabolism) were categorized. The results of top 10 enriched KEGG pathways in 6mA-
upregulated genes with or without HIF-1a assembly to their loci were shown.

(n) 6mA motifs were calculated by HOMER from the 6mA signals in hypoxia-
induced/METTL4 dependent gain-of-6mA regions from up-regulated genes. P-values
were shown on the right of each motif.

(0) The examples of hypoxia-induced/ METTL4 dependent 6mA up-regulated gene
(ZMIZI) and two 6mA-upregulated genes without HIF-1o assembly to their loci
(CTNNAI-stemness, and PIK3CA-cancer metabolism) were shown. All three genes
contained 6mA consensus motifs in their introns. Different 6mA motifs calculated by
HOMER were identified on the intron 1 of ZMIZI (homology with motif- 6) and
different motifs homologous to the different consensus sequences were indicated
underneath the intron of CTNNA 1 (motif-9), and PIK3CA (motif-7) genes. A magnified
window around the designated motif area for each gene was shown. Only motif-6 on
the intron 1 of ZMIZ1, motif-9 on the intron 10 of CTNNAI, and motif-7 on the intron



6 of PIK3CA were shown. These motifs were further analyzed on Fig. Sé6.

(p) Volcano plots showed the genome-wide alternative splicing event analysis through
comparison of hypoxia vs. normoxia and METTL4-si vs. scrambled-si under hypoxia
in BFTC909 and FADU cells. Up-regulated events were shown in red dots and down-
regulated events were shown in blue dots (left upper part). Pie plots showed the number
of different differential splicing events regulated by METTL4 under hypoxia in
BFTC909 (A3SS, n = 15; ASSS, n = 10; MXE, n = 14; RI, n = 7; SE, n = 108) and
FADU (A3SS,n=16; A5SS,n=13; MXE, n=21; RI, n=18; SE, n = 107) cells (left
lower part). Bar graphs showed the top 10 enriched KEGG pathways of differential
splicing events in BFTC909 and FADU cells (right upper part). Venn diagram showed
5 events (A3SS, n = 1; SE, n = 4) that were regulated by METTL4 under hypoxia in
both BFTC909 and FADU cells (right lower part). A3SS, alternative 3’ sites; AS5SS,
alternative 5’ sites; MXE, mutually exclusive exons; RI, retention of introns; SE,
skipped exon.

(q) Graphs showed the differential splicing events (exon inclusion or exclusion) of
CEPI192 and ANXAII in the condition of hypoxia vs. normoxia and METTL4-si vs.
scrambled-si under hypoxia in BFTC909 and FADU cells (upper part). Validation of
alternative splicing events in the CEP192, ANXA1l, UBE3C, and KLHDC?2 genes by
RT-PCR with gene-specific primers. The identity of splicing products by exon inclusion
or exclusion is schematically shown next to the gels. Differential splicing of CEP192
and ANXAII genes were regulated by hypoxia and returned to the original splicing
pattern under METTL4 knockdown (left lower part). The UBE3C and KLHDC?2 genes
were not regulated by hypoxia or METTL4 (right lower part).

(r) Overexpression of U2 snRNA did not increase the mRNA levels of RP11-390F4.3,
the in vitro migration/invasion activity, or the protein levels of various EMT regulators
in two cell lines. Representative photos of the in vitro migration and invasion activity
were shown in this panel. The cell clone transfected with the control vector was used
as a control. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups. N.S., not statistically significant.

(s) Knockdown of U2 snRNA did not change the RNA levels of RP11-390F4.3, the
protein levels of different EMT regulators induced by hypoxia, or the in vitro
migration/invasion activity induced by hypoxia. Representative photos of the in vitro
migration and invasion activity were shown. Two different siRNAs were used to
knockdown U2 snRNA. N, normoxia; H, hypoxia. Knockdown using the scrambled
siRNA under normoxia condition was used as a control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control conditions. N.S., not
statistically significant.

(t) The m6Am methylation levels of these reconstituted U2 snRNAs (wild type vs. A30



point mutant) were measured by UPLC-ESI-MS/MS (left part). Knockdown of U2
snRNA under METTL4 overexpression status followed by reconstitution with either
wild type U2 snRNA or point mutant U2 snRNA experiments were performed. Assays
of differential splicing showed that wild type U2 snRNA was able to rescue the
differential splicing events of CEP[92 and ANXAIl induced by METTL4
overexpression, but not the A30-mutated U2 snRNA (right part).

(u) Knockdown of U2 snRNA under METTL4 overexpression status followed by
reconstitution with either wild type U2 snRNA or point mutant U2 snRNA did not
change the protein levels of various EMT regulators or EMT markers by Western blot
analysis.

(v) Knockdown of U2 snRNA under METTL4 overexpression status followed by
reconstitution with either wild type U2 snRNA or point mutant U2 snRNA did not
change the in vitro migration and invasion activity of two different cell lines.
Representative photos of the in vitro migration and invasion activity were shown.
Knockdown using the scrambled siRNA was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control groups.

N.S., not statistically significant.



Figure S5
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Figure S5. RNA FISH assay, analysis of different versions of IncRNA RPII-
390F4.3, copy number of IncRNA RPI11-390F4.3, ChIRP peaks of three different
EMT regulator genes, in vivo tumorigenicity assay of IncRNA RP11-390F4.3, and
the TCGA survival analysis of head and neck cancer patient groups with high
IncRNA RP11-390F4.3 levels.

(a) RNA FISH staining showed the increased nuclear staining of IncRNA RP[I-
390F4.3 in BFTC909 cells under hypoxia. Cell nuclei were stained by DAPI. The white
frame line represents the result of the magnification of the cell. N, normoxia; H, hypoxia.
Normoxic condition was used as a control.

(b) LncRNA RP11-390F4.3 V1 had the highest fold of activation (~4 to 6 fold) inside
nucleus in FADU and BFTC909 cells using real-time PCR analysis. The diagram shows
the genotypes of different variants of IncRNA RP11-390F4.3 V1 to V3 (upper panel).
Normoxic condition was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control groups.

(¢) Measurement of the copy number of InCRNA RP11-390F4.3 or NEATI in BFTC909
and FADU cells (normoxia vs. hypoxia). Titration standard curve was used for
measurement of the copy number of IncRNA RP11-390F4.3 or NEATI per 500,000
cells. The green and red points represent the real-time PCR value from a standard
sample of 500,000 BFTC909 and FADU cells under hypoxia.

(d) Knockdown of IncRNA RP11-390F4.3 significantly decreased the induction of
various HIF-1a target genes using real-time PCR analysis in BFTC909 and FADU cells
(normoxia vs. hypoxia). Knockdown using the scrambled siRNA under normoxia
condition was used as a control. Two different siRNAs were used to knockdown RP/1-
390F4.3 in BFTC909 cells N, normoxia; H, hypoxia. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control clones.

(e-g) qChIRP assays showed the significantly decreased IncRNA RP1I-390F4.3
binding to the promoter regions of EMT regulator and Glutl genes in hypoxic
BFTC909 cells undergoing IncRNA RP11-390F4.3 knockdown compared to the
control knockdown hypoxic cells. The genomic regions of Twist!, Glutl, Snail, ZEBI,
and ZEB2 genes and the regions that were checked by qChIRP assays were shown on
the top. Different regions located in the promoters and inside the gene body of these
genes were shown underneath the plotting of genes. The different numbers indicated
the starting nucleotide positions in the regions (labeled by brackets) before and after
the initiation site. Retrieval of IncRNA RP11-390F4.3, but not HOTAIR, by tiling
probes was shown (f). The promoters of VEGFE E-cadherin, and N-cadherin were used
as a negative control (g).

(h) Overexpression of IncRNA RPI[1-390F4.3 increased the tumor volume of

BFTC909 cells using xenograft implantation assays. The cell clone transfected with the



control vector was used as a control. The asterisk (*) indicated statistical significance
(P<0.05) between experimental and control groups.

(i-j) Knockdown of IncRNA RP11-390F4.3 in METTL4-overexpressing BFTC909 (i)
and FADU (j) cells significantly decreased the tumor volume induced by METTLA4.
The cell clone transfected with the control vector was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control groups.
(k) Knockdown of IncRNA RP1/-390F4.3 in FADU cells overexpressing METTL4
significantly decreased the metastatic lung nodules in mice. Representative gross
anatomy and histology were shown on the upper panel and measurement of metastatic
lung nodules was shown on the lower panel. The cell clone transfected with the control
vector was used as a control. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups.

(1) Increased expression of IncRNA RP11-390F4.3 indicated a poor prognosis in head
and neck cancer patients from the TCGA dataset analysis.

The error bars represented the standard deviation (SD). Student’s #-test was used to

compare two groups of independent samples. For details, see method section.



Figure S6
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Figure S6. Real-time PCR analysis of gene expression, ChIP-re-ChIP assays,
Western blot analysis and in vitro migration/invasion activity of two cell lines with
ZMIZ1 knockdown under hypoxia, in vitro DNA methylation assays to confirm the
6mA sites methylated by METTL4, the activation of the 6mA site-containing
ZMIZ1 reporter gene construct by METTL4, DNA sequencing analysis of 6mA site
mutation on the IncRNA RP11-390F4.3 promoter, real-time PCR, Western blot,
and in vitro migration/invasion activity assays of cells with heterozygous or
homozygous mutation of the 6mA site on the IncRNA RP11-390F4.3 promoter,
reporter gene assays of the pre-methylated ZMIZ1 reporter construct, and in vitro
methylation assays to the 6maA site on the introns of CTNNAI or PIK3CA gene.
(a) Hypoxia or METTL4 overexpression increased the ZMIZ1 mRNA levels in FADU
and BFTC909 cell lines. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups. Normoxic condition and the cell clone
transfected with the control vector were used as a control.

(b) ChIP-re-ChIP assays in BFTC909 cell showed that ZMIZ1 could be pulled down
after chromatin immunoprecipitation to pull down HIF-1a, indicating the co-existence
of HIF-1a and ZMIZ1 in the transcription complex on the IncRNA RP[1-390F4.3
promoter (with hypoxia response element, HRE). N, normoxia; H, hypoxia. No
antibody/normoxia condition was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control groups.

(¢) Knockdown of ZMIZ] significantly decreased the induction of various HIF-1a
target genes in BFTC909 cells by real-time PCR analyses. Two different siRNAs were
used to knockdown ZMIZ1. Knockdown using the scrambled siRNA under normoxia
condition was used as a control. N, normoxia; H, hypoxia. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control condition.

(d) Knockdown of ZMIZ] abolished hypoxia-induced EMT in BFTC909 and FADU
cell lines by Western blot analysis. Knockdown using the scrambled siRNA under
normoxia condition was used as a control. N, normoxia; H, hypoxia. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control condition.
(e) Knockdown of ZMIZ1 decreased the in vitro migration and invasion activity induced
by hypoxia in FADU or BFTC909 cell lines. A different siRNA (compared to the siRNA
used in Fig. 6d) was used to knockdown ZMIZI gene. This experiment was performed
at a different time (compared to Fig. 6d). Representative photos of the in vitro migration
and invasion activity were shown in this panel. N, normoxia; H, hypoxia. Knockdown
using the scrambled siRNA under normoxia condition was used as a control. The
asterisk (*) indicated statistical significance (P<0.05) between experimental and control
groups.

(f) MeDIP assays showed the presence of 6mA site on the promoter of IncRNA RP/1-



390F4.3. 1gG was used as a control. The figure above shows the 6mA consensus
sequence (—231 to —224 upstream of TSS of the IncRNA RP11-390F4.3 gene) in the
promoter R3 region (—280 to —103 upstream of TSS) of the IncRNA RP11-390F4.3
gene. METTL4 increased the 6mA levels on the oligonucleotides containing the motif-
10 of the IncRNA RP11-390F4.3 promoter using in vitro methylation assays, whereas
no increased 6mA levels could be shown on the oligonucleotides containing mutated
6mA sequences. The oligonucleotide only was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control groups.
Corresponding 6mA dot blots with methyl blue loading controls were shown together
with bar graphs.

(g) Reporter gene assays showed that METTLA4, but not the METTL4 mutant, activated
the IncRNA RP11-390F4.3 gene promoter driven reporter construct. No activation of
the IncRNA RP11-390F4.3 gene promoter driven reporter constructs when the 6mA
consensus sequence was mutated. The 6mA consensus sequence of wild type and
mutant on the IncRNA RP11-390F4.3 gene promoter are shown in the top (left panel).
METTL4 and HIF-la synergistically activated the RP1/-390F4.3 promoter-driven
reporter construct that contained a 6mA consensus sequence (-231 to -224 upstream of
TSS of the RP11-390F4.3 gene) and a HIF-1a response element (HRE, -147 to -143
upstream of TSS of the RP11-390F4.3 gene) (right panel). No synergistic activation of
the RPI11-390F4.3 promoter-driven reporter constructs when the 6mA consensus
sequence was mutated. The position of the 6mA consensus sequence on the RP/I-
390F4.3 promoter and the 6mA consensus sequence of wild and mutation are shown in
the figure above (right panel). The luciferase/renilla activities of FADU cells co-
transfected with reporter construct and pcDNA3 control vector under normoxia were
used as the baseline control. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups.

(h) The 6mA levels of the RP11-390F4.3-driven wild type reporter construct that
underwent in vitro methylation (vs. a 6mA-site mutated reporter construct) was
measured via UPLC-ESI-MS/MS assays (left panel). 6mA methylation was mediated
by wild type METTL4, not by the mutated METTL4 (right panel). The reporter
construct without incubating with wild type METTL4 and SAM was used as a control.
The asterisk (*) indicated statistical significance (P<0.05) between experimental and
control groups. Corresponding 6mA dot blots with methyl blue loading controls were
shown together with bar graphs.

(i) Reporter gene assays showed that METTL4, HIF-1c., and Jumu (a Drosophila 6mA-
binding protein) synergistically activated the RP1/-390F4.3 promoter-driven reporter
construct that contained a 6mA consensus sequence. The figure above shows the
positions of the 6mA consensus sequence and the consensus HRE on the RP11-390F4.3



promoter. The luciferase/renilla activities of FADU cells co-transfected with reporter
construct and pcDNA3 control vector under normoxia were used as the baseline control.
The asterisk (*) indicated statistical significance (P<0.05) between experimental and
control group.

(j) Representative sequencing results of the in vivo mutation of the 6mA site on the
RP11-390F4.3 promoter in FADU and BFTC909 cells using a prime-cutting CRISPR-
Cas9 approach were shown. Mut #3 in FADU cells represented the homozygous
mutations of the 6mA site. The wild-type (WT) cells was used as a control.

(k) Mutation of one copy of the 6mA site on the promoter of RP1/-390F4.3 gene
already reduced the activation of RP1/-390F4.3 down to ~30% of the wild type RP11-
390F4.3 expression induced by hypoxia in FADU and BFTC909 cells. N, normoxia; H,
hypoxia. Normoxic condition of the WT cell line was used as a control. The asterisk (*)
indicated statistical significance (P<0.05) between experimental and control conditions.
(I-m) The regulation of EMT markers and regulators mediated by hypoxia was
abolished in the RP11-390F4.3 6mA site heterozygous mutated clones in FADU and
BFTC909 cells by Western blot analysis. N, normoxia; H, hypoxia.

(n) The activation of in vitro migration and invasion activity induced by hypoxia was
abolished in the RP11-390F4.3 6mA site heterozygous mutated clones in FADU and
BFTC909 cells. Representative photos of the in vitro migration and invasion activity
were shown on the right. N, normoxia; H, hypoxia. Normoxic condition of the WT cell
line was used as a control. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control conditions.

(0) The activation of RP11-390F4.3 by hypoxia was totally abolished in the RP/I-
390F4.3 6mA site homozygous mutated clone in FADU cells. N, normoxia; H, hypoxia.
Normoxic condition of the WT cell line was used as a control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control conditions. N.S., not
statistically significant.

(p) The regulation of EMT markers mediated by hypoxia was abolished in the RP/I-
390F4.3 6mA site homozygous mutated clone in FADU cells. N, normoxia; H, hypoxia.
(q) The activation of in vitro migration and invasion activity induced by hypoxia was
abolished in the RP11-390F4.3 6mA site homozygous mutated clone in FADU cells.
Representative photos of the in vitro migration and invasion activity were shown. N,
normoxia; H, hypoxia. Normoxic condition of the WT cell line was used as a control.
The asterisk (*) indicated statistical significance (P<0.05) between experimental and
control conditions.

(r) MeDIP assays showed the presence of 6mA site on the intron 1 of the ZMIZI gene.
IgG was used as a control. The figure above showed the 6mA consensus sequence
(25230 to 25239, from the TSS of ZMIZI gene) in the intron 1 RS region of ZMIZ1



gene.

(s) The reporter construct containing the 6mA consensus sequence (25230 to 25239,
start from the ZMIZ1 gene) in the intron 1 region (24990 to 25469, start from the ZMIZ1
gene) of ZMIZ1 was activated by co-expressing METTLA4, but not the reporter construct
containing the deleted or mutated 6mA sites. The 6mA consensus sequence of wild-
type and mutation on the intron 1 of ZMIZ1 are shown in the top. The luciferase/renilla
activities of FADU cells co-transfected with reporter construct and pcDNA3 control
vector under normoxia were used as the baseline control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups.

(t) The 6mA levels of the ZMIZI intron 1-driven wild type reporter construct that
underwent in vitro methylation (vs. a 6mA-site deleted or mutated reporter construct)
was measured via UPLC-ESI-MS/MS assays. 6mA methylation was mediated by wild
type METTLA4, not by the mutated METTLA4. The reporter construct without incubating
with wild type METTL4 was used as a control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control groups. Corresponding 6mA
dot blots with methyl blue loading controls were shown together with bar graphs.
Reporter gene assays showed that the 6mA site pre-methylated ZMIZ1 intron 1-driven
reporter construct had higher luciferase activities compared to the unmethylated
construct after transfection. The 6mA site deleted or mutated reporter construct also had
only baseline luciferase activities. /n vitro methylation experiments were performed to
generate the 6mA site pre-methylated reporter construct. The luciferase/renilla
activities of FADU cells co-transfected with reporter construct and pcDNA3 control
vector under normoxia were used as the baseline control. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups.

(u) No activation of the reporter gene construct by hypoxia was shown when the
reporter construct was transfected into the enzymatically inactive METTL4 mutant
FADU and BFTC909 cells. The reporter construct contained the 6mA consensus
sequence (25230 to 25239, start from the ZMIZ1 gene) in the intron 1 region (24990 to
25469, start from the ZMIZ1 gene) of ZMIZ1 gene. N, normoxia; H, hypoxia. The
luciferase/renilla activities of the wild type cells transfected with reporter construct
under normoxia were used as the baseline control. The asterisk (*) indicated statistical
significance (P<0.05) between experimental and control conditions. N.S.: not
statistically significant.

(v) Real-time PCR assays confirmed the activation of two hypoxia-regulated target
genes (CTNNAI, PIK3CA) induced by hypoxia or METTL4 overexpression in FADU
or BFTC909 cells. The asterisk (*) indicated statistical significance (P<0.05) between
experimental and control groups. N, normoxia; H, hypoxia. Normoxic condition and

the cell clone transfected with the control vector were used as a control.



(w) MeDIP assays showed the presence of 6mA site on the intron 10 of CTNNAI gene
and the intron 6 of the PIK3CA gene. The red-inked labeling indicated the 6mA
consensus sequence in the intronic regions of the HIF-la indirect target genes.
METTL4 increased the 6mA levels on the oligonucleotides containing the 6mA
consensus motifs of the intron 10 region of CTNNAI, and intron 6 region of PIK3CA
using in vitro DNA methylation assays, whereas no increased 6mA levels could be
shown on the oligonucleotides containing mutated 6mA sequences. The oligonucleotide
only was used as a control. The asterisk (*) indicated statistical significance (P<0.05)
between experimental and control groups. Corresponding 6mA dot blots with methyl
blue loading controls were shown together with bar graphs.

(x) Real-time PCR assays confirmed the activation of five hypoxia-regulated target
genes (DAAMI, LEPRELI, XPNPEPI, TBC1D23, and TNIP1) induced by hypoxia or
METTL4 overexpression in FADU or BFTC909 cells. The asterisk (*) indicated
statistical significance (P<0.05) between experimental and control groups. N, normoxia;
H, hypoxia. Normoxic condition and the cell clone transfected with the control vector
were used as a control.

(y) The gene tracks of 5 hypoxia/METTL4 co-regulated genes with their sites of 6mA
deposition (DAAM1, LEPRELI, XPNPEPI, TBC1D23, and TNIP1) were shown. All
five genes contained 6mA consensus motifs in their promoter or introns.

(z) MeDIP assays confirmed the presence of 6mA sites on the genomic locations of
DAAMI, LEPRELI, XPNPEPI, TBCID23, and TNIPI genes in FADU and BFTC909
cells. The red-inked labeling indicated the 6mA consensus sequence in the promoter or
intronic regions of these genes.

The error bars represented the standard deviation (SD). Student’s #-test was used to

compare two groups of independent samples. For details, see method section.



