

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

en
n-2022-063023
research
2022
co, Jessica; McMaster University, eyad; University of Toronto, Department of Medicine Paulina; Western University, Department of Biology on KL; Hamilton, Department of Medicine e, Lehana; Hamilton, Department of Health Research Methods, e and Impact; Hamilton, Departments of Anesthesia and es ominik; Hamilton, Department of Health Research Methods, e and Impact; Hamilton, Department of Medicine erk; Hamilton, Department of Health Research Methods, e and Impact; Hamilton
ology < INFECTIOUS DISEASES, EPIDEMIOLOGY, IOLOGY

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Jessica J Bartoszko HBSc¹, Zeyad Elias BSc², Paulina Rudziak BSc(c)³, Carson KL Lo MD⁴, Lehana Thabane PhD^{1,5,6}, Dominik Mertz MD^{1,4,7,8}, Mark Loeb MD^{1,7,8}

Corresponding author:

Dr. Mark Loeb, loebm@mcmaster.ca, McMaster University, Hamilton, Canada, L8S 4L8

Key words: streptococcal toxic shock syndrome (STSS); systematic review; meta-analysis

Word count: 4151

¹ Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada

² Department of Medicine, University of Toronto, Toronto, Ontario, Canada

³ Department of Biology, Western University, London, Ontario, Canada

⁴ Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada

⁵ Departments of Anesthesia and Pediatrics, McMaster University, Hamilton, Ontario, Canada

⁶ Biostatistics Unit, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada

⁷ Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

⁸ Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

ABSTRACT

Objective: To quantify the prognostic effects of demographic and modifiable factors in streptococcal toxic shock syndrome (STSS).

Methods and analysis: We searched MEDLINE and EMBASE from inception to 6 August 2021, along with CINAHL from inception to 16 September 2021 and citations of included studies. Pairs of reviewers screened potentially eligible studies of patients with GAS-induced STSS that quantified the association between at least one prognostic factor and outcome of interest. We performed random-effects meta-analysis after duplicate data extraction and risk of bias assessments. We rated the certainty of evidence using the GRADE approach.

Results: One randomized trial and 39 observational studies were eligible (n=1,914 patients). Low certainty evidence suggests the odds of mortality may be significantly reduced by clindamycin treatment (n=144; odds ratio [OR] 0.14, 95% confidence interval [CI] 0.06 to 0.37) and within clindamycin-treated STSS patients, intravenous immunoglobulin (IVIG) treatment (n=188; OR 0.34, 95% CI 0.15 to 0.75), and increased in patients \geq 65 years when compared to patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84). We are uncertain whether nonsteroidal anti-inflammatory drugs (NSAIDs) increased the odds of mortality (n=50; OR 4.14, 95% CI 1.13 to 15.14; very low certainty). Results failed to show a significant association between any other prognostic factor and outcome combination (very low to low certainty evidence) and no studies quantified the association between a prognostic factor and morbidity post-infection in STSS survivors.

Conclusions: STSS mortality may be modified with clindamycin and within clindamycin-treated patients, IVIG. Future research should focus on morbidity post-infection in STSS survivors.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients.
- These strengths directly address limitations of a narrative synthesis of STSS prognosis restricted to the critical care setting.
- In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence.
- / are lim.

 dence is the lack
 tion in STSS survivors. A limitation of the evidence is the lack of long-term outcome data reported, including morbidity post-infection in STSS survivors.

Introduction

Streptococcal toxic shock syndrome (STSS) is an acute and severe life-threatening complication of predominantly invasive group A *Streptococcus* (GAS) infections. STSS is relatively uncommon, but is fatal [1]. Using US data from 2000 to 2004, the Center for Diseases Control and Prevention estimated an annual incidence rate of 0.2 cases per 100,000 people and a fatality rate of 36% [2]. STSS has important consequences for morbidity as well, in which patients may require radical surgical debridement, and patients with organ failure may have permanent respiratory and renal insufficiency [1].

Although extensive multidisciplinary clinical management efforts by intensivists, infectious disease specialists, and surgeons have curbed STSS all-cause mortality [1], data on the natural history of long-term sequelae in surviving patients, such as renal, respiratory and neuropsychiatric complications, are sparse [1-4]. Published studies of prognostic and treatment factors for STSS have consistently focused on associations with all-cause mortality [5-14], with few reporting on outcomes capturing the morbidity post-infection in STSS survivors [7, 12]. Furthermore, a thorough and systematic review to corroborate this evidence is lacking. A narrative review of STSS was limited by the lack of a systematic or explicit search of the literature, it included studies that were only narratively synthesized, and the focus was limited to studies within a critical care setting [1].

Understanding prognosis of STSS is important for patients, clinicians, and healthcare decision makers. We conducted a systematic review to summarize the prognostic and treatment factors, and outcomes of STSS. We aimed to capture a wide breadth of patient-important outcomes with follow up that included both short- and long-term outcomes within and outside of critical care.

Materials and methods

We registered a protocol for the present systematic review and meta-analysis with PROSPERO (CRD42020166961) [15, 16]. We report this systematic review and meta-analysis following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analyses of Observational Studies in Epidemiology (MOOSE) checklists [17, 18]. Decisions regarding criteria for study inclusion, search methods for identification of

studies, data collection, risk of bias, evaluation of the certainty of evidence and analysis were established a priori.

Search strategy and selection criteria

We searched MEDLINE (OVID interface, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, 1946 to 6 August 2021) and EMBASE (OVID interface, 1974 to 6 August 2021) from inception to 6 August 2021, with no restrictions on publication date. We searched the Cumulative Index to Nursing And Allied Health Literature (CINAHL), excluding MEDLINE records, from inception to 16 September 2021. We applied search filters for randomized controlled trials and non-randomized studies (cohort, case-control and case series with at least 2 STSS patients) [19, 20], and tailored search strategies to each database. We restricted included studies to the English language to facilitate screening of full-texts [21, 22] and searched citations of included studies to minimize the risk of failing to include relevant studies.

We included studies of randomized and non-randomized designs that reported the association of at least one prognostic factor of interest on at least one outcome of interest, and compared GASinduced STSS patients with the prognostic factor of interest (i.e. exposed) to GAS-induced STSS patients without the prognostic factor of interest (i.e. unexposed). Studies of patients with microbiologically confirmed STSS, probable cases of STSS and patients with clinical evidence of STSS as defined by study authors and generally consistent with the below criteria were eligible [3, 23]. Clinical evidence of STSS included hypotension and at least two of the following: renal impairment, coagulopathy, liver function abnormality, acute respiratory distress syndrome, generalized erythematous macular rash (with desquamation), soft-tissue necrosis (including necrotizing fasciitis, myositis or gangrene), or meningitis. Probable cases of STSS were defined as meeting clinical evidence with GAS isolated from a non-sterile site (e.g. throat, sputum, superficial skin lesion) or antigen detected. Confirmed cases of STSS were defined as meeting clinical evidence with GAS isolated from a sterile site (e.g. blood, cerebrospinal fluid, deep tissue specimen taken during surgery) [3, 23]. Demographic, comorbidity, infection, modifiable and process variables were prognostic factors of interest. Informed by clinical expertise in the review team, we selected outcomes based on importance to patients. Further, we aimed to capture the long-term sequelae in patients surviving STSS [1, 2, 4]. We chose the

following outcomes of interest: (time to) mortality, hospital length-of-stay, pediatric (P) intensive care unit (ICU) admission, (P)ICU length-of-stay, mechanical ventilation, duration of mechanical ventilation, (time to) clinical cure/improvement or resolution of shock, change in Sequential Organ Failure Assessment (SOFA) score from baseline, functional status (e.g. physical component summary (PCS) score on the 36-item short form health survey (SF-36)) and health related quality of life (HRQoL). We also extracted on cost outcomes, which are relevant to hospital and patient payees.

We excluded case reports and conference abstracts, and studies in which the population was less than 80% GAS-induced STSS cases (i.e. toxic shock syndrome of bacterial aetiologies other than GAS made up more than 20% of the study population). Because prognostic evidence in STSS patients is scarce [1, 2, 4], we did not apply any restrictions based on analytical method (e.g. conducting an adjusted, multivariable analysis) or sample size.

Using a systematic review software, Rayyan [24], following training and calibration exercises, pairs of reviewers independently screened all titles and abstracts, followed by full-texts of records that were identified as potentially eligible. When necessary, consensus was reached through discussion between the review pair, and arbitration by a senior co-investigator in the absence of consensus.

Data analysis

For each eligible study, pairs of reviewers extracted data independently using a standardized, pilot tested data extraction form. Reviewers collected information on study characteristics (study design as defined by study authors, sample size, country), patient characteristics (age, sex), disease characteristics (confirmed vs probable STSS, presence of necrotizing fasciitis), prognostic factors and outcomes of interest (means or medians and measures of variability for continuous outcomes and the proportion of participants who experienced an event for dichotomous outcomes). If multiple time points were reported for outcomes of interest, we extracted all time points. To minimize risk of confounding associated with prognostic effect estimates on dichotomous outcomes in non-randomized studies, we preferentially extracted adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CI) over proportions

when both were reported. We used the proportions to calculate crude ORs when no adjusted ORs were provided. Reviewers resolved discrepancies by discussion and, when necessary, with adjudication by a third party.

Following training and calibration exercises, reviewers, independently and in duplicate, used a modified version of the Quality in Prognosis Studies (QUIPS) tool to rate each prognostic factor and outcome combination at low, moderate or high risk of bias overall [25]. Based on prespecified sets of questions, we assessed risk of bias across the following domains: participation, attrition, prognostic factor measurement, outcome measurement, confounding, and statistical analysis and reporting. For studies addressing more than one prognostic factor and outcome combination, we reported the highest risk of bias rating among the prognostic factor and outcome combinations within a study for each domain. We rated overall study risk of bias as low if the study was prospective and five or more domains were assessed as low risk of bias, and high if two or more domains were assessed as high risk of bias. All other studies were rated as moderate risk of bias overall. Due to high risk of selection bias and residual confounding, we rated all case series as high risk of bias overall. Reviewer pairs resolved discrepancies by discussion and, when needed, with adjudication by a senior co-investigator.

Pairs of reviewers used a modified version of the grading of recommendations, assessment, development, and evaluation (GRADE) approach to independently assess the certainty of prognostic evidence for each meta-analysed outcome. Criteria for rating the certainty for each prognostic factor and outcome as high, moderate, low, or very low, included considerations of risk of bias, inconsistency, indirectness, size and precision of the association and publication bias [26, 27]. Judgments of imprecision for this systematic review were made using a minimally contextualised approach. This approach considers whether confidence intervals include the null effect. The supplementary file presents detailed guidance on the certainty of the evidence assessment. To facilitate interpretation of the results in which the summary measure was an OR, we used the median event rate in the reference group of studies reporting proportions to calculate baseline risks and subsequently calculated absolute effects. GRADE evidence summaries (Summary of Findings tables) were generated in the MAGIC Authoring and Publication Platform (www.magicapp.org).

When at least two included studies reported on the same prognostic factor and outcome, we conducted DerSimonian and Laird random-effects meta-analyses using the *metafor* package in R version 4.0.4 (R Studio, Boston, MA, USA) [28]. We summarised the effects of prognostic factors on dichotomous outcomes using ORs and corresponding 95% CI, and on continuous outcomes using mean differences and corresponding 95% CI. For prognostic factor and dichotomous outcome combinations in which every patient in the reference arm experienced the outcome, we summarised the effects by directly calculating risk differences and corresponding 95% CI. We set the criterion for statistical significance at alpha = 0.05. Visual inspection of forest plots and the chi-square test were performed to evaluate heterogeneity. We interpreted an I² statistic value of 0%-40%, 30%-60%, 50%-90%, or 75%-100% as not likely important, moderate, substantial, or considerable heterogeneity, respectively [29]. When inconsistent magnitudes and directions of summary estimates were observed upon visual inspection of the forest plots, and the chi-square test was significant, we interpreted heterogeneity as more important (i.e. we reported the interpretation corresponding to the higher limit in overlapping I² statistic values) [29]. For meta-analyses of continuous outcomes, we imputed means and standard deviations for studies reporting medians and (interquartile) ranges, respectively.

Patient-level data from case-series were aggregated when possible to enable comparative analysis via meta-analysis. We planned to perform regression analyses for studies for which age was reported at the patient level to generate aggregate ORs that could be used in meta-analysis when the study had at least 10 observations for continuous outcomes and 10 events for dichotomous outcomes; however, no study met the sample size or event number requirements. Further, scarcity and variability of data precluded our plan to narratively synthesize the evidence from included studies for which meta-analysis of a prognostic factor and outcome combination was not possible.

The analysis plan included performing subgroup analyses of STSS patients treated with clindamycin vs no clindamycin, STSS patients with necrotizing fasciitis vs without necrotizing fasciitis, age (0 to 17 years old vs 18 to 64 years old vs 65 years old or older), sex (male vs

female) and risk of bias (high vs moderate vs low) when at least two studies were present for each subgroup.

Patient and public involvment

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

Results

After screening 25,397 titles and abstracts and 282 full texts, 40 studies that reported on the association between at least one prognostic factor and outcome of interest in STSS patients proved eligible (Figure 1). All but one study (39/40, 98%) were non-randomized. Eligible studies were published between 1989 and 2021, ranged in sample size from 2 to 476, included 1,914 STSS patients in total and were conducted in 22 different countries, most commonly in the United States (15/40, 38%).

Table 1 describes the characteristics of included studies reporting on the association of at least one prognostic factor and outcome of interest. The supplementary data includes additional study characteristics for each study. Of the 40 included studies, 28 (70%) reported on demographic prognostic factors of interest, 5 (13%) medical history of being immunocompromised, 11 (28%) early disease characteristics, and 16 (40%) treatment. Of the dichotomous outcomes, mortality was most commonly reported (35/40, 88%), followed by (P)ICU admission (10/40, 25%), clinical cure or improvement (8/40, 20%) and need for mechanical ventilation (6/40, 15%). Few studies reported on hospital (3/40, 8%) and ICU length-of-stay (2/40, 5%). Two studies reported on time to mortality in days [7, 30]; however, only one reported sufficient data precluding metaanalysis [7]. One study each reported on cost [14], change in SOFA score [7], time to clinical improvement or resolution of shock [7] and duration of mechanical ventilation [10] precluding meta-analysis for these continuous outcomes. No studies quantified the association between a prognostic factor and functional status or health related quality of life outcomes. A multivariable analysis was conducted in two (5%) of the included studies [10, 11]. A total of 19 of the 40 studies were cohort studies (authors reported on at least one comparative analysis), 18 were case series (authors did not report a comparative analysis) and 2 were case-control studies. To meta-

analyse the data, we aggregated the data from the individual patients the case series reported on. Further, we pooled the one randomized study [7] with non-randomized studies in meta-analyses and included patients receiving intravenous or intramuscular IVIG from one non-randomized study [31].

Table 1. Study characteristics. Values are numbers (percentages) of studies unless stated otherwise.

Characteristics	(40 studies, 1914 patients)
Range of publication year	1989 to 2021
Median (IQR) No. of patients	11 (5 to 29)
Geographical region:	
North America	19 (48)
Europe	14 (35)
Central/South America	0 (0)
Asia	3 (7)
Other	4 (10)
Study design:	<u> </u>
Randomized trial	1 (2)
Cohort	19 (48)
Case-control	2 (5)
Case-series	18 (45)
Case definition:	
No. (%) Probable STSS patients	115 (6)
No. (%) Confirmed STSS patients	223 (12)
Prognostic factor type:	
Demographic	28 (70)
Medical history	5 (13)
Early disease	11 (28)
Treatment	16 (40)

IQR=interquartile range

STSS=streptococcal toxic shock syndrome

Medical history included prognostic variable: immunocompromised

Early disease included prognostic variables: necrotizing fasciitis, acute renal failure

The supplementary material includes the forest plots depicting the studies included in the metaanalysis of each prognostic factor-outcome combination. It also includes the list of studies

reporting on prognostic factor-outcome combinations of interest that were not eligible for any meta-analysis, along with the reasons for exclusion from meta-analysis.

Risk of bias in included studies

Table 2 presents the risk of bias assessment of the 40 included studies. The majority of studies were rated as high risk of bias overall owing to residual confounding and lack of adjustment for confounding in statistical analyses (36/40, 90%) [2, 5, 6, 10, 30-61]. Three studies were rated at moderate risk of bias overall [7, 14, 62] and one at low risk of bias overall [11].

Table 2. Risk of bias assessment of included studies.

Author	Study participation	Study Attrition	Prognostic Factor Measurement	Outcome Measurement	Study Confounding	Statistical Analysis and Presentation Summary	Overall Risk of Bias
Abuhammour 2004	Low	Low	Low	Low	High	High	High
Adalat 2014	Low	High	High	Low	High	High	High
Al-Ajmi 2012	NA	NA	NA	NA	NA	NA	High
Barnham 2002	NA	NA	NA	NA	NA	NA	High
Bernaldo de Quiros 1997	Low	Low	Low	Low	High	High	High
Brogan 1995	NA	NA	NA	NA	NA	NA	High
Butragueno Laiseca 2017	NA	NA	NA	NA	NA	NA	High
Carapetis 1995	NA	NA	NA	NA	NA	NA	High
Carapetis 2014	Low	Low	Low	Low	High	High	High
Cimolai 1992	NA	NA	NA	NA	NA	NA	High
Cook 2021	Low	Low	Low	Low	High	High	High
Cowan 1994	NA	NA	NA	NA	NA	NA	High
Crum 2004	NA	NA	NA	NA	NA	NA	High
Dahl 2002	NA	NA	NA	NA	NA	NA	High
Darenberg 2003	Low	Moderate	Low	Moderate	Low	Low	Moderate
Donaldson 1993	NA	NA	NA	NA	NA	NA	High
Erdem 2004	NA	NA	NA	NA	NA	NA	High

Eriksson 1999	Low	Low	Low	Low	High	High	High
Forni 1995	NA	NA	NA	NA	NA	NA	High
Fronhoffs 2000	NA	NA	NA	NA	NA	NA	High
Hasegawa 2004	Low	Low	Moderate	Low	High	High	High
Hayata 2021	Low	Low	Low	Low	High	High	High
Huang 2001	NA	NA	NA	NA	NA	NA	High
Kansal 2000	Moderate	Low	Moderate	Low	High	High	High
Kaul 1999	Low	Low	Low	Low	High	High	High
Linder 2017	Low	Moderate	Low	Moderate	High	High	High
Linner 2014	Low	Low	Low	Low	Moderate	Low	Low
Luca-Harari 2009	Low	High	Low	Low	High	High	High
Nelson 2016	Low	Low	Low	Low	High	High	High
O'Loughlin 2007	Low	Low	Low	Low	High	High	High
Page 2011	Low	Low	Low	Low	Moderate	High	Moderate
Safar 2011	Low	Low	Low	Low	High	High	High
Schwartz 1992	NA	NA	NA	NA	NA	NA	High
Shah 2009	Low	High	Low	Low	Moderate	Moderate	Moderate
Sriskandan 2000	Moderate	Moderate	High	Low	High	High	High
Stegmayr 1992	NA	NA	NA	NA	NA	NA	High
Stevens 1989	NA	NA	NA	NA	NA	NA	High
Stockmann 2012	Low	Low	Low	Low	High	High	High
Tagini 2017	NA	NA	NA	NA	NA	NA	High
Zachariadou 2013	Low	Low	Low	Low	High	High	High

NA, Not Applicable because case-series study design and rated at high risk of bias.

Prognostic factors for mortality

Eleven prognostic factors from 31 studies including 1339 patients were eligible for analysis (table 3, supplementary data). Low certainty evidence suggests that treatment with clindamycin antibiotic may reduce the odds of mortality (n=144, OR 0.14, 95% CI 0.06 to 0.37). Within

clindamycin-treated STSS patients, IVIG may also reduce the odds of mortality (n=188, OR 0.34, 95% CI 0.15 to 0.75; low certainty of evidence); however, we are uncertain whether IVIG treatment reduces the odds of mortality in all STSS patients regardless of concurrent clindamycin treatment (n=365, OR 0.37, 95% CI 0.17 to 0.80; very low certainty of evidence). Patients ≥65 years compared to patients 18-64 years may have increased odds of mortality (n=396, OR 2.37, 95% CI 1.47 to 3.84; low certainty of evidence); however, we are less certain whether the same is true for patients ≥65 years compared to patients <18 years (n=136, OR 10.66, 95% CI 1.28 to 88.57; very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (n=50, OR 4.14, 95% CI 1.13 to 15.14; very low certainty of evidence). Very low certainty evidence failed to show a significant association with any other prognostic factor and mortality in STSS patients: male vs female (n=76, OR 0.91, 95% CI 0.34 to 2.46), patients <18 years vs patients 18 to 64 years (n=694, OR 0.54, 95% CI 0.15 to 1.94), immunocompromised vs not immunocompromised (n=33, OR 1.65, 95% CI 0.33 to 8.26), necrotizing fasciitis vs no necrotizing fasciitis (n=840, OR 0.81, 95% CI 0.51 to 1.29), acute renal failure vs no acute renal failure (n=91, OR 2.50, 95% CI 0.97 to 6.42), hemodialysis vs no hemodialysis (n=42, OR 1.94, 95% CI 0.22 to 16.99) and any antibiotic vs no antibiotic (n=19, OR 0.48, 95% CI 0.05 to 4.76).

Table 3. Summary of findings for prognostic factor – outcome meta-analyses.

	Number of	Number of Absolute effect estimates					
Prognostic factor	patients	Odds ratio (95%	Risk without	Risk with	GRADE: Certainty of the Evidence		
1 rognostic factor	(studies)	confidence interval)	prognostic	prognostic	GRADE. Certainty of the Evidence		
	(studies)		factor	factor			
		MORTAL	ITY				
		Demograp	ohic				
			250 per 1000	233 per 1000	Very low		
Male vs Female	76 (12)	0.91 (0.34 to 2.46)	-17 (-148	3 to 201)	Due to very serious risk of bias and imprecision		
			234 per 1000	142 per 1000	Very low		
<18 vs 18-64 years	694 (5) 0.54 (0.15 to 1.94)	-92 (-190 to 138)		Due to very serious risk of bias and imprecision, and serious inconsistency			
			50 per 1000	359 per 1000	Very low		
≥65 vs <18 years	136 (2)	10.66 (1.28 to 88.57)*	309 (13	to 773)	Due to very serious risk of bias and serious imprecision		
>65 19 (A	20((2)	2 27 (1 47 +- 2 04)*	193 per 1000	362 per 1000	Low		
≥65 vs 18–64 years	396 (2)	2.37 (1.47 to 3.84)*	169 (67	to 286)	Due to very serious risk of bias		
	Medical history						
Immunocompromised vs Not			438 per 1000	563 per 1000	Very low		
Immunocompromised Immunocompromised	33 (4)	1.65 (0.33 to 8.26)	125 (-233 to 428)		Due to very serious risk of bias and imprecision		
Early disease							
Acute Renal Failure vs No Acute	91 (4)	2.50 (0.97 to 6.42)	NA per 1000	NA per 1000	Very low		

		I		
Renal Failure			140 (-60 to 330)	Due to very serious risk of bias and imprecision
Necrotizing Fasciitis vs No	0.40 (10)	0.01 (0.51 1.50)	347 per 1000 301 per 100	·
Necrotizing Fasciitis	840 (10)	0.81 (0.51 to 1.29)	-46 (-134 to 60)	Due to very serious risk of bias and imprecision
		Treatme	ent	mprecision
IVIG vs No IVIG (all STSS			231 per 1000 100 per 100	00 Very low
patients)	365 (9)	0.37 (0.17 to 0.80)*	-131 (-182 to -37)	Due to very serious risk of bias and serious imprecision
IVIG vs No IVIG (subset of STSS	100 (()	0.24 (0.15 +- 0.75)*	300 per 1000 127 per 100	
patients treated with clindamycin)	188 (6)	0.34 (0.15 to 0.75)*	-173 (-240 to -57)	Due to serious risk of bias and imprecision
Any Antibiotic vs No Antibiotic	10 (2)	0.49 (0.05 to 4.76)	NA per 1000 NA per 100	<u> </u>
Any Antibiotic vs No Antibiotic	19 (3)	0.48 (0.05 to 4.76)	-120 (-490 to 260)	Due to very serious risk of bias and imprecision
Clindamycin vs No Clindamycin			800 per 1000 359 per 100	
Antibiotic	144 (4)	0.14 (0.06 to 0.37)*	-441 (-606 to -203)	Due to serious risk of bias and imprecision
			107 per 1000 189 per 100	-
Hemodialysis vs No Hemodialysis	42 (4)	1.94 (0.22 to 16.99)	82 (-81 to 564)	Due to very serious risk of bias and imprecision
			100 per 1000 315 per 100	00 Very low
NSAIDs vs No NSAIDs	50 (4)	4.14 (1.13 to 15.14)*	215 (12 to 527)	Due to very serious risk of bias and serious imprecision
		ICU ADMI	SSION	
		Demogra	·	
Male vs Female	19 (3)	2.87 (0.29 to 28.27)	NA per 1000 NA per 100	
Maie vs Femaie	19 (3)	2.87 (0.29 to 28.27)	150 (-160 to 450)	Due to very serious risk of bias and imprecision
		Early dis		
Necrotizing Fasciitis vs No	28 (3)	0.74 (0.12 to 4.48)	900 per 1000 869 per 100	OO Very low Due to very serious risk of bias and
Necrotizing Fasciitis			-31 (-381 to 76)	imprecision
		Treatme		
IVIG vs No IVIG (all STSS	156 (3)	1.09 (0.43 to 2.77)	833 per 1000 845 per 100	O Very low Due to very serious risk of bias and
patients)	100 (3)	1.05 (0.15 to 2.77)	12 (-151 to 100)	imprecision
	14 (2)	4 (0 (0 00) 70 00)	500 per 1000 821 per 100	
Any Antibiotic vs No Antibiotic	14 (2)	4.60 (0.29 to 72.89)	321 (-275 to 486)	Due to very serious risk of bias and imprecision
			875 per 1000 958 per 100	•
Hemodialysis vs No Hemodialysis	13 (2)	3.25 (0.21 to 50.35)	83 (-280 to 122)	Due to very serious risk of bias and imprecision
			NA per 1000 NA per 100	Very low
NSAIDs vs No NSAIDs	15 (2)	0.86 (0.06 to 12.48)	-10 (-430 to 400)	Due to very serious risk of bias and imprecision
		CLINICAL CURE OR	IMPROVEMENT	
		Demogra		
Male vs Female	23 (4)	3.33 (0.47 to 23.59)	875 per 1000 959 per 100	·
Maie vs Femaie	23 (4)	3.33 (0.47 to 23.39)	84 (-108 to 119)	Due to very serious risk of bias and imprecision
		Early dis	· · · · · · · · · · · · · · · · · · ·	
Necrotizing Fasciitis vs No	24 (2)	0.34 (0.02 to 5.20)	950 per 1000 866 per 100	
Necrotizing Fasciitis	24 (2)	0.34 (0.02 to 5.20)	-84 (-675 to 40)	Due to very serious risk of bias and serious imprecision
		Treatme	1	
IVIG vs No IVIG (in all STSS	23 (2)	0.27 (0.02 to 3.76)	NA per 1000 NA per 100	· ·
patients)	23 (2)	0.27 (0.02 to 3.70)	-100 (-350 to 140)	Due to very serious risk of bias and imprecision

•		-			
			NA per 1000	NA per 1000	Very low
Hemodialysis vs No Hemodialysis	26 (3)	1.43 (0.15 to 14.08)	50 (-240 to 340)		Due to very serious risk of bias and imprecision
		NEED FOR MECHANICA	AL VENTILATIO	N	
		Demograp	ohic		
			NA per 1000	NA per 1000	Very low
Male vs Female	21 (3)	2.09 (0.32 to 13.74)	120 (-20	0 to 440)	Due to very serious risk of bias and imprecision
		Early dise	ease		
Acute Renal Failure vs No Acute			750 per 1000	774 per 1000	Very low
Renal Failure	20 (2)	1.14 (0.17 to 7.82)	24 (-412	2 to 209)	Due to very serious risk of bias and imprecision
Necrotizing Fasciitis vs No			700 per 1000	897 per 1000	Very low
Necrotizing Fasciitis Necrotizing Fasciitis	31 (3)	3.75 (0.47 to 29.81)	197 (-177 to 286)		Due to very serious risk of bias and imprecision
		Treatme	nt		
IVIG vs No IVIG (in all STSS			333 per 1000	526 per 1000	Very low
patients)	157 (3)	2.22 (0.78 to 6.32)		3 to 426)	Due to very serious risk of bias and imprecision
			500 per 1000	672 per 1000	Very low
Hemodialysis vs No Hemodialysis	26 (3)	2.05 (0.39 to 10.70)	172 (-219 to 415)		Due to very serious risk of bias and imprecision
		DURATION OF HOSI	PITALIZATION		
		Treatme	nt		
IVIG vs no IVIG (all STSS			NA per 1000	NA per 1000	Low
patients)	201 (3)	NA	NA On average, 5.51 fewer days (17.64 fewer to 6.62 more)		Due to serious risk of bias and imprecision
		DURATION OF INTENSIV	E CARE UNIT ST	AY	
		Treatme	nt		
IVIG vs no IVIG (all STSS			NA per 1000	NA per 1000	Very low
patients)	131 (2)	NA	On average, 3 (3.62 fewer to	.80 more days o 11.23 more)	Due to very serious risk of bias and serious imprecision

^{*}statistical evidence of an association

Prognostic factors for ICU admission

Six prognostic factors from eight studies including 174 patients were eligible for analysis (table 3, supplementary data). We found no statistical evidence of an association between any prognostic factor and ICU admission: male vs female sex (n=19, OR 2.87, 95% CI 0.29 to 28.27), necrotizing fasciitis vs no necrotizing fasciitis (n=28, OR 0.74, 95% CI 0.12 to 4.48), hemodialysis vs no hemodialysis (n=13, OR 3.25, 95% CI 0.21 to 50.35), NSAIDs vs no NSAIDs (n=15, OR 0.86, 95% CI 0.06 to 12.48), IVIG treatment vs no IVIG treatment (n=156, OR 1.09, 95% CI 0.43 to 2.77) and antibiotic treatment vs no antibiotic treatment (n=14, OR 4.60, 95% CI 0.29 to 72.98). The certainty of all ICU admission evidence was very low due to very serious risk of bias and imprecision.

Prognostic factors for clinical cure or improvement

Four prognostic factors from six studies including 38 STSS patients were eligible for analysis (table 3, supplementary data). We found no statistical evidence of an association between any prognostic factor and clinical cure or improvement: male vs female sex (n=23, OR 3.33, 95% CI 0.47 to 23.59), necrotizing fasciitis vs no necrotizing fasciitis (n=24, OR 0.34, 95% CI 0.02 to 5.20), hemodialysis vs no hemodialysis (n=26, OR 1.43, 95% CI 0.15 to 14.08) and IVIG treatment vs no IVIG treatment (n=23, OR 0.27, 95% CI 0.02 to 3.76). The certainty of all clinical cure or improvement evidence was very low due to very serious risk of bias and serious or very serious imprecision.

Prognostic factors for mechanical ventilation

Five prognostic factors from six studies including 170 STSS patients were eligible for analysis (table 3, supplementary data). We found no statistical evidence of an association between any prognostic factor and need for mechanical ventilation: male vs female sex (n=21, OR 2.09, 95% CI 0.32 to 13.74), necrotizing fasciitis vs no necrotizing fasciitis (n=31, OR 3.75, 95% CI 0.47 to 29.81), acute renal failure vs no acute renal failure (n=20, OR 1.14, 95% CI 0.17 to 7.82), hemodialysis vs no hemodialysis (n=26, OR 2.05, 95% CI 0.39 to 10.70) and IVIG treatment vs no IVIG treatment (n=157, OR 2.22, 95% CI 0.78 to 6.32). The certainty of all need for mechanical ventilation evidence was very low due to very serious risk of bias and imprecision.

Prognostics factors for hospital length-of-stay

One prognostic factor from three studies including 201 STSS patients was eligible for analysis (table 3, supplementary data). Low certainty evidence – due to serious risk of bias and imprecision – provides no support for an association between IVIG treatment and hospital length-of-stay, when compared to no IVIG treatment (n=201, MD -5.51 days, 95% CI -17.64 to 6.62).

Prognostic factors for intensive care unit length-of-stay

One prognostic factor from two studies including 131 STSS patients was eligible for analysis (table 3, supplementary data). We are uncertain if IVIG treatment compared to no IVIG

treatment is associated with ICU length-of-stay (n=131, MD 3.80 days, 95% CI -3.62 to 11.23; very low certainty evidence due to very serious risk of bias and serious imprecision).

Subgroup analysis

Sparsity of data precluded our planned subgroup analyses by clindamycin treatment, presence of necrotizing fasciitis and sex (i.e. each subgroup did not have at least two studies). We collapsed the low and moderate risk of bias categories to allow for subgroup analysis by risk of bias (low or moderate vs high). The prognostic factor-outcome combinations for which there was sufficient evidence for subgroup analysis by age or modified risk of bias level were IVIG-mortality and sex-mortality. We found no statistical evidence that the association between IVIG and mortality differed between low or moderate and high risk of bias studies in all STSS patients (p=0.884) and clindamycin-treated STSS patients (p=0.867) or between studies with STSS patients <18 years and patients 18-64 years (p=0.328). We also found no statistical evidence that the association between sex and mortality differed between studies with patients <18 years and patients 18-64 years (p=0.666).

Discussion

This systematic review and meta-analysis provides a comprehensive overview of the prognostic evidence for STSS. Prognostic factors for which there was statistical evidence of an association with mortality in STSS patients were age, clindamycin treatment, IVIG treatment and NSAIDs treatment. Patients ≥65 years compared to patients 18 to 64 years may have increased odds of mortality (low certainty of evidence); however we are uncertain if the same is true for patients ≥65 years compared to patients <18 years (very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (very low certainty of evidence). Low certainty evidence suggests the odds of mortality may be reduced by treatment with clindamycin and within clindamycin-treated patients, IVIG. We are highly uncertain whether IVIG reduces mortality in all STSS patients, regardless of clindamycin treatment (very low certainty of evidence). Results failed to show a significant association between all other meta-analyzed prognostic factors and outcomes (table 3). The certainty of STSS prognostic evidence was low or very low due to serious or very serious risk of bias and imprecision concerns.

Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients. These strengths directly address limitations of a narrative synthesis of STSS prognosis restricted to the critical care setting [1].

In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence. The majority of included studies were non-randomized (39/40, 98%) and small (median sample size was 10 patients), introducing bias from residual confounding and imprecision around pooled summary estimates. Small numbers of events further contributed to the imprecision around summary estimates. With few participants and events, minor changes in the data can cause major changes in the results. In such instances, results can be exaggerated by the presentation of relative effect estimates only. To minimize the risk of misinterpreting results from the inclusion of small studies in our meta-analyses, we calculated an absolute effect estimate for each relative effect estimate (table 3). Further, despite expecting small studies to be more heterogeneous than large studies, we did not find statistical evidence of heterogeneity in any of our 33 meta-analyses and in interpreting the I² statistic value, we found not likely important heterogeneity in all but one meta-analysis [63]. Creation of an international registry of STSS patients may improve the credibility of prognostic evidence for STSS. Although we meta-analyzed adjusted odds ratios from included studies when possible, almost all included studies reported crude data (38/40, 95%), precluding adjustment for important confounders. A limitation of the evidence is the lack of long-term outcome data reported. For example, no studies quantified associations between prognostic factors and functional status or health related quality of life outcomes postinfection in STSS survivors. Given the high morbidity associated with STSS [64], future research in STSS prognosis should quantify these patient-important outcomes, facilitating future meta-analyses and providing further insights into STSS prognosis.

Our finding that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment is consistent with a systematic review and meta-analysis of IVIG treatment in clindamycin-treated STSS patients, which found statistical evidence of a decreased risk of mortality in IVIG- and clindamycin-treated STSS patients when compared to only clindamycin-treated STSS patients [64]. For this question relevant to clindamycin-treated STSS

patients, our meta-analysis included one additional non-randomized study, whose small sample size and imprecision contributed to an overall point estimate of greater magnitude [30]. Our findings suggest that treatment regimens of IVIG in adjunct to clindamycin and clindamycin alone may significantly improve STSS prognosis. We found a significant association between a regimen of IVIG regardless of clindamycin treatment and mortality; however, due to very serious risk of bias and serious imprecision, and thus very low certainty evidence, we cannot rule out the possibility that clindamycin treatment may be necessary for STSS patients to benefit from IVIG treatment. Further, only one study reported on IVIG treatment in STSS patients that were not also treated with clindamycin [31]; therefore, our planned subgroup analysis to test if the beneficial effect of IVIG is modified in the absence of clindamycin was precluded. Based on very low certainty evidence, our finding that NSAID treatment is significantly associated with mortality in STSS patients can be explained by clinical and basic science literature, which suggests nonselective NSAIDs mask early signs and symptoms of GAS infection, such as fever, subsequently delaying time to antibiotic treatment – a risk factor for severe sepsis and shock, and mortality [65, 66].

After analyzing 30 different prognostic factor and outcome combinations, we found that age equal to or older than 65 years and treatment with NSAIDs was significantly associated with a worse STSS prognosis and that clindamycin treatment was significantly associated with an improved STSS prognosis. Further, we found that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment, but we are uncertain if this is true for all STSS patients, regardless of clindamycin treatment. These findings support the use of IVIG as an adjunctive treatment in clindamycin-treated STSS patients. Results from very low to low certainty evidence failed to show a significant association between any other factors of interest and STSS prognosis.

Contributors

All authors attest they meet the ICMJE criteria for authorship. All authors have made substantial contributions to the following: (1) the conception and design of the study (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), acquisition of data (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo), analysis and interpretation of data (Jessica J Bartoszko,

Zeyad Elias, Paulina Rudziak, Carson KL Lo, Mark Loeb); (2) drafting the article and revising it critically for important intellectual content (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), (3) final approval of the version to be submitted (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo, Lehana Thabane, Dominik Mertz, Mark Loeb).

Declaration of interests

Mark Loeb declares grants or contracts from the World Health Organization, consulting fees from AVIR Pharma, and participating on data safety monitoring or advisory boards for Paladin Labs and Sunovion Pharmaceuticals.

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in BMJ Medicine and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Role of the funding source

There was no funding source for this study.

Data availability statement

Data extracted from individual studies are available upon reasonable request to the corresponding author. All other data relevant to the study are included in the article or uploaded as online supplemental information.

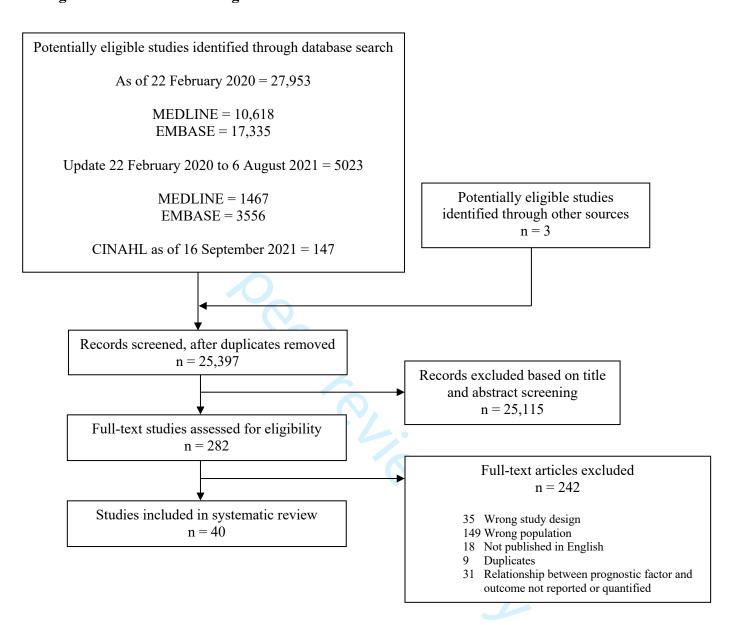
Ethics statement

Patient consent for publication not applicable.

References

- 1. Schmitz, M., et al., Streptococcal toxic shock syndrome in the intensive care unit. Annals of intensive care, 2018. 8(1): p. 88-88.
- O'Loughlin, R.E., et al., The epidemiology of invasive group A streptococcal infection and 2. potential vaccine implications: United States, 2000-2004. Clin Infect Dis, 2007. 45(7): p. 853-62.
- 3. Canada, G.o., Group A Streptococcal diseases: For health professionals. https://www.canada.ca/en/public-health/services/diseases/group-a-streptococcaldiseases/health-professionals.html, 2019.
- 4. Davies, H.D., et al., Invasive Group A Streptococcal Infections in Ontario, Canada. New England Journal of Medicine, 1996. 335(8): p. 547-554.
- 5. Adalat, S., et al., Toxic shock syndrome surveillance in UK children. Arch Dis Child, 2014. **99**(12): p. 1078-82.
- Carapetis, J.R., et al., Effectiveness of clindamycin and intravenous immunoglobulin, and 6. risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis, 2014. **59**(3): p. 358-65.
- 7. Darenberg, J., et al., Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis, 2003. **37**(3): p. 333-40.
- 8. Kadri, S.S., et al., Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A Propensity Score-Matched Analysis From 130 US Hospitals. Clin Infect Dis, 2017. **64**(7): p. 877-885.
- 9. Kaul, R., et al., Population-based surveillance for group A streptococcal necrotizing fasciitis: Clinical features, prognostic indicators, and microbiologic analysis of seventyseven cases. Ontario Group A Streptococcal Study. Am J Med, 1997. 103(1): p. 18-24.
- 10. Kaul, R., et al., Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome--a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis, 1999. **28**(4): p. 800-7.
- 11. Linnér, A., et al., Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: a comparative observational study. Clin Infect Dis, 2014. **59**(6): p. 851-7.
- 12. Madsen, M.B., et al., Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med, 2017. **43**(11): p. 1585-1593.
- 13. Mehta, S., et al., Morbidity and mortality of patients with invasive group A streptococcal infections admitted to the ICU. Chest, 2006. **130**(6): p. 1679-86.
- 14. Shah, S.S., et al., Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clin Infect Dis, 2009. 49(9): p. 1369-76.
- York., C.f.R.a.D.U.o., PROSPERO. International prospective register of systematic reviews. 15. http://www.crd.york.ac.uk/PROSPERO/>. 2017.
- 16. Jessica Bartoszko, Z.E., Dominik Mertz, Lehana Thabane, Mark Loeb., Natural History and Prognosis of Streptococcal Toxic Shock Syndrome: Systematic Review and Meta-

Analysis. Available from:


https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020166961, 2020.

- 17. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 2009. 339: p. b2535.
- Stroup, D.F., et al., Meta-analysis of observational studies in epidemiology: a proposal 18. for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama, 2000. **283**(15): p. 2008-12.
- Practice, B.B., Study design search filters. 19. https://bestpractice.bmj.com/info/toolkit/learn-ebm/study-design-search-filters/.
- Sterne, J.A.C., et al., Recommendations for examining and interpreting funnel plot 20. asymmetry in meta-analyses of randomised controlled trials. BMJ, 2011. 343: p. d4002.
- 21. Morrison, A., et al., The effect of English-language restriction on systematic reviewbased meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care, 2012. 28(2): p. 138-44.
- 22. Moher, D., et al., What contributions do languages other than English make on the results of meta-analyses? J Clin Epidemiol, 2000. 53(9): p. 964-72.
- 23. Canada, G.o., National case definition: Invasive group A streptococcal disease. 2008.
- 24. Ouzzani, M., et al., Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 2016. **5**(1): p. 210.
- 25. Hayden, J.A., et al., Assessing bias in studies of prognostic factors. Ann Intern Med, 2013. **158**(4): p. 280-6.
- Guyatt, G., et al., GRADE quidelines: 1. Introduction-GRADE evidence profiles and 26. summary of findings tables. (1878-5921 (Electronic)).
- 27. Huguet, A., et al., Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Systematic Reviews, 2013. 2(1): p. 71.
- 28. Viechtbauer, W., Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software; Vol 1, Issue 3 (2010), 2010.
- 29. Higgins JP, G.S., Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. handbook.cochrane.org, 2011.
- 30. Barnham, M.R., et al., Streptococcal toxic shock syndrome: a description of 14 cases from North Yorkshire, UK. Clin Microbiol Infect, 2002. 8(3): p. 174-81.
- 31. Stegmayr, B., et al., Septic shock induced by group A streptococcal infection: clinical and therapeutic aspects. Scand J Infect Dis, 1992. 24(5): p. 589-97.
- 32. Abuhammour, W., R.A. Hasan, and E. Unuvar, Group A beta-hemolytic streptococcal bacteremia. Indian J Pediatr, 2004. **71**(10): p. 915-9.
- 33. Al-ajmi, J.A., et al., Group A Streptococcus Toxic Shock Syndrome: An outbreak report and review of the literature. J Infect Public Health, 2012. 5(6): p. 388-93.
- 34. Bernaldo de Quirós, J.C., et al., Group A streptococcal bacteremia. A 10-year prospective study. Medicine (Baltimore), 1997. 76(4): p. 238-48.
- Brogan, T.V., et al., Group A streptococcal necrotizing fasciitis complicating primary 35. varicella: a series of fourteen patients. Pediatr Infect Dis J, 1995. 14(7): p. 588-94.
- 36. Butragueño Laiseca, L., et al., Toxic shock syndrome in a paediatric intensive care unit over the last 15 years. Anales de Pediatría (English Edition), 2017. 87(2): p. 111-113.

- 37. Carapetis, J., et al., Increasing severity of invasive group A streptococcal disease in Australia: clinical and molecular epidemiological features and identification of a new virulent M-nontypeable clone. Clin Infect Dis, 1995. **21**(5): p. 1220-7.
- 38. Cimolai, N., et al., *Invasive Streptococcus pyogenes infections in children*. Can J Public Health, 1992. **83**(3): p. 230-3.
- 39. Cook, A., et al., *Manifestations of Toxic Shock Syndrome in Children, Columbus, Ohio, USA, 2010-2017(1).* Emerging infectious diseases, 2020. **26**(6): p. 1077-1083.
- 40. Cowan, M.R., et al., Serious group A beta-hemolytic streptococcal infections complicating varicella. Ann Emerg Med, 1994. **23**(4): p. 818-22.
- 41. Crum, N.F., et al., *A case series of group A Streptococcus necrotizing fasciitis in military trainees.* Mil Med, 2004. **169**(5): p. 373-5.
- 42. Dahl, P.R., et al., Fulminant group A streptococcal necrotizing fasciitis: clinical and pathologic findings in 7 patients. J Am Acad Dermatol, 2002. **47**(4): p. 489-92.
- 43. Donaldson, P.M., et al., *Rapidly fatal necrotising fasciitis caused by Streptococcus pyogenes*. Journal of clinical pathology, 1993. **46**(7): p. 617-620.
- 44. Erdem, G., et al., Characterization of a community cluster of group a streptococcal invasive disease in Maui, Hawaii. The Pediatric infectious disease journal, 2004. **23**(7): p. 677-679.
- 45. Eriksson, B.K., et al., Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J Infect Dis, 1999. **180**(2): p. 410-8.
- 46. Forni, A.L., et al., *Clinical and microbiological characteristics of severe group A streptococcus infections and streptococcal toxic shock syndrome*. Clin Infect Dis, 1995. **21**(2): p. 333-40.
- 47. Fronhoffs, S., et al., *The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients.* Intensive Care Med, 2000. **26**(10): p. 1566-70.
- 48. Hasegawa, T., et al., Factors determining prognosis in streptococcal toxic shock-like syndrome: results of a nationwide investigation in Japan. Microbes Infect, 2004. **6**(12): p. 1073-7.
- 49. Hayata, E., et al., *Nationwide study of mortality and survival in pregnancy-related streptococcal toxic shock syndrome*. The journal of obstetrics and gynaecology research, 2021. **47**(3): p. 928-934.
- 50. Huang, Y.C., et al., A family cluster of streptococcal toxic shock syndrome in children: clinical implication and epidemiological investigation. Pediatrics, 2001. **107**(5): p. 1181-3.
- 51. Kansal, R.G., et al., Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect Immun, 2000. **68**(11): p. 6362-9.
- 52. Linder, K.A., et al., *Effect of underlying immune compromise on the manifestations and outcomes of group A streptococcal bacteremia*. J Infect, 2017. **74**(5): p. 450-455.
- 53. Luca-Harari, B., et al., *Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe.* J Clin Microbiol, 2009. **47**(4): p. 1155-65.

- 54. Nelson, G.E., et al., Epidemiology of Invasive Group A Streptococcal Infections in the United States, 2005-2012. Clin Infect Dis, 2016. 63(4): p. 478-86.
- 55. Safar, A., et al., Invasive Group A Streptococcal Infection and Vaccine Implications, Auckland, New Zealand. Emerging Infectious Diseases, 2011. 17(6): p. 983-989.
- Schwartz, B., et al., Clusters of invasive group A streptococcal infections in family, 56. hospital, and nursing home settings. Clin Infect Dis, 1992. 15(2): p. 277-84.
- 57. Sriskandan, S. and J. Cohen, Kallikrein-kinin system activation in streptococcal toxic shock syndrome. Clin Infect Dis, 2000. 30(6): p. 961-2.
- 58. Stockmann, C., et al., Evolving epidemiologic characteristics of invasive group a streptococcal disease in Utah, 2002-2010. Clin Infect Dis, 2012. 55(4): p. 479-87.
- Tagini, F., et al., Importance of whole genome sequencing for the assessment of 59. outbreaks in diagnostic laboratories: analysis of a case series of invasive Streptococcus pyogenes infections. Eur J Clin Microbiol Infect Dis, 2017. 36(7): p. 1173-1180.
- 60. Zachariadou, L., et al., Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections. Epidemiol Infect, 2014. 142(3): p. 512-9.
- Stevens, D.L., et al., Severe group A streptococcal infections associated with a toxic 61. shock-like syndrome and scarlet fever toxin A. N Engl J Med, 1989. 321(1): p. 1-7.
- 62. Page, A.V., et al., Systemic dysregulation of angiopoietin-1/2 in streptococcal toxic shock syndrome. Clin Infect Dis, 2011. **52**(8): p. e157-61.
- IntHout, J., et al., Small studies are more heterogeneous than large ones: a meta-meta-63. analysis. Journal of Clinical Epidemiology, 2015. 68(8): p. 860-869.
- 64. Parks, T., et al., Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2018. **67**(9): p. 1434-1436.
- Legras, A., et al., A multicentre case-control study of nonsteroidal anti-inflammatory 65. drugs as a risk factor for severe sepsis and septic shock. Critical Care, 2009. 13(2): p. R43.
- 66. Bryant, A.E., et al., The roles of injury and nonsteroidal anti-inflammatory drugs in the development and outcomes of severe group A streptococcal soft tissue infections. Current Opinion in Infectious Diseases, 2015. 28(3).

Figure 1. PRISMA flow diagram.

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Supplementary Material

Table of contents Search strategy	Page
GRADE assessment guidance	4
Description of studies excluded at full text stage	6
	18
Forest plots for pairwise meta-analyses	25
Description of studies ineligible for meta-analysis by outcome	40
Additional study characteristics Forest plots for pairwise meta-analyses Description of studies ineligible for meta-analysis by outcome	40

Search strategies

1) Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:

- toxic shock syndrome.mp. or exp Shock, Septic/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp Fasciitis, Necrotizing/ or septic shock.mp.
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/
- exp Cohort Studies/
- cohort\$.tw.
- controlled clinical trial.pt.
- epidemiologic methods/
- limit 6 to yr=1966-1989
- exp case-control studies/
- (case\$ and control\$).tw.
- (case\$ and series).tw.
- or/3-5,7-10
- randomized controlled trial.pt.
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- (retraction of publication or retracted publication).pt.
- or/12-14
- (animals not humans).sh.
- ((comment or editorial or meta-analysis or practice-guideline or review or letter) not randomized controlled trial).pt.
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not randomized controlled trial.pt.
- 15 not (16 or 17 or 18)
- animals/ not humans/
- (1 or 2) and (11 or 19)
- 21 not 20
- 2) Database: Embase <1974 to 2020 February 03>

Search Strategy:

- toxic shock syndrome.mp. or exp septic shock/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp necrotizing fasciitis/ or septic shock.mp. or exp toxic shock syndrome/
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/ or exp Streptococcus group A/
- exp cohort analysis/
- exp longitudinal study/
- exp prospective study/

- exp follow up/
- cohort\$.tw.
- exp case control study/ or (case\$ and control\$).tw.
- exp case study/ or (case\$ and series).tw.
- or/3-9
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- RETRACTED ARTICLE/
- or/11-12
- (animal\$ not human\$).sh,hw.
- (book or conference paper or editorial or letter or review).pt. not exp randomized controlled trial/
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not exp randomized controlled trial/
- 13 not (14 or 15 or 16)
- exp animal/

- exp animal/
 exp human/
 18 not 19
 (1 or 2) and (10 or 17)
 21 not 20

GRADE assessment guidance

Based on GRADE guidance for prognostic studies, we start with high certainty evidence for each meta-analysis.

Risk of bias

For each meta-analysis, we downgraded the certainty of the evidence once for risk of bias when studies with moderate or high risk of bias contributed >50% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >50% weight to the pooled effect estimate (i.e. serious risk of bias). We downgraded the certainty of the evidence twice for risk of bias when studies with moderate or high risk of bias contributed >80% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >80% weight to the pooled effect estimate (i.e. very serious risk of bias).

Inconsistency

We used visual inspection of the forest plots and the I² statistic to assess inconsistency. For visual inspection of the forest plots, we considered the variability in point estimates and confidence interval overlap in relation to the null effect. Further, we downgraded the certainty of the evidence once when there was substantial (I² 50-90%) heterogeneity and twice when there was considerable (I² 75-100%) heterogeneity.

Imprecision

We downgraded the certainty of the evidence once for imprecision if:

- 1) The effect on the patient, or clinical action, would differ depending on whether the upper or the lower boundary of the confidence interval represented the truth, **OR**
- 2) The 95% CI of the pooled absolute estimate crossed the null effect by less than 50 people per 1000 on one or both sides, **OR**
- 3) In cases where we had large effects that did not cross the null, we assessed the optimal information size. If the ratio of the upper to the lower limit of the confidence interval of the relative estimate was >3, the optimal information size would never be met; thus, we rated down once for imprecision, **OR**
- 4) There were fewer than 10 outcome events for each prognostic variable (for dichotomous outcomes, **OR**
- 5) There were fewer than 100 cases reaching endpoint (for continuous outcomes).
- We downgraded the certainty of the evidence twice for imprecision if:
- 1) The 95% CI of the pooled absolute estimate crossed the null effect by more than 50 people per 1000 on both sides.

Indirectness

We rated down once if the study sample, the prognostic factor, and/or the outcome in the primary studies did not accurately reflect the review question.

Publication bias

We rated down once if:

1) Small studies reported higher rates compared to large studies, suggesting the selective publication of "positive" studies, **OR**

2) The value of the risk/protective factor in predicting the outcome has NOT been repetitively investigated (e.g. only exploratory studies with no external validation, replication or confirmation exist).

References

- 1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE Guidelines 6. Rating the Quality of Evidence—Imprecision. J Clin Epidemiol 2011; 64(12): 1283–93. https://doi.org/10.1016/j.jclinepi.2011.01.012
- 2. Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2:71. Published 2013 Sep 5. doi:10.1186/2046-4053-2-71

Table of excluded full texts (n=242)

Author, Year	Title	Reason for Exclusion
Hamilton, 2013	Pregnancy-related group a streptococcal infections: Temporal relationships between bacterial acquisition, infection onset, clinical findings, and outcome	Wrong study design
Ichiyama, 1997	Transmission of Streptococcus pyogenes causing toxic shock- like syndrome among family members and confirmation by DNA macrorestriction analysis	Wrong study design
Idubor, 2019	Invasive group a streptococcus infections among residents of multiple nursing Homes-Denver, Colorado, 2017-2018 Increased prevalence of group A streptococcus isolates in	Wrong study design
Ikebe, 2015	streptococcal toxic shock syndrome cases in Japan from 2010 to 2012	Wrong study design
Klinker, 1997	Toxic shock syndrome in AIDS	Wrong study design
Langmuir, 1982	Toxic-shock syndromean epidemiologist's view	Wrong study design
McIvor, 1982	Treatment of recurrent toxic shock syndrome with oral contraceptive agents	Wrong study design
Pathi, 2013	Prompt recognition and multidisciplinary approach in Group A streptococcal sepsis	Wrong study design
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection	Wrong study design
Stallones, 1982	A review of the epidemiologic studies of toxic shock syndrome	Wrong study design
Stevens, 2000	Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome	Wrong study design
Turner, 2015	Emergence of a New Highly Successful Acapsular Group A Streptococcus Clade of Genotype emm89 in the United Kingdom	Wrong study design
Udagawa, 1999	Serious group A streptococcal infection around delivery	Wrong study design
Valiquette, 2006	A survey of physician's attitudes regarding management of severe group A streptococcal infections	Wrong study design
Valiquette, 2009	Assessing the impact of intravenous immunoglobulin in the management of streptococcal toxic shock syndrome: a noble but difficult quest	Wrong study design
Wozniak, 2012	M-protein gene-type distribution and hyaluronic acid capsule in group A Streptococcus clinical isolates in Chile: Association of emm gene markers with csrR alleles	Wrong study design
Anonymous, 1984	Diagnostic bias and toxic shock syndrome	Wrong study design
Blonde, 2017	A prospective multicentric study of severe cutaneous infections in pediatric intensive care: The SCIPIC cohort	Wrong study design
Busowski, 2010	Puerperal group A streptococci (GAS) infection: Reemergence of a dreaded disease - A case series	Wrong study design
Cimolai, 2002	Nonhemolytic Streptococcus pyogenes causing invasive infection	Wrong study design
Clark, 2010	Puerperal group a streptococcal sepsis and proinflammatory immune response	Wrong study design

Dahdi, 2018	Necrotizing soft tissue infection: Microbiological distribution from district region	Wrong study design
Das, 2012	Necrotizing fasciitis in New Zealand - Risk factors, microbiological findings and outcomes in a large case series	Wrong study design
De Zoysa, 2013	Invasive group A streptococcal disease in the UK, 2008-2012 and molecular characterisation of isolates during enhanced surveillance	Wrong study design
Donawa, 1984	Toxic shock syndrome: chronology of state and federal epidemiologic studies and regulatory decision-making Peri-ocular necrotising fasciitis: A multicentre retrospective	Wrong study design
Figueira, 2013	australian series	Wrong study design
Gaensbauer, 2016	Importance of toxic shock syndrome in pediatric septic shock clinical decision-making	Wrong study design
Goldberg, 2015	Group A beta streptococcal infections in children after oral or dental trauma: A case series of 5 patients	Wrong study design
McViety, 2014	Don't forget IGAS: Lessons learnt from review of 2 peak seasons in the north west and North Wales, UK	Wrong study design
Zangara, 2019	Epidemiology, outcomes from treatment, and the spectrum of soft tissue infections over time in hospitalized patients: A populationbased description of inpatients in the state of california	Wrong study design
Arias-Constanti, 2018	Invasive disease by Streptococcus pyogenes: patients hospitalized for 6 years	Wrong population
	Factors that affect the clinical course of group A beta- haemolytic streptococcal infections of the hand and upper	
Hankins, 2008 Henrichsen,	extremity: a retrospective study Invasive infections caused by Streptococcus pyogenes in	Wrong population
1997	Denmark 1990- 1994	Wrong population
Haga 1002	The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like	Wrong nonulation
Hoge, 1993	syndrome. A retrospective population-based study Life- and limb-threatening infections following the use of an	Wrong population
Jauregui, 2015	external fixator	Wrong population
W 1: 2015	Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A	4
Kadri, 2017	Propensity Score-Matched Analysis From 130 US Hospitals Group A streptococcal bacteremia in a mid-south children's	Wrong population
Leggiadro, 1993	hospital Patient's characteristics and outcomes in necrotising soft-	Wrong population
	tissue infections: results from a Scandinavian, multicentre,	
Madsen, 2019	prospective cohort study	Wrong population
Mitchell, 2011	A strep in the wrong direction-invasive group a streptococcal disease	Wrong population
Moses, 1995	Group A streptococcus bacteremia at the Hadassah Medical Center in Jerusalem	Wrong population
	Use of single-dose azithromycin to control a community outbreak of EMM26.3 group a streptococcus invasive disease-	
Mosites, 2017	Alaska, 2017	Wrong population
Magitag 2010	Risk for invasive streptococcal infections among adults experiencing homelessness, anchorage, Alaska, USA, 2002-	Whom a manufaction
Mosites, 2019	2015	Wrong population

Mulla, 2007	Clinical and epidemiologic features of invasive group A streptococcal infections in children	Wrong population		
Mulla, 2003	Invasive group A streptococcal infections in Florida	Wrong population		
Navarro, 1993	A comparison of Streptococcus pyogenes (group A streptococcal) bacteremia at an urban and a suburban hospital. The importance of intravenous drug use	Wrong population		
Norton, 2004	Invasive group A streptococcal disease in North Queensland (1996 - 2001) Blunt Trauma as a Risk Factor for Group A Streptococcal	Wrong population		
Nuwayhid, 2007	Necrotizing Fasciitis	Wrong population		
Oliver, 2019	Invasive group A Streptococcus disease in Australian children: 2016 to 2018 - a descriptive cohort study Recent trends in invasive group A Streptococcus disease in	Wrong population		
Oliver, 2019	Victoria Victoria	Wrong population		
Peterson, 1996	Risk factors for invasive group A streptococcal infections in children with varicella: A case-control study	Wrong population		
Rainbow, 2008	Invasive group A streptococcal disease in nursing homes, Minnesota, 1995-2006	Wrong population		
Rathore, 1992	Suppurative group A beta-hemolytic streptococcal infections in children	Wrong population		
Reingold, 1984	Epidemiology of toxic-shock syndrome, United States, 1960- 1984	Wrong population		
Reingold, 1989	Risk factors for menstrual toxic shock syndrome: results of a multistate case-control study	Wrong population		
Remy, 2019	Septic shock and toxic shock syndrome-two infectious shocks with different immune response Epidemiology of invasive group a streptococcal disease in	Wrong population		
Rudolph, 2016	Alaska, 2001 to 2013	Wrong population		
Saldana, 2010	Periorbital necrotizing fasciitis: Outcomes using a CT-guided surgical debridement approach	Wrong population		
Sarangi, 1995	A nursing home outbreak of group A streptococcal infection: case control study of environmental contamination	Wrong population		
Scaber, 2011	Group a streptococcal infections during the seasonal influenza outbreak 2010/11 in South East England	Wrong population		
Schouer 2019	Rising high rate of invasive group a streptococcus infections among persons experiencing homelessness in San Francisco,	Wrong nonulation		
Scheuer, 2018	2010-2017 Risk factors for development of toxic shock syndrome.	Wrong population		
Schlech, 1982	Association with a tampon brand	Wrong population		
Schwartz, 1989	Nonmenstrual toxic shock syndrome associated with barrier contraceptives: report of a case-control study	Wrong population		
Shands, 1982	Toxic shock syndrome: Case-control studies at the centers for disease control	Wrong population		
Sharma, 2019	Real-time whole genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic hospital	Wrong population		
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: Epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003	Wrong population		

Simonart, 2004	The importance of serum creatine phosphokinase level in the early diagnosis and microbiological evaluation of necrotizing fasciitis	Wrong population			
Smith, 2003	Mass antibiotic treatment for group A streptococcus outbreaks in two long-term care facilities Proinflammatory immune response and puerperal group a	Wrong population			
Spargen, 2011	streptococcal sepsis Prospective surveillance of invasive group A streptococcal	Wrong population			
Steer, 2009	disease, fiji, 2005-2007 High burden of invasive beta-haemolytic streptococcal	Wrong population			
Steer, 2008	infections in Fiji	Wrong population			
Tanna, 2006	Molecular characterization of clinical isolates of M non- typable group A streptococci from invasive disease cases	Wrong population			
Tapiainen, 2016	Invasive Group A Streptococcal Infections in Children: A Nationwide Survey in Finland Molecular profiling of tissue biopsies reveals unique	Wrong population			
Thanert, 2019	signatures associated with streptococcal necrotizing soft tissue infections	Wrong population			
Theis, 2002	Severe necrotising soft tissue infections in orthopaedic surgery	Wrong population			
Thigpen, 2007	Nursing home outbreak of invasive group A streptococcal infections caused by 2 distinct strains Early identification of patients at high risk of group A	Wrong population			
Urbina, 2019	streptococcus-associated necrotizing skin and soft tissue infections: a retrospective cohort study	Wrong population			
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Wrong population			
Vlaminckx, 2005	Long-term surveillance of invasive group A streptococcal disease in The Netherlands, 1994-2003	Wrong population			
Vugia, 1996 Waldhausen,	Invasive group A streptococcal infections in children with varicella in Southern California Surgical implications of necrotizing fasciitis in children with	Wrong population			
1996	chickenpox Selective depletion of V beta-bearing T cells in patients with	Wrong population			
Watanabe- Ohnishi, 1995	severe invasive group A streptococcal infections and streptococcal toxic shock syndrome. Ontario Streptococcal Study Project	Wrong population			
Wheeler, 1991	Outbreak of group A streptococcus septicemia in children: Clinical, epidemiologic, and microbiological correlates	Wrong population			
Wilson, 1995	Group A streptococcal necrotizing fasciitis following varicella in children: Case reports and review	Wrong population			
Wong, 2019	A Cluster of Pediatric Invasive Group A Streptococcus Disease in Melbourne, Australia, Coinciding with a High- Burden Influenza Season	Wrong population			
Yagupsky, 1987	Group A beta-hemolytic streptococcal bacteremia in children A case-control study of necrotizing fasciitis during primary	Wrong population			
Zerr, 1999	varicella	Wrong population			
Zimbelman, 1999	Improved outcome of clindamycin compared with beta-lactam antibiotic treatment for invasive Streptococcus pyogenes infection	Wrong population			

Abraham, 2016	Distribution of emm types of beta hemolytic streptococci associated with necrotizing fascitis: Clinical profile and outcome	Wrong population			
Acosta, 2014	Severe Maternal Sepsis in the UK, 2011-2012: A National Case-Control Study	Wrong population			
Adams, 2010	Investigation into an outbreak of invasive Group A Streptococcal (iGAS) infection at a general hospital in 2010	Wrong population			
Adem, 2009	Identification of invasive streptococcal disease in a pediatric and infant death Cohort-Iowa, 2007-2008	Wrong population			
Afifi, 2008	Acute necrotizing fasciitis in Egyptian patients: A case series	Wrong population			
Al-Khadidi, 2017	Group A Streptococcal bacteraemia. Experience at King Fahad Medical City in Riyadh, Saudi Arabia	Wrong population			
Alva, 2013	Necrotising fasciitis: A series of seven cases	Wrong population			
Anonymous, 2007	Summaries for patients. Invasive streptococcal infections in hospitals in Ontario, Canada, 1992 to 2000	Wrong population			
Aronoff, 2008	Postpartum invasive group A streptococcal disease in the modern era	Wrong population			
Babbar, 2018	Pivotal Role of Preexisting Pathogen-Specific Antibodies in the Development of Necrotizing Soft-Tissue Infections	Wrong population			
Babbar, 2016	A serological evaluation of the host immune response during Necrotizing Soft Tissue Infections caused by Streptococcus pyogenes	Wrong population			
Babiker, 2019	Impact of adjunctive clindamycin in invasive beta-hemolytic streptococcal infections: A propensity score-matched analysis of 1956 beta-lactam treated patients from 118 us hospitals	Wrong population			
· ·	•				
Bajpai, 1977 Barnham, 2001	Chemotherapy of acute bone and joint infections Bacteraemic Streptococcus pyogenes infection in the peripartum period: now a rare disease and prior carriage by the patient may be important	Wrong population Wrong population			
Basma, 1999	Risk factors in the pathogenesis of invasive group A streptococcal infections: Role of protective humoral immunity	Wrong population			
Bauer, 2015	Maternal deaths due to sepsis in the state of Michigan, 1999-2006	Wrong population			
Beaudoin, 2014	Invasive group A Streptococcus infections associated with liposuction surgery at outpatient facilities not subject to state or federal regulation Postoperative complications followed by septoplasty	Wrong population			
Beigh, 2012	comparison between conventional nasal packing and glove finger pack	Wrong population			
Berkley, 1987	The relationship of tampon characteristics to menstrual toxic shock syndrome	Wrong population			
Bingol-Kologlu, 2007	Necrotizing fasciitis in children: diagnostic and therapeutic aspects	Wrong population			
	Necrotizing soft tissue infections caused by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis of				
Bruun, 2013	groups C and G in western Norway	Wrong population			
Bruun, 2020	Risk factors and Predictors of Mortality in Streptococcal Necrotizing Soft-Tissue Infections: A Multicenter Prospective Study	Wrong population			
214411, 2020	~~~,				

Busowski, 2013	Puerperal group a streptococcal infections: A case series and discussion	Wrong population
2006	Clinical deterioration among patients with fever and	
Byer, 2006 Centers for	erythroderma	Wrong population
Disease, 1982	Toxic-shock syndrome, United States, 1970-1982	Wrong population
Centers for	Invasive group A streptococcus in a skilled nursing facility	Wrong population
Disease, 2011	Pennsylvania, 2009-2010	Wrong population
Chan, 2009	Toxic shock syndrome and rhinosinusitis in children	Wrong population
	The microbiological profile and presence of bloodstream	
Chen, 2011	infection influence mortality rates in necrotizing fasciitis	Wrong population
	Clinical Characteristics and Risk Factor Analysis for Lower-	
Chen, 2015	Extremity Amputations in Diabetic Patients With Foot Ulcer Complicated by Necrotizing Fasciitis	Wrong population
Chen, 2015	Macro- and Microvascular Parameters After Toxic Shock	wrong population
Chen, 2018	Syndrome Syndrome	Wrong population
,	Prospective surveillance of pediatric invasive group A	
Ching, 2019	Streptococcus infection	Wrong population
Cl. 1	Changing epidemiology of invasive Streptococcus pyogenes	
Chiobotaru, 1997	infections in southern Israel: differences between two ethnic population groups	Wrong population
	· · · · · · · · · · · · · · · · · · ·	
Christie, 1988	Bacteremia with group A streptococci in childhood	Wrong population
	Necrotising fasciitis of the extremities: implementation of	
Corona, 2016	new management technologies	Wrong population
	Surveillance for hospital outbreaks of invasive group a	
Daneman, 2007	streptococcal infections in Ontario, Canada, 1992 to 2000	Wrong population
	Hospital-acquired invasive group A streptococcal infections	
Daneman, 2005	in Ontario, Canada, 1992-2000	Wrong population
	Invasive group A streptococcal infections in Ontario, Canada.	
Davies, 1996	Ontario Group A Streptococcal Study Group	Wrong population
- · · · · · · · · · · · · · · · · · · ·	Toxic shock syndrome: a critique of the 1980 Wisconsin case-	
Davis, 1982 De Almeida	control study	Wrong population
Torres, 2013	Group a streptococcus meningitis in children	Wrong population
101103, 2013	Incidence and severity of invasive Streptococcus pneumoniae,	Wiong population
	group A Streptococcus, and group B Streptococcus infections	
Deutscher, 2011	among pregnant and postpartum women	Wrong population
D 2015	Necrotising soft tissue infections: The effect of hyperbaric	W/
Devaney, 2015	oxygen on mortality Investigation of a prolonged Group A Streptococcal outbreak	Wrong population
	among residents of a skilled nursing facility, Georgia, 2009-	
Dooling, 2013	2012	Wrong population
	The epidemiology of necrotizing fasciitis including factors	
Dworkin, 2009	associated with death and amputation	Wrong population
Í	Epidemiology and Outcome of Necrotizing Fasciitis in	<u> </u>
	Children: An Active Surveillance Study of the Canadian	
Eneli, 2007	Paediatric Surveillance Program	Wrong population
Factor, 2005	Risk factors for pediatric invasive group A streptococcal disease	Wrong population
Factor, 2003	Invasive group a streptococcal disease: Risk factors for adults	Wrong population
1 40101, 2003	invasive group a surproceedar disease. Risk factors for addits	Triong population

Fauno Thrane, 2017	Hyperbaric oxygen may only be optional in head and neck necrotizing fasciitis: a retrospective analysis of 43 cases and review of the literature	Wrong population				
Fichtenbaum, 1993	Ehrlichiosis presenting as a life-threatening illness with features of the toxic shock syndrome Incidence of periorbital necrotising fasciitis in the UK	Wrong population				
Flavahan, 2014	population: A BOSU study	Wrong population				
Flores, 2019	Capsule-negative EMM types are an increasing cause of pediatric group a streptococcal infections at a large pediatric hospital in Texas Clinical and Microbiological Characteristics of Invasive	Wrong population				
Frere, 2016	Group A Streptococcal Infections Before and After Implementation of a Universal Varicella Vaccine Program	Wrong population				
Givner, 1998	Invasive disease due to group A beta-hemolytic streptococci: Continued occurrence in children in North Carolina	Wrong population				
Givner, 1991	Apparent increase in the incidence of invasive group A beta- hemolytic streptococcal disease in children	Wrong population				
Gooskens, 2005	Streptococcal toxic shock syndrome by an iMLS resistant M type 77 Streptococcus pyogenes in the Netherlands	Wrong population				
Gonzalez, 1996	Necrotizing fasciitis of the upper extremity Invasive group A streptococcal infection and nonsteroidal	Wrong population				
Lesko, 2001	antiinflammatory drug use among children with primary varicella	Wrong population				
Lin, 2013	Group a streptococcal necrotizing fasciitis in the emergency department	Wrong population				
Lin, 2015	Early Differentiation of Kawasaki Disease Shock Syndrome and Toxic Shock Syndrome in a Pediatric Intensive Care Unit	Wrong population				
Parks, 2019	Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus	Wrong population				
Stromberg, 1991	Outbreak of group A streptococcal bacteremia in Sweden: an epidemiologic and clinical study	Wrong population				
Haggar, 2012	Clinical and microbiologic characteristics of invasive Streptococcus pyogenes infections in north and south India	Relationship between prognostic factor and outcome not reported or quantified				
Laupland, 2000	Invasive group A streptococcal disease in children and association with varicella-zoster virus infection. Ontario Group A Streptococcal Study Group	Relationship between prognostic factor and outcome not reported or quantified				
Linnemann,	Increasing incidence of toxic shock syndrome in the 1970s	Relationship between prognostic factor and outcome not reported or quantified				
Miday, 1988	Toxic shock syndrome: incidence and geographic distribution from a hospital medical records reporting system	Relationship between prognostic factor and outcome not reported or quantified				
Mosites, 2018	Outbreak of Invasive Infections from Subtype emm26.3 Group A Streptococcus among Homeless Adults-Anchorage, Alaska, 2016-2017	Relationship between prognostic factor and outcome not reported or quantified				

O'Grady, 2007	The epidemiology of invasive group A streptococcal disease in Victoria, Australia	Relationship between prognostic factor and outcome not reported or quantified
Petitti, 1989	Update through 1985 on the incidence of toxic shock syndrome among members of a prepaid health plan	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Pilon, 2019	Invasive group A streptococcal infection outbreaks of typeemm118 in a long-term care facility, and of type emm74 in the homeless population, Montreal, Quebec	prognostic factor and outcome not reported or quantified
Rantala, 2012	Streptococcus pyogenes bacteraemia, emm types and superantigen profiles	Relationship between prognostic factor and outcome not reported or quantified
Tanner, 1981	Toxic shock syndrome	Relationship between prognostic factor and outcome not reported or quantified
Teatero, 2018	Canada-Wide Epidemic of emm74 Group A Streptococcus Invasive Disease	Relationship between prognostic factor and outcome not reported or quantified
Todd, 1985	Toxic shock syndrome. II. Estimated occurrence in Colorado as influenced by case ascertainment methods	Relationship between prognostic factor and outcome not reported or quantified
Tsai, 2014	Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia	Relationship between prognostic factor and outcome not reported or quantified
Vallalta Morales, 2006	Group A streptococcal bacteremia: outcome and prognostic factors	Relationship between prognostic factor and outcome not reported or quantified
Vlaminckx, 2004	Epidemiological features of invasive and noninvasive group A streptococcal disease in the Netherlands, 1992-1996	Relationship between prognostic factor and outcome not reported or quantified
Aydin, 2017	Clinical indications of intravenous immunoglobulin use in pediatric infectious diseases clinic	Relationship between prognostic factor and outcome not reported or quantified
Ben-Abraham, 2002	Invasive group A streptococcal infections in a large tertiary center: epidemiology, characteristics and outcome	Relationship between prognostic factor and outcome not reported or quantified
Bochicchio, 2001	Group A Streptococcus (GAS) soft-tissue infections: a lethal organism on the rise	Relationship between prognostic factor and outcome not reported or quantified
Cancellara, 2016	Multicenter study on invasive Streptococcus pyogenes infections in children in Argentina	Relationship between prognostic factor and

		outcome not reported or quantified
		Relationship between prognostic factor and outcome not reported or
Chen, 2016	Toxic shock syndrome in Australian children	quantified
Doctor, 1995	Group A beta-hemolytic streptococcal bacteremia: historical overview, changing incidence, and recent association with varicella	Relationship between prognostic factor and outcome not reported or quantified
Eriksson, 2003	Group A streptococcal infections in Sweden: a comparative study of invasive and noninvasive infections and analysis of dominant T28 emm28 isolates	Relationship between prognostic factor and outcome not reported or quantified
Norrby-Teglund, 2003	The treatment of severe group a streptococcal infections	Relationship between prognostic factor and outcome not reported or quantified
Rodriguez- Nunez, 2011	Clinical characteristics of children with group A streptococcal toxic shock syndrome admitted to pediatric intensive care units	Relationship between prognostic factor and outcome not reported or quantified
Snall, 2016	Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release	Relationship between prognostic factor and outcome not reported or quantified
Eriksson, 1998	Epidemiological and clinical aspects of invasive group A streptococcal infections and the streptococcal toxic shock syndrome	Relationship between prognostic factor and outcome not reported or quantified
Sahli, 2014	Necrotizing fasciitisin in diabetic patients: A report of 14 cases	Not in English
Arnholm, 2004	High-dose immunoglobulin - Life-saving in invasive group a streptococcal infection	Not in English
Caetano, 2010	[S. Pyogenes invasive disease in a paediatric hospital: 1996-2009]	Not in English
Costa Orvay, 2007	[Toxic shock syndrome: experience in a pediatric intensive care unit]	Not in English
Dosil Gallardo, 2009	[Streptococcal toxic shock syndrome: an emerging pathology?]	Not in English
Emmi, 1999	Severe infection from invasive beta-hemolytic streptococcus group A. Three cases of toxic shock observed in resuscitation Management of severe invasive group A streptococcal	Not in English
Faye, 2014	infections Clinical aspects of staphylococcal and streptococcal toxinic	Not in English
Floret, 2001	diseases	Not in English
Hua, 2018	[Streptococcal toxic shock syndrome caused by Streptococcus pyogenes: a retrospective study of 15 pediatric cases]	Not in English
Kach, 1993	[Necrotizing soft tissue infections]	Not in English
Kaul, 1999	Intravenous immunoglobulin therapy for streptococcal toxic shock syndromea comparative observational study. The Canadian Streptococcal Study Group	Duplicate
Salinas, 2005	Immunoglobulins in sepsis and septic shock	Not in English

Shands, 1982	Toxic shock syndrome: case-control studies at the Centers for Disease Control	Duplicate
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003 Early identification of patients at high risk of group A	Duplicate
Urbina, 2019	streptococcus-associated necrotizing skin and soft tissue infections: A retrospective cohort study	Duplicate
Vallalta- Morales, 2005	[Streptococcal toxic shock syndrome: ten years' experience at a tertiary hospital]	Not in English
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Duplicate
Vugia, 1996	Invasive group A streptococcal infections in children with varicella in Southern California	Duplicate
Zachariadou, 2014	Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections	Duplicate
Bernard, 1995	[Bacterial dermo-hypodermatitis in adults. Incidence and role of streptococcal etiology]	Not in English
Bleton, 1991	Necrotizing fasciitis of the upper limb. 12 cases	Not in English
Bleton, 1991	Necrotising fasciitis of the upper limb. Report of twelve cases	Duplicate
Fan, 2014	[Clinical characteristics and antimicrobial resistance of invasive group A beta-hemolytic streptococcus infection in children]	Not in English
Fica, 2003	Molecular epidemiology of a streptococcus pyogenes related nosocomial outbreak in a burn unit	Not in English
Fredlund, 1990	[Increased frequency of group A hemolytic streptococci. Old age and immune deficiency among the risk factors]	Not in English
Georgiev, 1993	Puerperal streptococcal sepsis	Not in English
Khan, 2003	Treatment of necrotizing fasciitis with quinolones	Wrong population
Frosi, 1999	Necrotizing fasciitis: A serious and uncommon alcohol related disease Necrotizing Soft Tissue Infections: Case Reports, from the	Wrong study design
Nedrebo, 2020	Clinician's Perspectives.	Wrong study design
Reicher, 2021	450 Obstetrically related group a streptococcal infection and predictors for severity - retrospective 12-year cohort study	Wrong study design
Bajpai, 2020	Anti-microbial-resistance and profile of exotoxins of invasive beta-haemolytic-streptococci infections in trauma patients Can gram-negative-like biomarker values in Streptococcus	Wrong population
Adamkova, 2020	pyogenes sepsis negatively influence right choice of initial antibiotic therapy?	Wrong population
Bandi, 2021	Group A streptococcal infections in children	Wrong population
	Use of corticosteroids in patients with severe CAP admitted to	
Ceccato, 2020	ICU, experience in a real-life setting	Wrong population
Tepper, 2021	Long-term safety and tolerability of atogepant following once daily dosing over 1 year for the preventive treatment of migraine	Wrong population
-FF, 	0	

	Clinical, epidemiological and microbiological features of streptococcus pyogenes invasive infection - 10 year					
Melo, 2021	retrospective review	Wrong population				
	Clinical characteristics and outcomes of children with toxic shock syndrome admitted to a pediatric intensive care unit: A					
Bringel, 2021	case series	Wrong population				
Neff, 2020	Characterisation of clinical manifestations and treatment strategies for invasive beta-haemolytic streptococcal infections in a Swiss tertiary hospital.	Wrong population				
Urbina, 2020	Assessing and applying individualized treatment for group A streptococcal necrotizing soft-tissue infection is possible	Wrong population				
D 2020	Correlation between immunoglobulin dose administered and plasma neutralization of streptococcal superantigens in	Wasananala				
Bergsten, 2020	patients with necrotizing soft tissue infections A prospective survey of Streptococcus pyogenes infections in French Brittany from 2009 to 2017: Comprehensive dynamic	Wrong population				
Boukthir, 2020	of new emergent emm genotypes.	Wrong population				
Escrihuela-	Clinical Features and Outcomes of Streptococcus anginosus Group Infective Endocarditis: A Multicenter Matched Cohort					
Vidal, 2021	Study.	Wrong population				
Dakilsan 2021	Effectiveness of adjunctive clindamycin in beta-lactam antibiotic-treated patients with invasive beta-haemolytic streptococcal infections in US hospitals: a retrospective	Wrong population				
Babiker, 2021	multicentre cohort study.	wrong population				
Cui, 2021	Necrotizing soft tissue infection: clinical characteristics, diagnosis, and management of 32 cases in Beijing.	Wrong population				
Link-Gelles, 2020	Characteristics of Intracranial Group A Streptococcal Infections in US Children, 1997-2014.	Wrong population				
Peetermans, 2020	Use of Intravenous Immunoglobulins in Patients with Suspected Toxin-Mediated Shock Requiring Extracorporeal Membrane Oxygenation.	Wrong population				
Bruun, 2020	Beta-Hemolytic Streptococci and Necrotizing Soft Tissue Infections.	Wrong population				
Lima Satta 2021	Multisystem inflammatory syndrome in children (MIS-C) during SARS-CoV-2 pandemic in Brazil: a multicenter, prospective cohort study.	Wrong population				
Lima-Setta, 2021		Wrong population				
Kohler, 2020	Kininogen supports inflammation and bacterial spreading during Streptococccus Pyogenes Sepsis.	Wrong population				
Bruun, 2021	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study.	Wrong population				
Bjorck, 2020	Morbidity and mortality in critically ill patients with invasive group A streptococcus infection: an observational study.	Wrong population				
Contou, 2021	Menstrual toxic shock syndrome: a French nationwide multicenter retrospective study.	Wrong population				
Billon, 2020	Association of characteristics of tampon use with menstrual toxic shock syndrome in France.	Wrong population				
Canetti, 2021	Invasive Group A Streptococcus Infection in Children in Central Israel in 2012-2019	Relationship between prognostic factor and outcome not reported or quantified				

Vilhonen, 2020	Group A streptococcal bacteremias in Southwest Finland 2007-2018: epidemiology and role of infectious diseases consultation in antibiotic treatment selection.	Relationship between prognostic factor and outcome not reported or quantified
Thielemans, 2020	Clinical Description and Outcomes of Australian Children With Invasive Group A Streptococcal Disease.	Relationship between prognostic factor and outcome not reported or quantified
Madsen, 2020	Treatment of Necrotizing Soft Tissue Infections: IVIG	Wrong study design
Deniskin, 2019	Clinical Manifestations and Bacterial Genomic Analysis of Group A Streptococcus Strains That Cause Pediatric Toxic Shock Syndrome.	Relationship between prognostic factor and outcome not reported or quantified
Mosites, 2018	Outbreak of Invasive Infections From Subtype emm26.3 Group A Streptococcus Among Homeless Adults-Anchorage, Alaska, 2016-2017.	Relationship between prognostic factor and outcome not reported or quantified
Hasin, 2020	Invasive Group A Streptococcus Infection in Children in Southern Israel Before and After the Introduction of Varicella Vaccine.	Wrong population
Ching, 2019	Prospective Surveillance of Pediatric Invasive Group A Streptococcus Infection.	Wrong population
Loewen, 2017	Epidemiologic features of invasive group A Streptococcus infection in a rural hospital: 6-year retrospective report and literature review.	Wrong population
Bergsten, 2020	Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections.	Wrong population
Kobayashi, 2016	A Cluster of Group A Streptococcal Infections in a Skilled Nursing Facility-the Potential Role of Healthcare Worker Presenteeism.	Wrong population
Adebanjo, 2020	Evaluating Household Transmission of Invasive Group A Streptococcus Disease in the United States Using Population-based Surveillance Data, 2013-2016.	Wrong population
Link-Gelles, 2020	Characteristics of Intracranial Group A Streptococcal Infections in US Children, 1997-2014.	Wrong population
Bruun, 2021	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study.	Wrong population
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection.	Wrong study design
Hayata, 2021	Nationwide study of mortality and survival in pregnancy- related streptococcal toxic shock syndrome.	Duplicate

Table of additional study characteristics

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Abuhammour 2004	Cohort	United States	2	9	100	NR	NR	NR	NR	NR	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
											any antibiotic - clinical cure/improvement^
											any antibiotic - ICU admission
											any antibiotic - mortality
Adalat 2014	Cohort	United Kingdom, Ireland	29	4 (median)	62	NR	NR	28	38	62	IVIG - mortality
Al-Ajmi 2012	Case-series	Qatar	2	35	0	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
Barnham 2002	Case-series	England	12	57	64	NR	NR	58	17	83	age - ICU admission^
											age - mortality^
											any antibiotic - ICU admission
											any antibiotic - mortality
											clindamycin - ICU admission^
											clindamycin - mortality
											emm type - ICU admission^
										emm type - mortality^	
											immunocompromised - ICU admission^
											immunocompromised - mortality
											IVIG - ICU admission
											IVIG - mortality
											IVIG - time to mortality^
											NF - ICU admission
											NF - mortality
											NSAIDs - ICU admission
											NSAIDs - mortality
Bernaldo de Quiros 1997	Cohort	Spain	9	NR	NR	NR	NR	NR	NR	NR	immunocompromised - mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Brogan 1995	Case-series	United States	5	6	60	NR	NR	100	60	40	age - clinical cure/improvement^
											age - hospital LOS^
											age - ICU admission^
											age - ICU LOS^
											age - mortality^
											NSAIDs - clinical cure/improvement^
											NSAIDs - hospital LOS^
											NSAIDS - ICU admission
											NSAIDs - ICU LOS^
											NSAIDs - mortality
											sex - clinical cure/improvement
											sex - hospital LOS^
											sex - ICU admission
											sex - ICU LOS^
											sex - mortality
Butragueno Laiseca 2017	Case-series	Spain	13	2	50	NR	NR	15	15	85	acute renal failure - clinical cure/improvement^
											acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - clinical cure/improvement^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											clindamycin - clinical cure/improvement^
											clindamycin - ICU LOS^
											clindamycin - mechanical ventilation^
											clindamycin - mortality
											hemodialysis - clinical cure/imrpovement
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
											IVIG - clinical cure/improvement
											IVIG - ICU LOS
											IVIG - mechanical ventilation
											IVIG - mortality
											NF - clinical cure/improvement
											NF - ICU LOS^
											NF - mechanical ventilation
											NF - mortality
Carapetis 1995	Case-series	Australia	5	NR	NR	NR	NR	NR	NR	NR	age - mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Carapetis 2014	Cohort	Australia	37	60	50	NR	NR	100	0	100	age - mortality^
											IVIG - mortality
											sex - mortality
Cimolai 1992	Case-series	Canada	4	8	50	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - mortality^
											sex - clinical cure/improvement
											sex - mortality
Cook 2020	Cohort	United States	27	9	44	NR	NR	19	56	44	other - other^
Cowan 1994	Case-series	United States	3	2	67	NR	NR	NR	100	0	age - clinical cure/improvement^
											age - ICU admission^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											sex - clinical cure/improvement
											sex - ICU admission
											sex - ICU LOS^
											sex - mechanical ventilation
											sex - mortality
Crum 2004	Case-series	United States	2	24	100	NR	NR	50	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mechanical ventilation [^]
											age - mortality^
											hemodialysis - clinical cure/improvement
											hemodialysis - ICU admission
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
Dahl 2002	Case-series	United States	5	53	NR	NR	NR	100	0	100	age - mortality^
											immunocompromised - mortality
Darenberg 2003	Randomized trial	Sweden, Norway, Finland,	18	52	48	NR	NR	NR	11	89	IVIG - change in SOFA score^
		Netherlands									IVIG - mortality
											IVIG - time to clinical cure/improvement^
											IVIG - time to mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Donaldson 1993	Case-series	England	5	67	20	NR	NR	100	NR	NR	age - mortality^
											any antibiotic - mortality
											sex - mortality
Erdem 2004	Case-series	United States	3	52	67	NR	NR	100	NR	33	age - mortality^
											sex - mortality
Eriksson 1999	Cohort	Sweden	6	46	83	NR	NR	NR	0	100	age - mortality^
											emm type - mortality^
											sex - mortality
Forni 1995	Case-series	United States	5	54	83	NR	17	50	0	100	acure renal failure - ICU admission^
											acute renal failure - mortality
											age - hospital LOS^
											age - ICU admission^
											age - mortality^
											emm type - ICU admission^
											emm type - mortality^
											NF - ICU admission
											NF - mortality
Fronhoffs 2000	Case-series	Germany	7	49	71	14	14	86	86	14	acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - mechanical ventilation^
											age - mortality^
											immunocompromised - mechanical ventilation^
											immunocompromised - mortality
											NF - mechanical ventilation
											NF - mortality
											NSAIDs - mechanical ventilation^
											NSAIDs - mortality
											sex - mechanical ventilation
											sex - mortality
Hasegawa 2004	Case-control	Japan	66*	Range: 0 to 70	59	NR	18	NR	100	0	acute renal failure - mortality
Hayata 2021	Cohort	Japan	28	NR	0	NR	NR	NR	0	100	age - mortality^
											NSAIDs - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Huang 2001	Case-series	Taiwan	3	6	100	NR	NR	NR	33	67	age - mortality^
Kansal 2000	Cohort	Canada	28	NR	NR	NR	NR	NR	NR	NR	NF - other^
Kaul 1999	Case-control	Canada	53	57	55	NR	NR	NR	NR	NR	clindamycin - mortality IVIG - duration of mechanical ventilation^ IVIG - hospital LOS IVIG - mortality NF - mortality
Linder 2017	Cohort	United States	10	NR	NR	NR	NR	NR	0	100	immunocompromised - mortality
Linnér 2014	Cohort	Sweden	67	63	42	48	16	28	NR	NR	age - mortality^ dindamycin - mortality IVIG - hospital LOS IVIG - mortality
Luca-Harari 2009	Cohort	Cyprus, Czech Republic, Denmark, Finand, France, Germany, Greece, Italy, Romania, Sweden, United Kingdom	476	NR	NR	NR	NR	NR	NR	NR	emm type - mortality^
Nelson 2016	Cohort	United States	381	NR	NR	NR	NR	19	NR	NR	age - mortality NF - mortality
O'Loughlin 2007	Cohort	United States	309	NR	NR	NR	NR	20	NR	NR	age - mortality NF - mortality
Page 2011	Cohort	Canada	16	NR	NR	NR	NR	NR	NR	NR	other - other^
Safar 2011	Cohort	New Zealand	30	NR	NR	NR	NR	17	0	100	age - mortality NF - mortality
Schwartz 1992	Case-series	United States	8	40	40	NR	NR	NR	0	100	age - mortality^ emm type - mortality^ sex - mortality
Shah 2009	Cohort	United States	192	8	49	NR	NR	NR	NR	NR	IVIG - cost^ IVIG - hospital LOS IVIG - ICU admission IVIG - ICU LOS IVIG - mechanical ventilation IVIG - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Sriskandan 2000	Cohort	England	7	NR	NR	NR	NR	NR	NR	NR	other - other^
Stegmayr 1992	Case-series	Sweden	11	42	64	NR	NR	NR	27	73	age - clinical cure/improvement^
											age - ICU admission^
											age - mechanical ventilation^
											age - mortality^
											hemodialysis - clinical cure/improvement
											hemodialysis - ICU admission
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
											IVIG - clinical cure/improvement
											IVIG - ICU admission
											IVIG - mechanical ventilation
											IVIG - mortality
											NF - clinical cure/improvement
											NF - ICU admission
											NF - mechanical ventilation
											NF - mortality
											sex - clinical cure/improvement
											sex - ICU admission
											sex - mechanical ventilation
											sex - mortality
Stevens 1989	Case-series	United States	19	41	53	80	5	21	0	100	age - mortality^
											emm type - mortality^
											hemodialysis - mortality
											NF - mortality
											sex - mortality
Stockmann 2012	Cohort	United States	53	30 (median)	NR	58	19	32	NR	NR	age - ICU admission^
				. ,							age - mortality
Tagini 2017	Case-series	Switzerland	5	18	60	NR	NR	NR	20	80	age - mortality^
0		***************************************	-				****				emm type - mortality^
											sex - mortality
Zachariadou 2013	Cohort	Greece	19	NR	NR	NR	NR	NR	0	100	age - mortality
24014114404 2013	Conort	Greece	13	INIX	INIX	INIV	INIX	IVIX	Ü	100	emm type - mortality^

*More than 80% of STSS cases due to group A Streptococcus

^Excluded from meta-analysis

NF=necrotizing fasciitis

NSAIDs=non-steroidal anti-inflammatory drugs

ICU=intensive care unit

IVIG=intravenous immunoglobulin

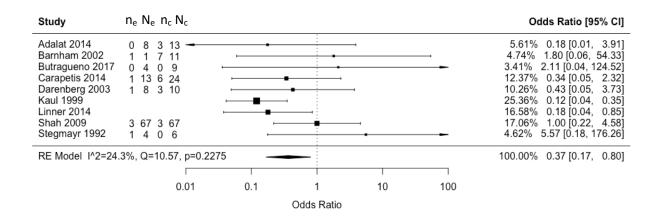
GAS=group A Streptococcus

STSS=streptococcal toxic shock syndrome

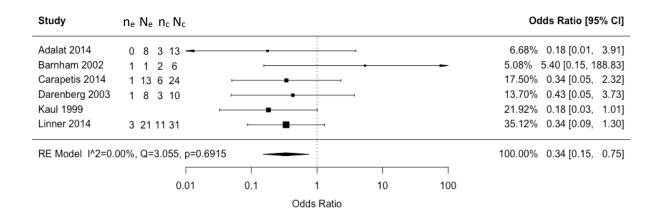
NR=not reported

Forest plots

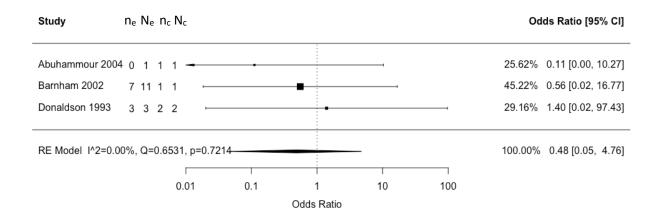
 $\mathbf{n}_{e:}$ number of patients with the outcome exposed to or experiencing the prognostic factor (experimental group) $\mathbf{N}_{e:}$ total number of patients exposed to or experiencing the prognostic factor (experimental group) $\mathbf{n}_{e:}$ number of patients with the outcome not exposed to or experiencing the prognostic factor (control group) $\mathbf{N}_{e:}$ total number of patients not exposed to or experiencing the prognostic factor (control group)


Percentages in forest plots correspond to the percent weight contribution of each study in the meta-analysis.

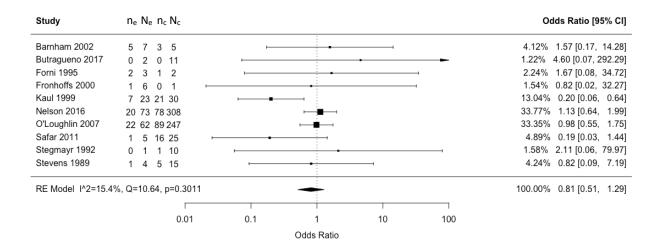
Mortality


1. Sex: male vs female (reference)

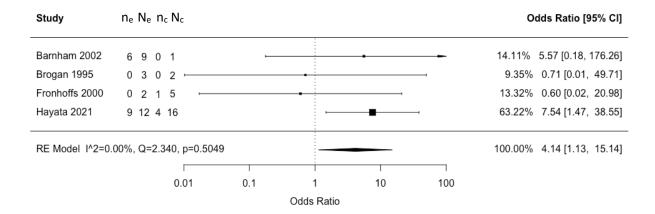
Study	$n_e \; N_e \; n_c \; N_c$				Odds Ratio [95% CI]
Brogan 1995	0 3 0 2 -				5.52% 0.71 [0.01, 49.71]
Carapetis 2014	0 1 1 1 🕶	.	<u> </u>		4.85% 0.11 [0.00, 10.27]
Cimolai 1992	0 2 1 2 🕶		-		6.93% 0.20 [0.00, 8.82]
Cowan 1994	0 2 0 1 -				5.11% 0.60 [0.01, 49.45]
Donaldson 1993	1 1 4 4 🕶			ı	5.29% 0.33 [0.00, 25.41]
Erdem 2004	2 2 1 1 ⊢				5.11% 1.67 [0.02, 137.35]
Eriksson 1999	1 5 0 1 ⊢				7.28% 1.00 [0.02, 40.28]
Fronhoffs 2000	1 5 0 2	-			7.87% 1.67 [0.05, 58.28]
Schwartz 1992	2 2 1 4	-			7.72% 11.67 [0.32, 422.14]
Stegmayr 1992	0 7 1 4 -		<u>:</u>		8.39% 0.16 [0.00, 4.87]
Stevens 1989	4 10 2 9				28.46% 2.08 [0.32, 13.46]
Tagini 2017	0 2 1 3				7.47% 0.33 [0.01, 12.82]
RE Model I^2=0.	00%, Q=5.876, p=0.881	5			100.00% 0.91 [0.34, 2.46]
			 		
	0.01	0.1	1 10	100	
		Odd	s Ratio		


2.A) IVIG in all STSS patients: yes vs no (reference)

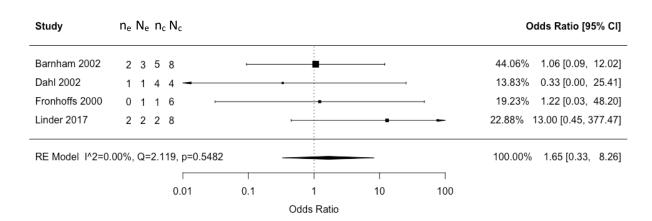
2.B) IVIG in the subset of STSS patients treated with clindamycin: yes vs no (reference)

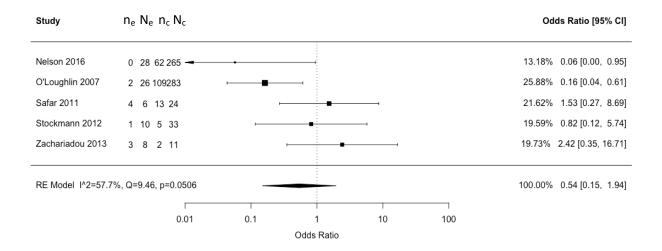


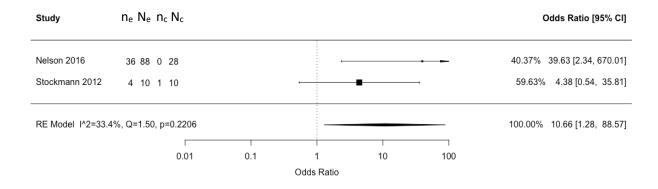
3. Any antibiotic: yes vs no (reference)

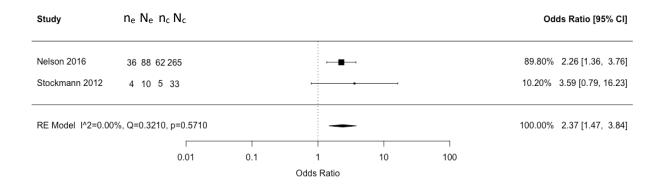


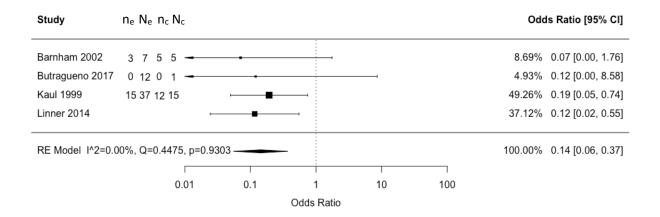
Study		Risk Difference [95% CI]
Abuhammour 2004		19.23% -0.50 [-1.35, 0.35]
Barnham 2002		31.82% -0.12 [-0.78, 0.53]
Donaldson 1993	-	48.95% 0.04 [-0.49, 0.57]
RE Model I^2=0.00%, Q=1.125, p=0.5699		100.00% -0.12 [-0.49, 0.26]
	 	
	-1.5 -1 -0.5 0 0.5 1	
	Risk Difference	


4. Necrotizing fasciitis: yes vs no (reference)

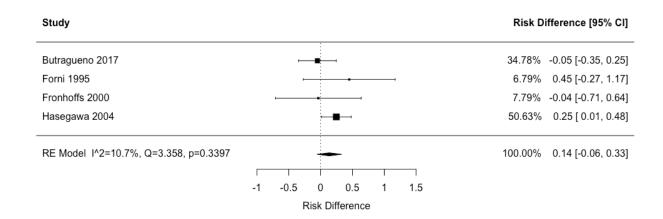

5. NSAIDs: yes vs no (reference)


6. Immunocompromised: yes vs no (reference)


7. Age: <18 years vs 18-64 years (reference)


8. Age: ≥65 years vs <18 years (reference)

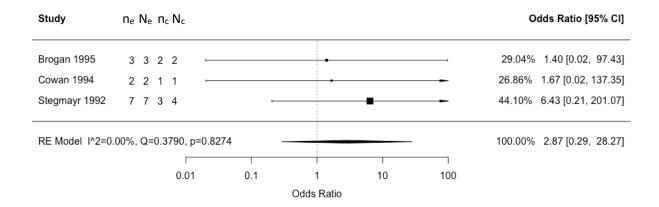
9: Age: ≥65 years vs 18-64 years (reference)

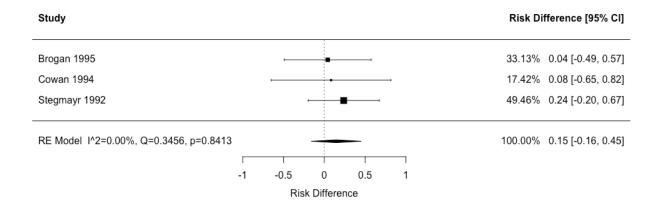


10. Clindamycin antibiotic vs no clindamycin antibiotic (reference)

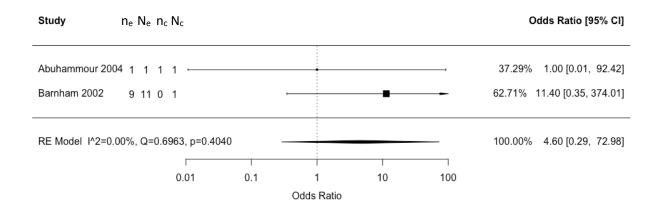
11. Acute renal failure: yes vs no (reference)

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	0 9 0 4 -		•			5.36% 0.47 [0.01, 27.94]
Forni 1995	3 4 0 1					6.41% 7.00 [0.17, 291.34]
Fronhoffs 2000	1 6 0 1 ⊢				→	6.60% 0.82 [0.02, 32.27]
Hasegawa 2004	23 42 7 24					81.62% 2.81 [0.99, 8.00]
RE Model I^2=0.	00%, Q=1.336, p=0.720	06				100.00% 2.50 [0.97, 6.42]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

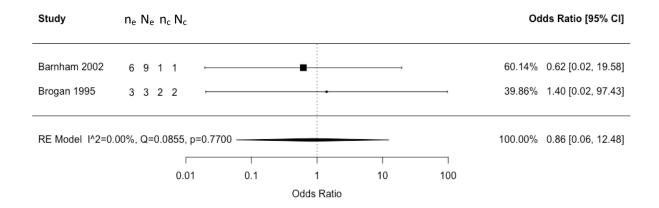

12. Hemodialysis: yes vs no (reference)

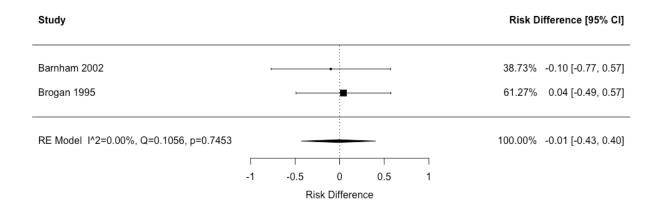

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	0 2 0 11		-			21.60% 4.60 [0.07, 292.29]
Crum 2004	0 1 0 1					18.80% 1.00 [0.01, 92.42]
Stegmayr 1992	0 7 1 4 🗕	-				28.67% 0.16 [0.00, 4.87]
Stevens 1989	2 2 3 14			-		30.93% 16.43 [0.63, 429.50]
RE Model I^2=24	.2%, Q=3.958, p=0.266	61				100.00% 1.94 [0.22, 16.99]
	0.04	0.4	 	10	100	
	0.01	0.1	1 dds Ratio	10	100	
		O	dd3 Mallo			

ICU admission

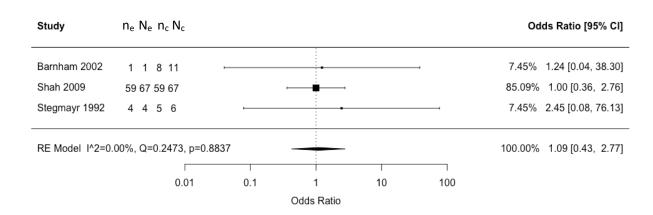

This note pertains to meta-analyses of the outcome ICU admission that include the study Stegmayr 1992. For this study, 10 of 11 STSS patients were admitted to the ICU. Despite no explicit mention of which one patient was not admitted to the ICU, our interpretation of the clinical profiles and patient-level data allowed us to deduce that patient 1 likely did not require ICU admission. We reached out to the corresponding author to confirm if our interpretation was correct, but did not receive a response.

1. Sex: male vs female (reference)


2. Any antibiotic: yes vs no (reference)

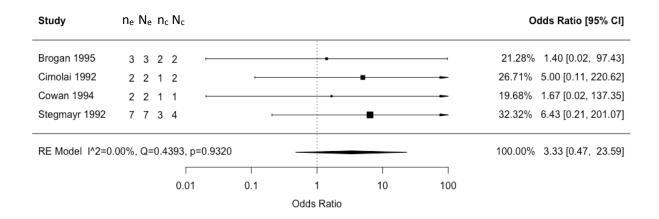


3. Necrotizing fasciitis: yes vs no (reference)

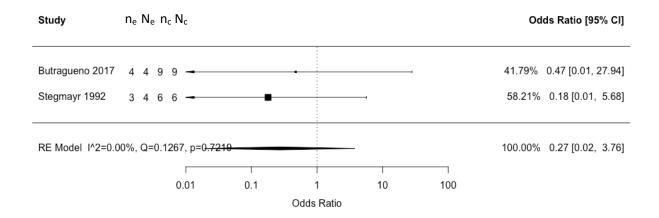

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Barnham 2002	5 7 4 5		-			57.42% 0.73 [0.07, 7.90]
Forni 1995	3 3 2 2 ⊢					18.02% 1.40 [0.02, 97.43]
Stegmayr 1992	1 1 9 10		-			24.56% 0.47 [0.01, 17.94]
RE Model I^2=0.	00%, Q=0.1447, p=0.93	302 ——				100.00% 0.74 [0.12, 4.48]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

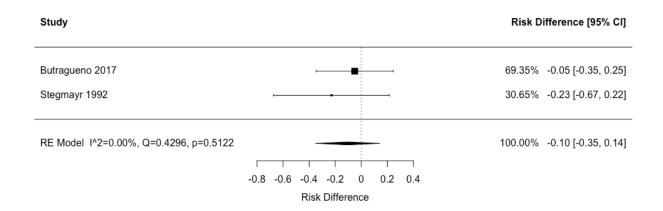
4. NSAIDs: yes vs no (reference)

5. IVIG in all STSS patients: yes vs no (reference)

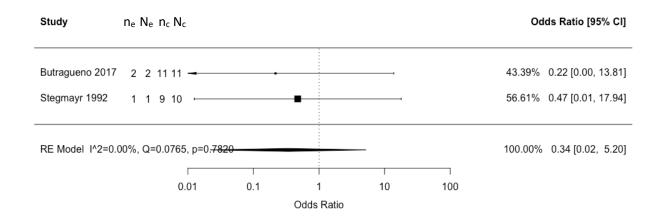


6. Hemodialysis: yes vs no (reference)

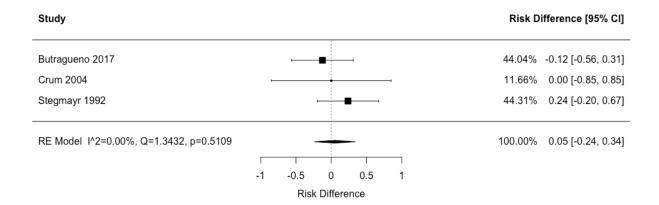

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Crum 2004	1 1 1 1					36.65% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	63.35% 6.43 [0.21, 201.07]
RE Model I^2=0	.00%, Q=0.4113, p=0.52	213 —				100.00% 3.25 [0.21, 50.35]
			- i	1		
	0.01	0.1	1	10	100	
			Odds Ratio			


Clinical cure or improvement

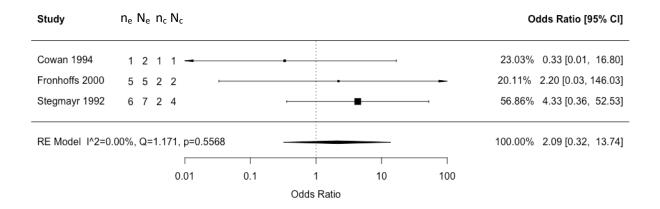
1. Sex: male vs female (reference)

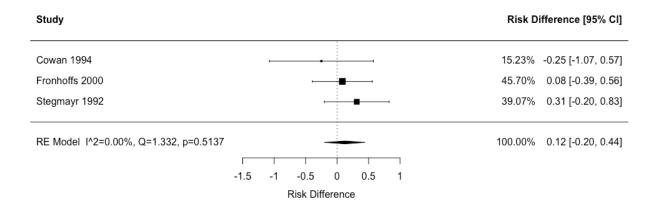


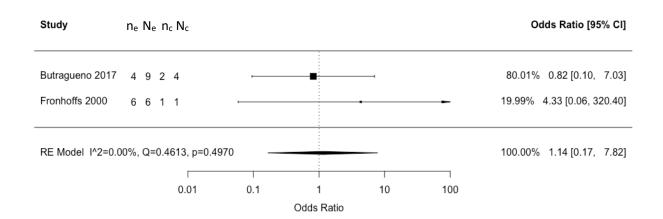
2. IVIG in all STSS patients: yes vs no (reference)



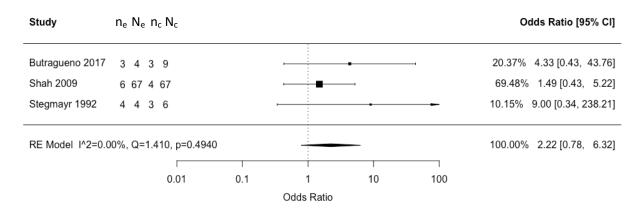
3. Necrotizing fasciitis: yes vs no (reference)


4. Hemodialysis: yes vs no (reference)

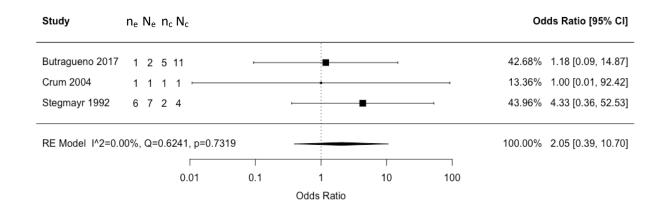

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	2 2 11 11 -					30.35% 0.22 [0.00, 13.81]
Crum 2004	1 1 1 1		-			25.53% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	44.13% 6.43 [0.21, 201.07]
RE Model I^2=00	.0%, Q=1.5470, p=0.46	i14 —				100.00% 1.43 [0.15, 14.08]
			- i	T		
	0.01	0.1	1	10	100	
			Odds Ratio			


Mechanical ventilation

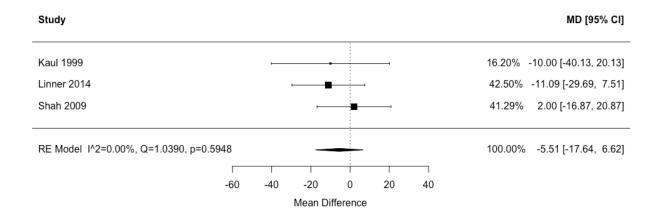
1. Sex: male vs female (reference)



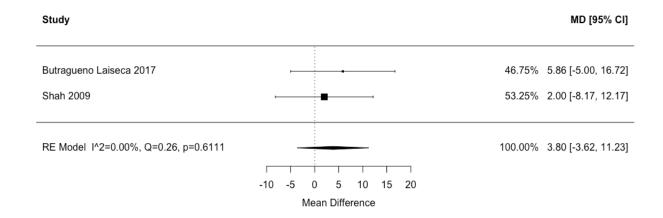
2. Acute renal failure: yes vs no (reference)


3. IVIG in all STSS patients: yes vs no (reference)

4. Necrotizing fasciitis: yes vs no (reference)


Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	2 2 4 11					40.57% 8.33 [0.32, 215.68]
Fronhoffs 2000	6 6 1 1					23.19% 4.33 [0.06, 320.40]
Stegmayr 1992	1 1 7 10		-			36.23% 1.40 [0.04, 43.79]
RE Model I^2=0.0	00%, Q=0.5503, p=0.7	594			-	100.00% 3.75 [0.47, 29.81]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

5. Hemodialysis: yes vs no (reference)


Hospital length-of-stay

1. IVIG: yes vs no (reference)

ICU length-of-stay

1. IVIG: yes vs no (reference)

Description of studies ineligible for meta-analysis by outcome

Mortality

B 4.4 4 22	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	4	4	17 11 10 11 11
			n=17 case-series with <10 patients, precluding the aggregation of patient-level data; n=6 study
			population consisted of patients all within same
age	28	5	age category
antibiotic	3	3	
clindamycin	4	4	
early hypotension	0	0	
ammetrin a	7	0	n=7 variability in reporting of molecular characteristics and comparators
hemodialysis	4	4	characteristics and comparators
nemodiarysis	4	4	n=1 insufficient data for meta-analysis (only p
immunocompromised	5	4	value reported)
IVIG in all STSS patients	9	9	
IVIG in clindamycin-treated patients	6	6	
NF	10	10	
NSAIDs	4	4	
sex	12	12	
timetoantibiotic	1	0	Meta-analysis precluded with only one study

(P)ICU admission

N renorting	N analyzed	Reasons for exclusion from meta-analysis
1 8	V	Meta-analysis precluded with only one study
1	0	n=5 case-series with <10 patients, precluding the aggregation of patient-level data; n=3 study population consisted of patients all within same age category; n=1 eligible for analysis, but meta-
9	0	analysis precluded with only one study
2	2	
1	0	Meta-analysis precluded with only one study
0	0	
2	0	n=2 variability in reporting of molecular characteristics and comparators
2	2	
1	0	Meta-analysis precluded with only one study
3	3	
0	0	
3	3	
2	2	
3	3	
0	0	
	9 2 1 0 2 2 1 3 0 3 2 3 3	reporting analyzed 1 0 9 0 2 2 1 0 0 0 2 0 2 2 1 0 3 3 0 0 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3

Clinical cure or improvement

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	1	0	Meta-analysis precluded with only one study
			n=6 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study population consisted of patients all within same
age	8	0	age category
antibiotic	1	0	Meta-analysis precluded with only one study
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated patients	0	0	
NF	2	2	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	4	4	
timetoantibiotic	0	0	

Mechanical ventilation

	D.T.		
D	N _. .	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	2	2	9
			n=3 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study
age	5	0	population consisted of patients all within same age category
age		0	age category
antibiotic	0	0	
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	1	0	Meta-analysis precluded with only one study
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	3	3	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	3	3	
timetoantibiotic	0	0	

Hospital length-of-stay

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
			n=2 case-series with <10 patients, precluding
age	2	0	the aggregation of patient-level data
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	1	0	Meta-analysis precluded with only one study
timetoantibiotic	0	0	

Duration of mechanical ventilation

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

ICU length-of-stay

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	3	0	n=2 case-series with <10 patients, precluding the aggregation of patient-level data; n=1 study population consisted of patients all within same age category
antibiotic	0	0	
clindamycin	1	0	Meta-analysis precluded with only one study
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated patients	0	0	
NF	1	0	Meta-analysis precluded with only one study
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	2	0	n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with only one study
timetoantibiotic	0	0	7

Change in SOFA score from baseline

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Functional status

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	0.
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Health related quality of life

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Cost

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	7_
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to mortality

Due on ordin fordon of interest	N	N	Bassara for analysis of the state of the sta
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	0	n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with only one study n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis
IVIG in clindamycin-treated patients	2	0	precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to clinical improvement or resolution of shock

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	1	0	Meta-analysis precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist

A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Reporting of Background		
Problem definition		
Hypothesis statement		
Description of Study Outcome(s)		
Type of exposure or intervention used		
Type of study design used		
Study population		
Reporting of Search Strategy		
Qualifications of searchers (eg, librarians		
and investigators)		
Search strategy, including time period		
included in the synthesis and keywords		
Effort to include all available studies,		
including contact with authors		
Databases and registries searched		
Search software used, name and		
version, including special features used		
(eg, explosion)		
Use of hand searching (eg, reference		
lists of obtained articles)		
List of citations located and those		
excluded, including justification		
Method for addressing articles		
published in languages other than		
English		
Method of handling abstracts and		
unpublished studies		
Description of any contact with authors		
Reporting of Methods		
Description of relevance or		
appropriateness of studies assembled for		
assessing the hypothesis to be tested		
Rationale for the selection and coding of		
data (eg, sound clinical principles or		
convenience)		
Documentation of how data were		
classified and coded (eg, multiple raters,		
blinding, and interrater reliability)		
Assessment of confounding (eg,		
comparability of cases and controls in		
studies where appropriate		

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Assessment of study quality, including		
blinding of quality assessors;		
stratification or regression on possible		
predictors of study results		
Assessment of heterogeneity		
Description of statistical methods (eg,		
complete description of fixed or random		
effects models, justification of whether		
the chosen models account for predictors		
of study results, dose-response models,		
or cumulative meta-analysis) in sufficient		
detail to be replicated		
Provision of appropriate tables and		
graphics		
Reporting of Results		
Table giving descriptive information for		
each study included		
Results of sensitivity testing (eg,		
subgroup analysis)		
Indication of statistical uncertainty of		
findings		
Reporting of Discussion		
Quantitative assessment of bias (eg,		
publication bias)		
Justification for exclusion (eg, exclusion		
of non–English-language citations)		
Assessment of quality of included studies		
Reporting of Conclusions		
Consideration of alternative explanations	7	
for observed results		
Generalization of the conclusions (ie,		
appropriate for the data presented and		
within the domain of the literature review)		
Guidelines for future research		
Disclosure of funding source		

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.

BMJ Open

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063023.R1
Article Type:	Original research
Date Submitted by the Author:	28-Jun-2022
Complete List of Authors:	Bartoszko, Jessica; McMaster University, Elias, Zeyad; University of Toronto, Department of Medicine Rudziak, Paulina; Western University, Department of Biology Lo, Carson KL; Hamilton, Department of Medicine Thabane, Lehana; Hamilton, Department of Health Research Methods, Evidence and Impact; Hamilton, Departments of Anesthesia and Pediatrics Mertz, Dominik; Hamilton, Department of Health Research Methods, Evidence and Impact; Hamilton, Department of Medicine Loeb, Mark; Hamilton, Department of Health Research Methods, Evidence and Impact; Hamilton
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Evidence based practice
Keywords:	Epidemiology < INFECTIOUS DISEASES, EPIDEMIOLOGY, BACTERIOLOGY, GENERAL MEDICINE (see Internal Medicine)

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Jessica J Bartoszko HBSc¹, Zeyad Elias BSc², Paulina Rudziak BSc(c)³, Carson KL Lo MD⁴, Lehana Thabane PhD^{1,5,6}, Dominik Mertz MD^{1,4,7,8}, Mark Loeb MD^{1,7,8}

Corresponding author:

Dr. Mark Loeb, loebm@mcmaster.ca, McMaster University, Hamilton, Canada, L8S 4L8

Key words: streptococcal toxic shock syndrome (STSS); systematic review; meta-analysis

Word count: 4320

¹ Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada

² Department of Medicine, University of Toronto, Toronto, Ontario, Canada

³ Department of Biology, Western University, London, Ontario, Canada

⁴ Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada

⁵ Departments of Anesthesia and Pediatrics, McMaster University, Hamilton, Ontario, Canada

⁶ Biostatistics Unit, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada

⁷ Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

⁸ Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

ABSTRACT

Objective: To quantify the prognostic effects of demographic and modifiable factors in streptococcal toxic shock syndrome (STSS).

Methods and analysis: We searched MEDLINE and EMBASE from inception to 6 August 2021, along with CINAHL from inception to 16 September 2021 and citations of included studies. Pairs of reviewers independently screened potentially eligible studies of patients with GAS-induced STSS that quantified the association between at least one prognostic factor and outcome of interest. We performed random-effects meta-analysis after duplicate data extraction and risk of bias assessments. We rated the certainty of evidence using the GRADE approach. **Results:** One randomized trial and 39 observational studies were eligible (n=1,914 patients). We found a statistically significant association between clindamycin treatment and mortality (n=144; odds ratio [OR] 0.14, 95% CI 0.06 to 0.37), but the certainty of evidence was low. Within clindamycin-treated STSS patients, we found a statistically significant association between intravenous immunoglobulin (IVIG) treatment and mortality (n=188; OR 0.34, 95% CI 0.15 to 0.75), but the certainty of evidence was also low. The odds of mortality may increase in patients ≥65 years when compared to patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84), but the certainty of evidence was low. We are uncertain whether non-steroidal anti-inflammatory drugs (NSAIDs) increased the odds of mortality (n=50; OR 4.14, 95% CI 1.13 to 15.14; very low certainty). Results failed to show a significant association between any other prognostic factor and outcome combination (very low to low certainty evidence) and no studies quantified the association between a prognostic factor and morbidity post-infection in STSS survivors. Conclusions: Treatment with clindamycin and within clindamycin-treated patients, IVIG, was

each significantly associated with mortality, but the certainty was evidence was low. Future research should focus on morbidity post-infection in STSS survivors.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients.
- These strengths directly address limitations of an existing narrative synthesis of STSS prognosis restricted to the critical care setting.
- In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence.
- v are lin.
 idence is the lack
 tion in STSS survivors. A limitation of the evidence is the lack of long-term outcome data reported, including morbidity post-infection in STSS survivors.

Introduction

Streptococcal toxic shock syndrome (STSS) is an acute and severe life-threatening complication of predominantly invasive Group A *Streptococcus* (GAS) infections. STSS is relatively uncommon, but is fatal [1]. Using US data from 2000 to 2004, the Center for Diseases Control and Prevention estimated an annual incidence rate of 0.2 cases per 100,000 people and a fatality rate of 36% [2]. STSS has important consequences for morbidity as well, in which patients may require radical surgical debridement, and patients with organ failure may have permanent respiratory and renal insufficiency [1].

Although extensive multidisciplinary clinical management efforts by intensivists, infectious disease specialists, and surgeons have curbed STSS all-cause mortality [1], data on the natural history of long-term sequelae in surviving patients, such as renal, respiratory and neuropsychiatric complications, are sparse [1-4]. Published studies of prognostic and treatment factors for STSS have consistently focused on associations with all-cause mortality [5-14], with few reporting on outcomes capturing the morbidity post-infection in STSS survivors [7, 12]. Furthermore, a thorough and systematic review to corroborate this evidence is lacking. A narrative review of STSS was limited by the lack of a systematic or explicit search of the literature, it included studies that were only narratively synthesized, and the focus was limited to studies within a critical care setting [1].

Understanding prognosis of STSS is important for patients, clinicians, and healthcare decision makers. We conducted a systematic review to summarize the prognostic and treatment factors, and outcomes of STSS. We aimed to capture a wide breadth of patient-important outcomes with follow up that included both short- and long-term outcomes within and outside of critical care.

Materials and methods

We registered a protocol for the present systematic review and meta-analysis with PROSPERO (CRD42020166961) [15, 16]. We report this systematic review and meta-analysis following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analyses of Observational Studies in Epidemiology (MOOSE) checklists [17, 18]. Decisions regarding criteria for study inclusion, search methods for identification of

studies, data collection, risk of bias, evaluation of the certainty of evidence and analysis were established a priori.

Search strategy and selection criteria

We searched MEDLINE (OVID interface, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, 1946 to 6 August 2021) and EMBASE (OVID interface, 1974 to 6 August 2021) from inception to 6 August 2021, with no restrictions on publication date. We searched the Cumulative Index to Nursing And Allied Health Literature (CINAHL), excluding MEDLINE records, from inception to 16 September 2021. We applied search filters for randomized controlled trials and non-randomized studies (cohort, case-control and case series with at least 2 STSS patients) [19, 20], and tailored search strategies to each database. We restricted included studies to the English language to facilitate screening of full-texts [21, 22] and searched citations of included studies to minimize the risk of failing to include relevant studies.

We included studies of randomized and non-randomized designs that reported the association of at least one prognostic factor of interest on at least one outcome of interest, and compared GASinduced STSS patients with the prognostic factor of interest (i.e. exposed) to GAS-induced STSS patients without the prognostic factor of interest (i.e. unexposed). Studies of patients with microbiologically confirmed STSS, probable cases of STSS and patients with clinical evidence of STSS as defined by study authors and generally consistent with the below criteria were eligible [3, 23]. Clinical evidence of STSS included hypotension and at least two of the following: renal impairment, coagulopathy, liver function abnormality, acute respiratory distress syndrome, generalized erythematous macular rash (with desquamation), soft-tissue necrosis (including necrotizing fasciitis, myositis or gangrene), or meningitis. Probable cases of STSS were defined as meeting clinical evidence with GAS isolated from a non-sterile site (e.g. throat, sputum, superficial skin lesion) or antigen detected. Confirmed cases of STSS were defined as meeting clinical evidence with GAS isolated from a sterile site (e.g. blood, cerebrospinal fluid, deep tissue specimen taken during surgery) [3, 23]. Demographic, comorbidity, infection, modifiable and process variables were prognostic factors of interest. Informed by clinical expertise in the review team, we selected outcomes based on importance to patients. Further, we aimed to capture the long-term sequelae in patients surviving STSS [1, 2, 4]. We chose the

following outcomes of interest: (time to) mortality, hospital length-of-stay, pediatric (P) intensive care unit (ICU) admission, (P)ICU length-of-stay, mechanical ventilation, duration of mechanical ventilation, (time to) clinical cure/improvement or resolution of shock, change in Sequential Organ Failure Assessment (SOFA) score from baseline, functional status (e.g. physical component summary (PCS) score on the 36-item short form health survey (SF-36)) and health related quality of life (HRQoL). We also extracted on cost outcomes, which are relevant to hospital and patient payees.

We excluded case reports and conference abstracts, and studies in which the population was less than 80% GAS-induced STSS cases (i.e. toxic shock syndrome of bacterial aetiologies other than GAS made up more than 20% of the study population). Because prognostic evidence in STSS patients is scarce [1, 2, 4], we did not apply any restrictions based on analytical method (e.g. conducting an adjusted, multivariable analysis) or sample size.

Using a systematic review software, Rayyan [24], following training and calibration exercises, pairs of reviewers independently screened all titles and abstracts, followed by full-texts of records that were identified as potentially eligible. When necessary, consensus was reached through discussion between the review pair, and arbitration by a senior co-investigator in the absence of consensus.

Data analysis

For each eligible study, pairs of reviewers extracted data independently using a standardized, pilot tested data extraction form. Reviewers collected information on study characteristics (study design as defined by study authors, sample size, country), patient characteristics (age, sex), disease characteristics (confirmed vs probable STSS, presence of necrotizing fasciitis), prognostic factors and outcomes of interest (means or medians and measures of variability for continuous outcomes and the proportion of participants who experienced an event for dichotomous outcomes). If multiple time points were reported for outcomes of interest, we extracted all time points. To minimize risk of confounding associated with prognostic effect estimates on dichotomous outcomes in non-randomized studies, we preferentially extracted adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CI) over proportions

when both were reported. We used the proportions to calculate crude ORs when no adjusted ORs were provided. Reviewers resolved discrepancies by discussion and, when necessary, with adjudication by a senior co-investigator.

Following training and calibration exercises, reviewers, independently and in duplicate, used the Quality in Prognosis Studies (QUIPS) tool to rate each prognostic factor and outcome combination at low, moderate or high risk of bias. Based on prespecified sets of questions, we assessed risk of bias across the following domains: participation, attrition, prognostic factor measurement, outcome measurement, confounding, and statistical analysis and reporting [25]. For studies addressing more than one prognostic factor and outcome combination, we reported the highest risk of bias rating among the prognostic factor and outcome combinations within a study for each domain. In addition to assessing risk of bias at the domain-level as outlined in the QUIPS tool, we applied the following rules to assess risk of bias overall at the study-level. We rated overall study risk of bias as low if the study was prospective and five or more domains were assessed as low risk of bias, and high if two or more domains were assessed as high risk of bias. All other studies were rated as moderate risk of bias overall. Due to high risk of selection bias and residual confounding, we rated all case series as high risk of bias overall. Reviewer pairs resolved discrepancies by discussion and, when needed, with adjudication by a senior co-investigator.

Pairs of reviewers used the grading of recommendations, assessment, development, and evaluation (GRADE) approach to independently assess the certainty of prognostic evidence for each meta-analysed outcome. Criteria for rating the certainty for each prognostic factor and outcome as high, moderate, low, or very low, included considerations of risk of bias, inconsistency, indirectness, size and precision of the association and publication bias [26, 27]. Judgments of imprecision for this systematic review were made using a minimally contextualised approach. This approach considers whether confidence intervals include the null effect. The supplementary file presents the detailed guidance we developed to facilitate the certainty of the evidence assessment in this review. To facilitate interpretation of the results in which the summary measure was an OR, we used the median event rate in the reference group of studies reporting proportions to calculate baseline risks and subsequently calculated absolute effects.

GRADE evidence summaries (Summary of Findings tables) were generated in the MAGIC Authoring and Publication Platform (www.magicapp.org).

When at least two included studies reported on the same prognostic factor and outcome in patients with GAS-induced STSS, we conducted DerSimonian and Laird random-effects metaanalyses using the *metafor* package in R version 4.0.4 (R Studio, Boston, MA, USA) [28]. We summarised the effects of prognostic factors on dichotomous outcomes using ORs and corresponding 95% CI, and on continuous outcomes using mean differences and corresponding 95% CI. For prognostic factor and dichotomous outcome combinations in which every patient in the reference arm experienced the outcome, we summarised the effects by directly calculating risk differences and corresponding 95% CI. We set the criterion for statistical significance at alpha = 0.05. Visual inspection of forest plots and the chi-square test were performed to evaluate heterogeneity. We interpreted an I² statistic value of 0%-40%, 30%-60%, 50%-90%, or 75%-100% as not likely important, moderate, substantial, or considerable heterogeneity, respectively [29]. If an I² statistic value was within a range of overlapping values (e.g. 80%), we would interpret heterogeneity as more important (e.g. considerable instead of substantial) if we observed inconsistent magnitudes and directions of summary estimates upon visual inspection of the forest plots, and the chi-square test was significant [29]. For meta-analyses of continuous outcomes, we imputed means and standard deviations for studies reporting medians and (interquartile) ranges, respectively [30, 31].

Patient-level data from case-series were aggregated when possible to enable comparative analysis via meta-analysis. We planned to perform a regression analysis for each study for which age was reported at the patient level to generate a study and age category (0 to 17 years old vs 18 to 64 years old vs 65 years old or older) specific OR that could be used in meta-analysis when a study had at least 10 observations for continuous outcomes and 10 events for dichotomous outcomes; however, no study met the sample size or event number requirements. Further, scarcity and variability of data precluded our plan to narratively synthesize the evidence from included studies for which meta-analysis of a prognostic factor and outcome combination was not possible.

The analysis plan included performing subgroup analyses of STSS patients treated with clindamycin vs no clindamycin, STSS patients with necrotizing fasciitis vs without necrotizing fasciitis, age (0 to 17 years old vs 18 to 64 years old vs 65 years old or older), sex (male vs female) and risk of bias (high vs moderate vs low) when at least two studies were present for each subgroup. Because select meta-analyses were limited by small numbers of events, we performed a post-hoc sensitivity analysis using the Peto method for meta-analysis, which is recommended for meta-analysis of rare events [32], and compared the results to those from the DerSimonian and Laird method we applied in this review.

Patient and public involvment

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

Results

After screening 25,397 titles and abstracts and 282 full texts, 40 studies that reported on the association between at least one prognostic factor and outcome of interest in STSS patients proved eligible (Figure 1). All but one study (39/40, 98%) were non-randomized. Eligible studies were published between 1989 and 2021, ranged in sample size from 2 to 476, included 1,914 STSS patients in total and were conducted in 22 different countries, most commonly in the United States (15/40, 38%).

Table 1 describes the characteristics of included studies reporting on the association of at least one prognostic factor and outcome of interest. The supplementary data includes additional study characteristics for each study. Of the 40 included studies, 28 (70%) reported on demographic prognostic factors of interest, 5 (13%) medical history of being immunocompromised, 11 (28%) early disease characteristics, and 16 (40%) treatment. Of the dichotomous outcomes, mortality was most commonly reported (35/40, 88%), followed by (P)ICU admission (10/40, 25%), clinical cure or improvement (8/40, 20%) and need for mechanical ventilation (6/40, 15%). Few studies reported on hospital (3/40, 8%) and ICU length-of-stay (2/40, 5%). Two studies reported on time to mortality in days [7, 33]; however, only one reported sufficient data precluding metaanalysis [7]. One study each reported on cost [14], change in SOFA score [7], time to clinical

improvement or resolution of shock [7] and duration of mechanical ventilation [10] precluding meta-analysis for these continuous outcomes. No studies quantified the association between a prognostic factor and functional status or health related quality of life outcomes. A multivariable analysis was conducted in two (5%) of the included studies [10, 11]. A total of 19 of the 40 studies were cohort studies (authors reported on at least one comparative analysis), 18 were case series (authors did not report a comparative analysis) and 2 were case-control studies. To meta-analyse the data, we aggregated the data from the individual patients the case series reported on. Further, we pooled the one randomized study [7] with non-randomized studies in meta-analyses and included patients receiving intravenous or intramuscular IVIG from one non-randomized study [34].

Table 1. Study characteristics. Values are numbers (percentages) of studies unless stated otherwise.

Characteristics	(40 studies, 1914 patients)
Range of publication year	1989 to 2021
Median (IQR) No. of patients	11 (5 to 29)
Geographical region:	
North America	19 (48)
Europe	14 (35)
Central/South America	0 (0)
Asia	3 (7)
Other	4 (10)
Study design:	
Randomized trial	1 (2)
Cohort	19 (48)
Case-control	2 (5)
Case-series	18 (45)
Case definition:	
Probable STSS patients	115 (6)
Confirmed STSS patients	223 (12)
Prognostic factor type:	
Demographic	28 (70)
Medical history	5 (13)
Early disease	11 (28)
Treatment	16 (40)

IQR=interquartile range

STSS=streptococcal toxic shock syndrome Medical history included prognostic variable: immunocompromised Early disease included prognostic variables: necrotizing fasciitis, acute renal failure

The supplementary material includes the forest plots depicting the studies included in the metaanalysis of each prognostic factor-outcome combination. It also includes the list of studies reporting on prognostic factor-outcome combinations of interest that were not eligible for any meta-analysis, along with the reasons for exclusion from meta-analysis.

Risk of bias in included studies

The supplementary file presents the risk of bias assessment of the 40 included studies. The majority of studies were rated as high risk of bias overall owing to residual confounding and lack of adjustment for confounding in statistical analyses (36/40, 90%) [2, 5, 6, 10, 33-64]. Three studies were rated at moderate risk of bias overall [7, 14, 65] and one at low risk of bias overall [11].

Prognostic factors for mortality

Eleven prognostic factors from 31 studies including 1339 patients were eligible for analysis (table 2, supplementary data). We found a statistically significant association between clindamycin treatment and mortality (figure 2A; n=144; odds ratio [OR] 0.14, 95% CI 0.06 to 0.37), but the certainty of evidence was low. Within clindamycin-treated STSS patients, we found a statistically significant association between intravenous immunoglobulin (IVIG) treatment and mortality (figure 2B; n=188; OR 0.34, 95% CI 0.15 to 0.75), but the certainty of evidence was also low. We are uncertain whether IVIG treatment reduces the odds of mortality in all STSS patients regardless of concurrent clindamycin treatment (n=365, OR 0.37, 95% CI 0.17 to 0.80; very low certainty of evidence). The odds of mortality may increase in patients ≥65 years when compared to patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84), but the certainty of evidence was low. We are less certain whether the same is true for patients ≥65 years compared to patients <18 years (n=136, OR 10.66, 95% CI 1.28 to 88.57; very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (n=50, OR 4.14, 95% CI 1.13 to 15.14; very low certainty of evidence). Very low certainty evidence failed to show a significant association with any other prognostic factor and mortality in STSS patients:

male vs female (n=76, OR 0.91, 95% CI 0.34 to 2.46), patients <18 years vs patients 18 to 64 years (n=694, OR 0.54, 95% CI 0.15 to 1.94), immunocompromised vs not immunocompromised (n=33, OR 1.65, 95% CI 0.33 to 8.26), necrotizing fasciitis vs no necrotizing fasciitis (n=840, OR 0.81, 95% CI 0.51 to 1.29), acute renal failure vs no acute renal failure (n=91, OR 2.50, 95% CI 0.97 to 6.42), hemodialysis vs no hemodialysis (n=42, OR 1.94, 95% CI 0.22 to 16.99) and any antibiotic vs no antibiotic (n=19, OR 0.48, 95% CI 0.05 to 4.76).

Table 2. Summary of findings for prognostic factor – outcome meta-analyses.

Table 2. Summary	Absolute effect estimates					
Prognostic factor	Number of patients (studies)	Odds ratio (95% confidence interval)	Risk without prognostic factor	Risk with prognostic factor	GRADE: Certainty of the Evidence	
		MORTAL	ITY			
		Demograp	phic			
Male vs Female	76 (12)	0.91 (0.34 to 2.46)	250 per 1000 -17 (-148	233 per 1000 3 to 201)	Very low Due to very serious risk of bias and imprecision	
<18 vs 18-64 years	694 (5)	0.54 (0.15 to 1.94)	234 per 1000 -92 (-190	142 per 1000 to 138)	Very low Due to very serious risk of bias and imprecision, and serious inconsistency	
≥65 vs <18 years	136 (2)	10.66 (1.28 to 88.57)*	50 per 1000	359 per 1000 to 773)	Very low Due to very serious risk of bias and serious imprecision	
≥65 vs 18–64 years	396 (2)	2.37 (1.47 to 3.84)*	193 per 1000 169 (67	362 per 1000 to 286)	Low Due to very serious risk of bias	
		Medical hi				
Immunocompromised vs Not Immunocompromised	33 (4)	1.65 (0.33 to 8.26)	438 per 1000 125 (-233	563 per 1000	Very low Due to very serious risk of bias and imprecision	
Early disease						
Acute Renal Failure vs No Acute Renal Failure	91 (4)	2.50 (0.97 to 6.42)	NA per 1000	NA per 1000 to 330)	Very low Due to very serious risk of bias and imprecision	
Necrotizing Fasciitis vs No Necrotizing Fasciitis	840 (10)	0.81 (0.51 to 1.29)	347 per 1000 -46 (-13	301 per 1000 4 to 60)	Very low Due to very serious risk of bias and imprecision	
		Treatme	ent			
IVIG vs No IVIG (all STSS patients)	365 (9)	0.37 (0.17 to 0.80)*	231 per 1000 -131 (-18	100 per 1000 2 to -37)	Very low Due to very serious risk of bias and serious imprecision	
IVIG vs No IVIG (subset of STSS patients treated with clindamycin)	188 (6)	0.34 (0.15 to 0.75)*	300 per 1000 -173 (-24	127 per 1000 0 to -57)	Low Due to serious risk of bias and imprecision	
Any Antibiotic vs No Antibiotic	19 (3)	0.48 (0.05 to 4.76)	NA per 1000 -120 (-49	NA per 1000 0 to 260)	Very low Due to very serious risk of bias and imprecision	
Clindamycin vs No Clindamycin Antibiotic	144 (4)	0.14 (0.06 to 0.37)*	800 per 1000 -441 (-600	359 per 1000 6 to -203)	Low Due to serious risk of bias and imprecision	
Hemodialysis vs No Hemodialysis	42 (4)	1.94 (0.22 to 16.99)	107 per 1000 82 (-81	189 per 1000 to 564)	Very low Due to very serious risk of bias and imprecision	

	l I		100 per 1000	315 per 1000	Very low			
NSAIDs vs No NSAIDs	50 (4)	4.14 (1.13 to 15.14)*	1		Due to very serious risk of bias and			
		TOTAL DATE	215 (12	10 327)	serious imprecision			
ICU ADMISSION Demographic								
	П	Demogra	NA per 1000	NA per 1000	Very low			
Male vs Female	19 (3)	2.87 (0.29 to 28.27)			Due to very serious risk of bias and			
15 (3) 2.37 (0.27 to 25.27) 150 (-160 to 450) Early disease Due to very serious risk of bias and imprecision								
	П	Earry disc	900 per 1000	869 per 1000	Very low			
Necrotizing Fasciitis vs No Necrotizing Fasciitis	28 (3)	0.74 (0.12 to 4.48)	-31 (-381 to 76)		Due to very serious risk of bias and			
Treef orizing 1 useries		T			imprecision			
		Treatme	833 per 1000	845 per 1000	Very low			
IVIG vs No IVIG (all STSS patients)	156 (3)	1.09 (0.43 to 2.77)	12 (-151 to 100)		Due to very serious risk of bias and			
patients)					imprecision			
Any Antibiotic vs No Antibiotic	14 (2)	4.60 (0.29 to 72.89)	500 per 1000	821 per 1000	Very low Due to very serious risk of bias and			
,)	321 (-275		imprecision			
Hamadialysis vs No Hamadial	12 (2)	2 25 (0 21 to 50 25)	875 per 1000	958 per 1000	Very low			
Hemodialysis vs No Hemodialysis	13 (2)	3.25 (0.21 to 50.35)	83 (-280	to 122)	Due to very serious risk of bias and imprecision			
			NA per 1000	NA per 1000	Very low			
NSAIDs vs No NSAIDs	15 (2)	0.86 (0.06 to 12.48)	-10 (-430) to 400)	Due to very serious risk of bias and imprecision			
CLINICAL CURE OR IMPROVEMENT								
Demographic								
Male vs Female	23 (4)	3.33 (0.47 to 23.59)	875 per 1000	959 per 1000	Very low Due to very serious risk of bias and			
Trute vs remare	25 (1)	3.33 (0.17 to 23.33)	84 (-108 to 119)		imprecision			
		Early dise						
Necrotizing Fasciitis vs No	24 (2)	0.34 (0.02 to 5.20)	950 per 1000	866 per 1000	Very low Due to very serious risk of bias and			
Necrotizing Fasciitis	24 (2)	0.54 (0.02 to 5.20)	-84 (-67:	5 to 40)	serious imprecision			
		Treatme						
IVIG vs No IVIG (in all STSS	23 (2)	0.27 (0.02 to 3.76)	NA per 1000 NA per 1000		Very low Due to very serious risk of bias and			
patients)			-100 (-350 to 140)		imprecision			
Hamadialyais va Na Hamadial	26 (2)	1 42 (0 15 to 14 00)	NA per 1000 NA per 1000		Very low			
Hemodialysis vs No Hemodialysis	26 (3)	1.43 (0.15 to 14.08)	50 (-240	to 340)	Due to very serious risk of bias and imprecision			
		NEED FOR MECHANIC.	AL VENTILATION	V				
		Demograp	•					
Male vs Female	21 (3)	2.09 (0.32 to 13.74)	NA per 1000	NA per 1000	Very low Due to very serious risk of bias and			
Trute vs remare	21 (3)	2.09 (0.32 to 13.74)	120 (-200 to 440)		imprecision			
		Early dise	1					
Acute Renal Failure vs No Acute	20 (2)	1.14 (0.17 to 7.82)	750 per 1000	774 per 1000	Very low			
Renal Failure	20 (2)	1.14 (0.17 to 7.82)	24 (-412	to 209)	Due to very serious risk of bias and imprecision			
Necrotizing Fasciitis vs No	21 (2)	2.75 (0.47 (20.01)	700 per 1000	897 per 1000	Very low			
Necrotizing Fasciitis	31 (3)	3.75 (0.47 to 29.81)	197 (-177 to 286)		Due to very serious risk of bias and imprecision			
Treatment								
IVIG vs No IVIG (in all STSS			333 per 1000	526 per 1000	Very low			
patients)	157 (3)	2.22 (0.78 to 6.32)	193 (-53 to 426)		Due to very serious risk of bias and imprecision			
Hemodialysis vs No Hemodialysis	26 (3)	2.05 (0.39 to 10.70)	500 per 1000	672 per 1000	Very low			
	- (=)	(_ · · · · · · · · · · · · · ·	r	· - V · · ·			

			172 (-219 to 415)		Due to very serious risk of bias and imprecision			
DURATION OF HOSPITALIZATION								
Treatment								
IVIG vs no IVIG (all STSS patients)	201 (3)	NA	NA per 1000 NA per 1000 On average, 5.51 fewer days (17.64 fewer to 6.62 more)		Low Due to serious risk of bias and imprecision			
DURATION OF INTENSIVE CARE UNIT STAY								
Treatment								
IVIG vs no IVIG (all STSS patients)	131 (2)	NA	NA per 1000 NA per 1000 On average, 3.80 more days (3.62 fewer to 11.23 more)		Very low Due to very serious risk of bias and serious imprecision			

^{*}statistical evidence of an association

Prognostic factors for ICU admission

Six prognostic factors from eight studies including 174 patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and ICU admission: male vs female sex (n=19, OR 2.87, 95% CI 0.29 to 28.27), necrotizing fasciitis vs no necrotizing fasciitis (n=28, OR 0.74, 95% CI 0.12 to 4.48), hemodialysis vs no hemodialysis (n=13, OR 3.25, 95% CI 0.21 to 50.35), NSAIDs vs no NSAIDs (n=15, OR 0.86, 95% CI 0.06 to 12.48), IVIG treatment vs no IVIG treatment (n=156, OR 1.09, 95% CI 0.43 to 2.77) and antibiotic treatment vs no antibiotic treatment (n=14, OR 4.60, 95% CI 0.29 to 72.98). The certainty of all ICU admission evidence was very low due to very serious risk of bias and imprecision.

Prognostic factors for clinical cure or improvement

Four prognostic factors from six studies including 38 STSS patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and clinical cure or improvement: male vs female sex (n=23, OR 3.33, 95% CI 0.47 to 23.59), necrotizing fasciitis vs no necrotizing fasciitis (n=24, OR 0.34, 95% CI 0.02 to 5.20), hemodialysis vs no hemodialysis (n=26, OR 1.43, 95% CI 0.15 to 14.08) and IVIG treatment vs no IVIG treatment (n=23, OR 0.27, 95% CI 0.02 to 3.76). The certainty of all clinical cure or improvement evidence was very low due to very serious risk of bias and serious or very serious imprecision.

Prognostic factors for mechanical ventilation

Five prognostic factors from six studies including 170 STSS patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and need for mechanical ventilation: male vs female sex (n=21, OR 2.09, 95% CI 0.32 to 13.74), necrotizing fasciitis vs no necrotizing fasciitis (n=31, OR 3.75, 95% CI 0.47 to 29.81), acute renal failure vs no acute renal failure (n=20, OR 1.14, 95% CI 0.17 to 7.82), hemodialysis vs no hemodialysis (n=26, OR 2.05, 95% CI 0.39 to 10.70) and IVIG treatment vs no IVIG treatment (n=157, OR 2.22, 95% CI 0.78 to 6.32). The certainty of all need for mechanical ventilation evidence was very low due to very serious risk of bias and imprecision.

Prognostics factors for hospital length-of-stay

One prognostic factor from three studies including 201 STSS patients was eligible for analysis (table 2, supplementary data). Low certainty evidence – due to serious risk of bias and imprecision – provides no support for an association between IVIG treatment and hospital length-of-stay, when compared to no IVIG treatment (n=201, MD -5.51 days, 95% CI -17.64 to 6.62).

Prognostic factors for intensive care unit length-of-stay

One prognostic factor from two studies including 131 STSS patients was eligible for analysis (table 2, supplementary data). We are uncertain if IVIG treatment compared to no IVIG treatment is associated with ICU length-of-stay (n=131, MD 3.80 days, 95% CI -3.62 to 11.23; very low certainty evidence due to very serious risk of bias and serious imprecision).

Subgroup and sensitivity analysis

Sparsity of data precluded our planned subgroup analyses by clindamycin treatment, presence of necrotizing fasciitis and sex (i.e. each subgroup did not have at least two studies). We collapsed the low and moderate risk of bias categories to allow for subgroup analysis by risk of bias (low or moderate vs high). The prognostic factor-outcome combinations for which there was sufficient evidence for subgroup analysis by age or modified risk of bias level were IVIG-mortality and sex-mortality. We found no statistical evidence that the association between IVIG and mortality differed between low or moderate and high risk of bias studies in all STSS patients (p=0.884) and clindamycin-treated STSS patients (p=0.867) or between studies with STSS

patients <18 years and patients 18-64 years (p=0.328). We also found no statistical evidence that the association between sex and mortality differed between studies with patients <18 years and patients 18-64 years (p=0.666). Because results were consistent across Peto, and DerSimonian and Laird methods, our post-hoc sensitivity analysis showed that our meta-analyses based on few events were robust.

Discussion

This systematic review and meta-analysis provides a comprehensive overview of the prognostic evidence for STSS. Prognostic factors for which there was a statistically significant association with mortality in STSS patients were age, clindamycin treatment, IVIG treatment and NSAIDs treatment. Patients ≥65 years compared to patients 18 to 64 years may have increased odds of mortality (low certainty of evidence); however we are uncertain if the same is true for patients ≥65 years compared to patients <18 years (very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (very low certainty of evidence). Low certainty evidence suggests the odds of mortality may be reduced by treatment with clindamycin and within clindamycin-treated patients, IVIG. We are highly uncertain whether IVIG reduces mortality in all STSS patients, regardless of clindamycin treatment (very low certainty of evidence). Results failed to show a significant association between all other meta-analyzed prognostic factors and outcomes (table 2). The certainty of STSS prognostic evidence was low or very low due to serious or very serious risk of bias and imprecision concerns.

Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients. These strengths directly address limitations of a narrative synthesis of STSS prognosis restricted to the critical care setting [1].

In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence. The majority of included studies were non-randomized (39/40, 98%) and small (median sample size was 10 patients), introducing bias from residual confounding and imprecision around pooled summary estimates. Small

numbers of events further contributed to the imprecision around summary estimates and limited the interpretation of our findings. With few participants and events, minor changes in the data can cause major changes in the results. In such instances, results can be exaggerated by the presentation of relative effect estimates only. To minimize the risk of misinterpreting results from the inclusion of small studies in our meta-analyses, we calculated an absolute effect estimate for each relative effect estimate (table 2). Further, despite expecting small studies to be more heterogeneous than large studies, we did not find statistical evidence of heterogeneity in any of our 33 meta-analyses and in interpreting the I² statistic value, we found not likely important heterogeneity in all but one meta-analysis [66]. Creation of an international registry of STSS patients may improve the credibility of prognostic evidence for STSS and facilitate the conduct of high-quality cohort studies. Although we meta-analyzed adjusted odds ratios from included studies when possible, almost all included studies reported crude data (38/40, 95%), precluding adjustment for important confounders. A limitation of the evidence is the lack of long-term outcome data reported. For example, no studies quantified associations between prognostic factors and functional status or health related quality of life outcomes post-infection in STSS survivors. Given the high morbidity associated with STSS [67], future research in STSS prognosis should quantify these patient-important outcomes, facilitating future meta-analyses and providing further insights into STSS prognosis.

Our finding that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment is consistent with a systematic review and meta-analysis of IVIG treatment in clindamycin-treated STSS patients, which found statistical evidence of a decreased risk of mortality in IVIG- and clindamycin-treated STSS patients when compared to only clindamycin-treated STSS patients [67]. For this question relevant to clindamycin-treated STSS patients, our meta-analysis included one additional non-randomized study, whose small sample size and imprecision contributed to an overall point estimate of greater magnitude [33]. Our findings suggest that treatment regimens of IVIG in adjunct to clindamycin and clindamycin alone may significantly improve STSS prognosis. We found a significant association between a regimen of IVIG regardless of clindamycin treatment and mortality; however, due to very serious risk of bias and serious imprecision, and thus very low certainty evidence, we cannot rule out the possibility that clindamycin treatment may be necessary for STSS patients to benefit from IVIG

treatment. Further, only one study reported on IVIG treatment in STSS patients that were not also treated with clindamycin [34]; therefore, our planned subgroup analysis to test if the beneficial effect of IVIG is modified in the absence of clindamycin was precluded. Based on very low certainty evidence, our finding that NSAID treatment is significantly associated with mortality in STSS patients can be explained by clinical and basic science literature, which suggests nonselective NSAIDs mask early signs and symptoms of GAS infection, such as fever, subsequently delaying time to antibiotic treatment – a risk factor for severe sepsis and shock, and mortality [68, 69].

After analyzing 30 different prognostic factor and outcome combinations, we found that clindamycin treatment was significantly associated with an improved STSS prognosis. Further, we found that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment, but we are uncertain if this is true for all STSS patients, regardless of clindamycin treatment. Although these findings support the use of IVIG as an adjunctive treatment in clindamycin-treated STSS patients, the certainty of evidence was low due to serious risk of bias and imprecision. Age equal to or older than 65 years and treatment with NSAIDs was significantly associated with a worse STSS prognosis. Results from very low to low certainty evidence failed to show a significant association between any other factors of interest and STSS prognosis.

Contributors

All authors attest they meet the ICMJE criteria for authorship. All authors have made substantial contributions to the following: (1) the conception and design of the study (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), acquisition of data (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo), analysis and interpretation of data (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo, Mark Loeb); (2) drafting the article and revising it critically for important intellectual content (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), (3) final approval of the version to be submitted (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo, Lehana Thabane, Dominik Mertz, Mark Loeb).

Declaration of interests

Mark Loeb declares grants or contracts from the World Health Organization, consulting fees from AVIR Pharma, and participating on data safety monitoring or advisory boards for Paladin Labs and Sunovion Pharmaceuticals.

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in BMJ Medicine and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Role of the funding source

There was no funding source for this study.

Data availability statement

Data extracted from individual studies are available upon reasonable request to the corresponding author. All other data relevant to the study are included in the article or uploaded as online supplemental information.

Ethics statement

Patient consent for publication not applicable.

Figure 1. PRISMA study flow diagram.

Figure 2. Meta-analyses comparing IVIG treatment to no IVIG treatment for the outcome mortality in A) all STSS patients; and B) the subset of STSS patients treated with clindamycin. Please note proportions are blank for study rows where we meta-analyzed adjusted odds ratios instead of crude proportions.

To the state of th

References

- 1. Schmitz, M., et al., Streptococcal toxic shock syndrome in the intensive care unit. Annals of intensive care, 2018. 8(1): p. 88-88.
- O'Loughlin, R.E., et al., The epidemiology of invasive group A streptococcal infection and 2. potential vaccine implications: United States, 2000-2004. Clin Infect Dis, 2007. 45(7): p. 853-62.
- 3. Canada, G.o., Group A Streptococcal diseases: For health professionals. https://www.canada.ca/en/public-health/services/diseases/group-a-streptococcaldiseases/health-professionals.html, 2019.
- 4. Davies, H.D., et al., Invasive Group A Streptococcal Infections in Ontario, Canada. New England Journal of Medicine, 1996. 335(8): p. 547-554.
- 5. Adalat, S., et al., Toxic shock syndrome surveillance in UK children. Arch Dis Child, 2014. **99**(12): p. 1078-82.
- Carapetis, J.R., et al., Effectiveness of clindamycin and intravenous immunoglobulin, and 6. risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis, 2014. **59**(3): p. 358-65.
- 7. Darenberg, J., et al., Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis, 2003. **37**(3): p. 333-40.
- 8. Kadri, S.S., et al., Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A Propensity Score-Matched Analysis From 130 US Hospitals. Clin Infect Dis, 2017. **64**(7): p. 877-885.
- 9. Kaul, R., et al., Population-based surveillance for group A streptococcal necrotizing fasciitis: Clinical features, prognostic indicators, and microbiologic analysis of seventyseven cases. Ontario Group A Streptococcal Study. Am J Med, 1997. 103(1): p. 18-24.
- 10. Kaul, R., et al., Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome--a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis, 1999. **28**(4): p. 800-7.
- 11. Linnér, A., et al., Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: a comparative observational study. Clin Infect Dis, 2014. **59**(6): p. 851-7.
- 12. Madsen, M.B., et al., Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med, 2017. **43**(11): p. 1585-1593.
- 13. Mehta, S., et al., Morbidity and mortality of patients with invasive group A streptococcal infections admitted to the ICU. Chest, 2006. **130**(6): p. 1679-86.
- 14. Shah, S.S., et al., Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clin Infect Dis, 2009. 49(9): p. 1369-76.
- York., C.f.R.a.D.U.o., PROSPERO. International prospective register of systematic reviews. 15. http://www.crd.york.ac.uk/PROSPERO/>. 2017.
- Jessica Bartoszko, Z.E., Dominik Mertz, Lehana Thabane, Mark Loeb., Natural History 16. and Prognosis of Streptococcal Toxic Shock Syndrome: Systematic Review and Meta-

Analysis. Available from:

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020166961, 2020.

- 17. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 2009. 339: p. b2535.
- Stroup, D.F., et al., Meta-analysis of observational studies in epidemiology: a proposal 18. for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama, 2000. **283**(15): p. 2008-12.
- Practice, B.B., Study design search filters. 19. https://bestpractice.bmj.com/info/toolkit/learn-ebm/study-design-search-filters/.
- Sterne, J.A.C., et al., Recommendations for examining and interpreting funnel plot 20. asymmetry in meta-analyses of randomised controlled trials. BMJ, 2011. 343: p. d4002.
- 21. Morrison, A., et al., The effect of English-language restriction on systematic reviewbased meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care, 2012. 28(2): p. 138-44.
- 22. Moher, D., et al., What contributions do languages other than English make on the results of meta-analyses? J Clin Epidemiol, 2000. 53(9): p. 964-72.
- 23. Canada, G.o., National case definition: Invasive group A streptococcal disease. 2008.
- 24. Ouzzani, M., et al., Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 2016. **5**(1): p. 210.
- 25. Hayden, J.A., et al., Assessing bias in studies of prognostic factors. Ann Intern Med, 2013. **158**(4): p. 280-6.
- Guyatt, G., et al., GRADE quidelines: 1. Introduction-GRADE evidence profiles and 26. summary of findings tables. (1878-5921 (Electronic)).
- 27. Huguet, A., et al., Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Systematic Reviews, 2013. 2(1): p. 71.
- 28. Viechtbauer, W., Conducting Meta-Analyses in R with the metafor Package. Journal of Statistical Software; Vol 1, Issue 3 (2010), 2010.
- 29. Higgins JP, G.S., Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. handbook.cochrane.org, 2011.
- 30. Hozo, S.P., B. Djulbegovic, and I. Hozo, Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 2005. **5**(1): p. 13.
- 31. Wan, X., et al., Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 2014. **14**(1): p. 135.
- 32. Efthimiou, O., Practical quide to the meta-analysis of rare events. Evidence Based Mental Health, 2018. 21(2): p. 72.
- Barnham, M.R., et al., Streptococcal toxic shock syndrome: a description of 14 cases from 33. North Yorkshire, UK. Clin Microbiol Infect, 2002. 8(3): p. 174-81.
- 34. Stegmayr, B., et al., Septic shock induced by group A streptococcal infection: clinical and therapeutic aspects. Scand J Infect Dis, 1992. 24(5): p. 589-97.
- 35. Abuhammour, W., R.A. Hasan, and E. Unuvar, Group A beta-hemolytic streptococcal bacteremia. Indian J Pediatr, 2004. 71(10): p. 915-9.

- 36. Al-ajmi, J.A., et al., Group A Streptococcus Toxic Shock Syndrome: An outbreak report and review of the literature. J Infect Public Health, 2012. 5(6): p. 388-93.
- 37. Bernaldo de Quirós, J.C., et al., Group A streptococcal bacteremia. A 10-year prospective study. Medicine (Baltimore), 1997. **76**(4): p. 238-48.
- Brogan, T.V., et al., Group A streptococcal necrotizing fasciitis complicating primary 38. varicella: a series of fourteen patients. Pediatr Infect Dis J, 1995. 14(7): p. 588-94.
- 39. Butragueño Laiseca, L., et al., Toxic shock syndrome in a paediatric intensive care unit over the last 15 years. Anales de Pediatría (English Edition), 2017. 87(2): p. 111-113.
- 40. Carapetis, J., et al., Increasing severity of invasive group A streptococcal disease in Australia: clinical and molecular epidemiological features and identification of a new virulent M-nontypeable clone. Clin Infect Dis, 1995. 21(5): p. 1220-7.
- 41. Cimolai, N., et al., Invasive Streptococcus pyogenes infections in children. Can J Public Health, 1992. 83(3): p. 230-3.
- 42. Cook, A., et al., Manifestations of Toxic Shock Syndrome in Children, Columbus, Ohio, USA, 2010-2017(1). Emerging infectious diseases, 2020. **26**(6): p. 1077-1083.
- Cowan, M.R., et al., Serious group A beta-hemolytic streptococcal infections 43. complicating varicella. Ann Emerg Med, 1994. 23(4): p. 818-22.
- 44. Crum, N.F., et al., A case series of group A Streptococcus necrotizing fasciitis in military trainees. Mil Med, 2004. 169(5): p. 373-5.
- Dahl, P.R., et al., Fulminant group A streptococcal necrotizing fasciitis: clinical and 45. pathologic findings in 7 patients. J Am Acad Dermatol, 2002. 47(4): p. 489-92.
- 46. Donaldson, P.M., et al., Rapidly fatal necrotising fasciitis caused by Streptococcus pyogenes. Journal of clinical pathology, 1993. 46(7): p. 617-620.
- Erdem, G., et al., Characterization of a community cluster of group a streptococcal 47. invasive disease in Maui, Hawaii. The Pediatric infectious disease journal, 2004. 23(7): p. 677-679.
- Eriksson, B.K., et al., Invasive group A streptococcal infections: T1M1 isolates expressing 48. pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J Infect Dis, 1999. **180**(2): p. 410-8.
- 49. Forni, A.L., et al., Clinical and microbiological characteristics of severe group A streptococcus infections and streptococcal toxic shock syndrome. Clin Infect Dis, 1995. **21**(2): p. 333-40.
- 50. Fronhoffs, S., et al., The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients. Intensive Care Med, 2000. **26**(10): p. 1566-70.
- 51. Hasegawa, T., et al., Factors determining prognosis in streptococcal toxic shock-like syndrome: results of a nationwide investigation in Japan. Microbes Infect, 2004. 6(12): p. 1073-7.
- 52. Hayata, E., et al., Nationwide study of mortality and survival in pregnancy-related streptococcal toxic shock syndrome. The journal of obstetrics and gynaecology research, 2021. **47**(3): p. 928-934.

- 53. Huang, Y.C., et al., A family cluster of streptococcal toxic shock syndrome in children: clinical implication and epidemiological investigation. Pediatrics, 2001. **107**(5): p. 1181-3.
- 54. Kansal, R.G., et al., Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases. Infect Immun, 2000. **68**(11): p. 6362-9.
- 55. Linder, K.A., et al., *Effect of underlying immune compromise on the manifestations and outcomes of group A streptococcal bacteremia*. J Infect, 2017. **74**(5): p. 450-455.
- 56. Luca-Harari, B., et al., *Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe.* J Clin Microbiol, 2009. **47**(4): p. 1155-65.
- 57. Nelson, G.E., et al., *Epidemiology of Invasive Group A Streptococcal Infections in the United States*, 2005-2012. Clin Infect Dis, 2016. **63**(4): p. 478-86.
- 58. Safar, A., et al., *Invasive Group A Streptococcal Infection and Vaccine Implications, Auckland, New Zealand.* Emerging Infectious Diseases, 2011. **17**(6): p. 983-989.
- 59. Schwartz, B., et al., *Clusters of invasive group A streptococcal infections in family, hospital, and nursing home settings.* Clin Infect Dis, 1992. **15**(2): p. 277-84.
- 60. Sriskandan, S. and J. Cohen, *Kallikrein-kinin system activation in streptococcal toxic shock syndrome*. Clin Infect Dis, 2000. **30**(6): p. 961-2.
- 61. Stockmann, C., et al., *Evolving epidemiologic characteristics of invasive group a streptococcal disease in Utah, 2002-2010.* Clin Infect Dis, 2012. **55**(4): p. 479-87.
- 62. Tagini, F., et al., Importance of whole genome sequencing for the assessment of outbreaks in diagnostic laboratories: analysis of a case series of invasive Streptococcus pyogenes infections. Eur J Clin Microbiol Infect Dis, 2017. **36**(7): p. 1173-1180.
- 63. Zachariadou, L., et al., *Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections.* Epidemiol Infect, 2014. **142**(3): p. 512-9.
- 64. Stevens, D.L., et al., Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med, 1989. **321**(1): p. 1-7.
- 65. Page, A.V., et al., Systemic dysregulation of angiopoietin-1/2 in streptococcal toxic shock syndrome. Clin Infect Dis, 2011. **52**(8): p. e157-61.
- 66. IntHout, J., et al., *Small studies are more heterogeneous than large ones: a meta-meta-analysis.* Journal of Clinical Epidemiology, 2015. **68**(8): p. 860-869.
- 67. Parks, T., et al., *Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis.*Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2018. **67**(9): p. 1434-1436.
- 68. Legras, A., et al., A multicentre case-control study of nonsteroidal anti-inflammatory drugs as a risk factor for severe sepsis and septic shock. Critical Care, 2009. **13**(2): p. R43.
- 69. Bryant, A.E., et al., The roles of injury and nonsteroidal anti-inflammatory drugs in the development and outcomes of severe group A streptococcal soft tissue infections.

 Current Opinion in Infectious Diseases, 2015. **28**(3).

Figure 1. PRISMA flow diagram.

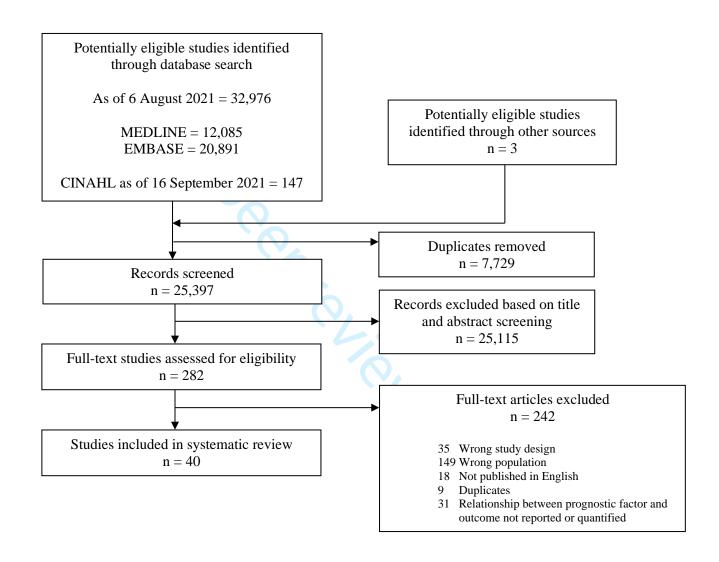
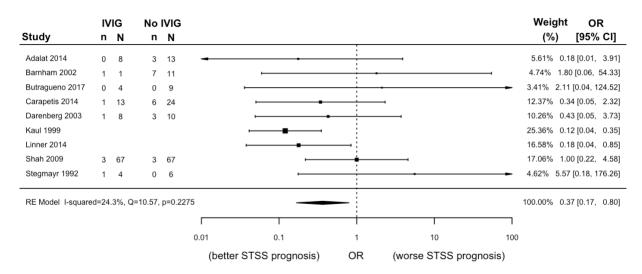



Figure 2. Meta-analyses comparing IVIG treatment to no IVIG treatment for the outcome mortality in A) all STSS patients; and B) the subset of STSS patients treated with clindamycin. Please note proportions are blank for study rows where we meta-analyzed adjusted odds ratios instead of crude proportions.

A)

B)

	IV	'IG	No	IVIG				We	ight	OR
Study	n	N	n	N				(9	%)	[95% CI]
Adalat 2014	0	8	3	13				(6.68%	0.18 [0.01, 3.9
Barnham 2002	1	1	2	6				— 5.	08%	5.40 [0.15, 188.8
Carapetis 2014	1	13	6	24			-	17	7.50%	0.34 [0.05, 2.3
Darenberg 2003	1	8	3	10	-			13	3.70%	0.43 [0.05, 3.7
Kaul 1999					-			2	.92%	0.18 [0.03, 1.0
Linner 2014	3	21	11	31				35	5.12%	0.34 [0.09, 1.3
RE Model I-square	ed=0.0	00%, Q	=3.055,	p=0.6915		_		100	0.00%	0.34 [0.15, 0.7
				Г		- i -	1			
				0.0	0.1	1	10	100		
					(better STSS prognosis)	OR	(worse STSS prognos	sis)		

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Supplementary Material

Table of contents	Page
Search strategy	2
GRADE assessment guidance	4
Description of studies excluded at full text stage	6
Additional study characteristics	18
Risk of bias assessment	25
Forest plots for pairwise meta-analyses	27
Description of studies ineligible for meta-analysis by outcome	42

Search strategies

1) Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:

- toxic shock syndrome.mp. or exp Shock, Septic/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp Fasciitis, Necrotizing/ or septic shock.mp.
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/
- exp Cohort Studies/
- cohort\$.tw.
- controlled clinical trial.pt.
- epidemiologic methods/
- limit 6 to yr=1966-1989
- exp case-control studies/
- (case\$ and control\$).tw.
- (case\$ and series).tw.
- or/3-5,7-10
- randomized controlled trial.pt.
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- (retraction of publication or retracted publication).pt.
- or/12-14
- (animals not humans).sh.
- ((comment or editorial or meta-analysis or practice-guideline or review or letter) not randomized controlled trial).pt.
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not randomized controlled trial.pt.
- 15 not (16 or 17 or 18)
- animals/ not humans/
- (1 or 2) and (11 or 19)
- 21 not 20
- 2) Database: Embase <1974 to 2020 February 03>

Search Strategy:

- toxic shock syndrome.mp. or exp septic shock/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp necrotizing fasciitis/ or septic shock.mp. or exp toxic shock syndrome/
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/ or exp Streptococcus group A/
- exp cohort analysis/
- exp longitudinal study/
- exp prospective study/

- exp follow up/
- cohort\$.tw.
- exp case control study/ or (case\$ and control\$).tw.
- exp case study/ or (case\$ and series).tw.
- or/3-9
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- RETRACTED ARTICLE/
- or/11-12
- (animal\$ not human\$).sh,hw.
- (book or conference paper or editorial or letter or review).pt. not exp randomized controlled trial/
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not exp randomized controlled trial/
- 13 not (14 or 15 or 16)
- exp animal/

- exp animal/
 exp human/
 18 not 19
 (1 or 2) and (10 or 17)
 21 not 20

GRADE assessment guidance

Based on GRADE guidance for prognostic studies, we start with high certainty evidence for each meta-analysis.

Risk of bias

For each meta-analysis, we downgraded the certainty of the evidence once for risk of bias when studies with moderate or high risk of bias contributed >50% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >50% weight to the pooled effect estimate (i.e. serious risk of bias). We downgraded the certainty of the evidence twice for risk of bias when studies with moderate or high risk of bias contributed >80% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >80% weight to the pooled effect estimate (i.e. very serious risk of bias).

Inconsistency

We used visual inspection of the forest plots and the I² statistic to assess inconsistency. For visual inspection of the forest plots, we considered the variability in point estimates and confidence interval overlap in relation to the null effect. Further, we downgraded the certainty of the evidence once when there was substantial (I² 50-90%) heterogeneity and twice when there was considerable (I² 75-100%) heterogeneity.

Imprecision

We downgraded the certainty of the evidence once for imprecision if:

- 1) The effect on the patient, or clinical action, would differ depending on whether the upper or the lower boundary of the confidence interval represented the truth, **OR**
- 2) The 95% CI of the pooled absolute estimate crossed the null effect by less than 50 people per 1000 on one or both sides, **OR**
- 3) In cases where we had large effects that did not cross the null, we assessed the optimal information size. If the ratio of the upper to the lower limit of the confidence interval of the relative estimate was >3, the optimal information size would never be met; thus, we rated down once for imprecision, **OR**
- 4) There were fewer than 10 outcome events for each prognostic variable (for dichotomous outcomes, **OR**
- 5) There were fewer than 100 cases reaching endpoint (for continuous outcomes).

We downgraded the certainty of the evidence twice for imprecision if:

1) The 95% CI of the pooled absolute estimate crossed the null effect by more than 50 people per 1000 on both sides.

Indirectness

We rated down once if the study sample, the prognostic factor, and/or the outcome in the primary studies did not accurately reflect the review question.

Publication bias

We rated down once if:

1) Small studies reported higher rates compared to large studies, suggesting the selective publication of "positive" studies, **OR**

2) The value of the risk/protective factor in predicting the outcome has NOT been repetitively investigated (e.g. only exploratory studies with no external validation, replication or confirmation exist).

References

- 1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE Guidelines 6. Rating the Quality of Evidence—Imprecision. J Clin Epidemiol 2011; 64(12): 1283–93. https://doi.org/10.1016/j.jclinepi.2011.01.012
- 2. Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2:71. Published 2013 Sep 5. doi:10.1186/2046-4053-2-71

Table of excluded full texts (n=242)

Author, Year	Title	Reason for Exclusion
Hamilton, 2013	Pregnancy-related group a streptococcal infections: Temporal relationships between bacterial acquisition, infection onset, clinical findings, and outcome	Wrong study design
Ichiyama, 1997	Transmission of Streptococcus pyogenes causing toxic shock- like syndrome among family members and confirmation by DNA macrorestriction analysis	Wrong study design
Idubor, 2019	Invasive group a streptococcus infections among residents of multiple nursing Homes-Denver, Colorado, 2017-2018 Increased prevalence of group A streptococcus isolates in	Wrong study design
Ikebe, 2015	streptococcal toxic shock syndrome cases in Japan from 2010 to 2012	Wrong study design
Klinker, 1997	Toxic shock syndrome in AIDS	Wrong study design
Langmuir, 1982	Toxic-shock syndromean epidemiologist's view	Wrong study design
McIvor, 1982	Treatment of recurrent toxic shock syndrome with oral contraceptive agents	Wrong study design
Pathi, 2013	Prompt recognition and multidisciplinary approach in Group A streptococcal sepsis	Wrong study design
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection	Wrong study design
Stallones, 1982	A review of the epidemiologic studies of toxic shock syndrome	Wrong study design
Stevens, 2000	Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome Emergence of a New Highly Successful Acapsular Group A	Wrong study design
Turner, 2015	Streptococcus Clade of Genotype emm89 in the United Kingdom	Wrong study design
Udagawa, 1999	Serious group A streptococcal infection around delivery	Wrong study design
Valiquette, 2006	A survey of physician's attitudes regarding management of severe group A streptococcal infections	Wrong study design
Valiquette, 2009	Assessing the impact of intravenous immunoglobulin in the management of streptococcal toxic shock syndrome: a noble but difficult quest	Wrong study design
Wozniak, 2012	M-protein gene-type distribution and hyaluronic acid capsule in group A Streptococcus clinical isolates in Chile: Association of emm gene markers with csrR alleles	Wrong study design
Anonymous, 1984	Diagnostic bias and toxic shock syndrome	Wrong study design
Blonde, 2017	A prospective multicentric study of severe cutaneous infections in pediatric intensive care: The SCIPIC cohort	Wrong study design
Busowski, 2010	Puerperal group A streptococci (GAS) infection: Reemergence of a dreaded disease - A case series	Wrong study design
Cimolai, 2002	Nonhemolytic Streptococcus pyogenes causing invasive infection	Wrong study design
Clark, 2010	Puerperal group a streptococcal sepsis and proinflammatory immune response	Wrong study design

Dahdi, 2018	Necrotizing soft tissue infection: Microbiological distribution from district region	Wrong study design
Das, 2012	Necrotizing fasciitis in New Zealand - Risk factors, microbiological findings and outcomes in a large case series	Wrong study design
De Zoysa, 2013	Invasive group A streptococcal disease in the UK, 2008-2012 and molecular characterisation of isolates during enhanced surveillance	Wrong study design
Donawa, 1984	Toxic shock syndrome: chronology of state and federal epidemiologic studies and regulatory decision-making Peri-ocular necrotising fasciitis: A multicentre retrospective	Wrong study design
Figueira, 2013	australian series	Wrong study design
Gaensbauer, 2016	Importance of toxic shock syndrome in pediatric septic shock clinical decision-making	Wrong study design
Goldberg, 2015	Group A beta streptococcal infections in children after oral or dental trauma: A case series of 5 patients	Wrong study design
McViety, 2014	Don't forget IGAS: Lessons learnt from review of 2 peak seasons in the north west and North Wales, UK	Wrong study design
Zangara, 2019	Epidemiology, outcomes from treatment, and the spectrum of soft tissue infections over time in hospitalized patients: A populationbased description of inpatients in the state of california	Wrong study design
Arias-Constanti, 2018	Invasive disease by Streptococcus pyogenes: patients hospitalized for 6 years	Wrong population
	Factors that affect the clinical course of group A beta- haemolytic streptococcal infections of the hand and upper	
Hankins, 2008 Henrichsen,	extremity: a retrospective study Invasive infections caused by Streptococcus pyogenes in	Wrong population
1997	Denmark 1990- 1994	Wrong population
Haga 1002	The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like	Wrong nonulation
Hoge, 1993	syndrome. A retrospective population-based study Life- and limb-threatening infections following the use of an	Wrong population
Jauregui, 2015	external fixator	Wrong population
	Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A	4
Kadri, 2017	Propensity Score-Matched Analysis From 130 US Hospitals Group A streptococcal bacteremia in a mid-south children's	Wrong population
Leggiadro, 1993	hospital Patient's characteristics and outcomes in necrotising soft-	Wrong population
	tissue infections: results from a Scandinavian, multicentre,	
Madsen, 2019	prospective cohort study	Wrong population
Mitchell, 2011	A strep in the wrong direction-invasive group a streptococcal disease	Wrong population
Moses, 1995	Group A streptococcus bacteremia at the Hadassah Medical Center in Jerusalem	Wrong population
	Use of single-dose azithromycin to control a community outbreak of EMM26.3 group a streptococcus invasive disease-	
Mosites, 2017	Alaska, 2017	Wrong population
Mositer 2010	Risk for invasive streptococcal infections among adults experiencing homelessness, anchorage, Alaska, USA, 2002-	Whoma normation
Mosites, 2019	2015	Wrong population

Mulla, 2007	Clinical and epidemiologic features of invasive group A streptococcal infections in children	Wrong population
	•	
Mulla, 2003	Invasive group A streptococcal infections in Florida A comparison of Streptococcus pyogenes (group A	Wrong population
Navarro, 1993	streptococcal) bacteremia at an urban and a suburban hospital. The importance of intravenous drug use	Wrong population
Norton, 2004	Invasive group A streptococcal disease in North Queensland (1996 - 2001) Blunt Trauma as a Risk Factor for Group A Streptococcal	Wrong population
Nuwayhid, 2007	Necrotizing Fasciitis	Wrong population
Oliver, 2019	Invasive group A Streptococcus disease in Australian children: 2016 to 2018 - a descriptive cohort study	Wrong population
Oliver, 2019	Recent trends in invasive group A Streptococcus disease in Victoria	Wrong population
Peterson, 1996	Risk factors for invasive group A streptococcal infections in children with varicella: A case-control study	Wrong population
Rainbow, 2008	Invasive group A streptococcal disease in nursing homes, Minnesota, 1995-2006	Wrong population
Rathore, 1992	Suppurative group A beta-hemolytic streptococcal infections in children	Wrong population
Reingold, 1984	Epidemiology of toxic-shock syndrome, United States, 1960- 1984	Wrong population
Reingold, 1989	Risk factors for menstrual toxic shock syndrome: results of a multistate case-control study	Wrong population
Remy, 2019	Septic shock and toxic shock syndrome-two infectious shocks with different immune response	Wrong population
Rudolph, 2016	Epidemiology of invasive group a streptococcal disease in Alaska, 2001 to 2013	Wrong population
Saldana, 2010	Periorbital necrotizing fasciitis: Outcomes using a CT-guided surgical debridement approach	Wrong population
Sarangi, 1995	A nursing home outbreak of group A streptococcal infection: case control study of environmental contamination	Wrong population
Scaber, 2011	Group a streptococcal infections during the seasonal influenza outbreak 2010/11 in South East England	Wrong population
~	Rising high rate of invasive group a streptococcus infections among persons experiencing homelessness in San Francisco,	
Scheuer, 2018	2010-2017	Wrong population
Schlech, 1982	Risk factors for development of toxic shock syndrome. Association with a tampon brand	Wrong population
Schwartz, 1989	Nonmenstrual toxic shock syndrome associated with barrier contraceptives: report of a case-control study	Wrong population
Shands, 1982	Toxic shock syndrome: Case-control studies at the centers for disease control	Wrong population
Sharma, 2019	Real-time whole genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic hospital	Wrong population
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: Epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003	Wrong population

Simonart, 2004	The importance of serum creatine phosphokinase level in the early diagnosis and microbiological evaluation of necrotizing fasciitis	Wrong population
Smith, 2003	Mass antibiotic treatment for group A streptococcus outbreaks in two long-term care facilities Proinflammatory immune response and puerperal group a	Wrong population
Spargen, 2011	streptococcal sepsis Prospective surveillance of invasive group A streptococcal	Wrong population
Steer, 2009	disease, fiji, 2005-2007 High burden of invasive beta-haemolytic streptococcal	Wrong population
Steer, 2008	infections in Fiji	Wrong population
Tanna, 2006	Molecular characterization of clinical isolates of M non- typable group A streptococci from invasive disease cases	Wrong population
Tapiainen, 2016	Invasive Group A Streptococcal Infections in Children: A Nationwide Survey in Finland Molecular profiling of tissue biopsies reveals unique	Wrong population
Thanert, 2019	signatures associated with streptococcal necrotizing soft tissue infections	Wrong population
Theis, 2002	Severe necrotising soft tissue infections in orthopaedic surgery	Wrong population
Thigpen, 2007	Nursing home outbreak of invasive group A streptococcal infections caused by 2 distinct strains Early identification of patients at high risk of group A	Wrong population
Urbina, 2019	streptococcus-associated necrotizing skin and soft tissue infections: a retrospective cohort study	Wrong population
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Wrong population
Vlaminckx, 2005	Long-term surveillance of invasive group A streptococcal disease in The Netherlands, 1994-2003	Wrong population
Vugia, 1996 Waldhausen,	Invasive group A streptococcal infections in children with varicella in Southern California Surgical implications of necrotizing fasciitis in children with	Wrong population
1996	chickenpox Selective depletion of V beta-bearing T cells in patients with	Wrong population
Watanabe- Ohnishi, 1995	severe invasive group A streptococcal infections and streptococcal toxic shock syndrome. Ontario Streptococcal Study Project	Wrong population
Wheeler, 1991	Outbreak of group A streptococcus septicemia in children: Clinical, epidemiologic, and microbiological correlates	Wrong population
Wilson, 1995	Group A streptococcal necrotizing fasciitis following varicella in children: Case reports and review	Wrong population
Wong, 2019	A Cluster of Pediatric Invasive Group A Streptococcus Disease in Melbourne, Australia, Coinciding with a High- Burden Influenza Season	Wrong population
Yagupsky, 1987	Group A beta-hemolytic streptococcal bacteremia in children A case-control study of necrotizing fasciitis during primary	Wrong population
Zerr, 1999	varicella	Wrong population
Zimbelman, 1999	Improved outcome of clindamycin compared with beta-lactam antibiotic treatment for invasive Streptococcus pyogenes infection	Wrong population

	Distribution of emm types of beta hemolytic streptococci associated with necrotizing fascitis: Clinical profile and	
Abraham, 2016	outcome	Wrong population
Acosta, 2014	Severe Maternal Sepsis in the UK, 2011-2012: A National Case-Control Study	Wrong population
	Investigation into an outbreak of invasive Group A	8 F - F
Adams, 2010	Streptococcal (iGAS) infection at a general hospital in 2010	Wrong population
Adem, 2009	Identification of invasive streptococcal disease in a pediatric and infant death Cohort-Iowa, 2007-2008	Wrong population
Afifi, 2008	Acute necrotizing fasciitis in Egyptian patients: A case series	Wrong population
Al-Khadidi, 2017	Group A Streptococcal bacteraemia. Experience at King Fahad Medical City in Riyadh, Saudi Arabia	Wrong population
Alva, 2013	Necrotising fasciitis: A series of seven cases	Wrong population
Anonymous, 2007	Summaries for patients. Invasive streptococcal infections in hospitals in Ontario, Canada, 1992 to 2000	Wrong population
Aronoff, 2008	Postpartum invasive group A streptococcal disease in the modern era	Wrong population
,	Pivotal Role of Preexisting Pathogen-Specific Antibodies in	5 1 1
Babbar, 2018	the Development of Necrotizing Soft-Tissue Infections	Wrong population
	A serological evaluation of the host immune response during Necrotizing Soft Tissue Infections caused by Streptococcus	
Babbar, 2016	pyogenes	Wrong population
Babiker, 2019	Impact of adjunctive clindamycin in invasive beta-hemolytic streptococcal infections: A propensity score-matched analysis of 1956 beta-lactam treated patients from 118 us hospitals	Wrong population
Bajpai, 1977 Barnham, 2001	Chemotherapy of acute bone and joint infections Bacteraemic Streptococcus pyogenes infection in the peripartum period: now a rare disease and prior carriage by the patient may be important	Wrong population Wrong population
Darimani, 2001		wrong population
Basma, 1999	Risk factors in the pathogenesis of invasive group A streptococcal infections: Role of protective humoral immunity	Wrong population
Dasilla, 1999	Maternal deaths due to sepsis in the state of Michigan, 1999-	wrong population
Bauer, 2015	2006	Wrong population
	Invasive group A Streptococcus infections associated with	
Beaudoin, 2014	liposuction surgery at outpatient facilities not subject to state or federal regulation	Wrong population
2011	Postoperative complications followed by septoplasty	
Beigh, 2012	comparison between conventional nasal packing and glove finger pack	Wrong population
Doign, 2012	The relationship of tampon characteristics to menstrual toxic	Trong population
Berkley, 1987	shock syndrome	Wrong population
Bingol-Kologlu, 2007	Necrotizing fasciitis in children: diagnostic and therapeutic aspects	Wrong population
	Necrotizing soft tissue infections caused by Streptococcus	
Reum 2012	pyogenes and Streptococcus dysgalactiae subsp. equisimilis of	Wrong population
Bruun, 2013	groups C and G in western Norway Risk factors and Predictors of Mortality in Streptococcal	Wrong population
	Necrotizing Soft-Tissue Infections: A Multicenter Prospective	
Bruun, 2020	Study	Wrong population

Busowski, 2013	Puerperal group a streptococcal infections: A case series and discussion	Wrong population
	Clinical deterioration among patients with fever and	
Byer, 2006	erythroderma	Wrong population
Centers for		
Disease, 1982	Toxic-shock syndrome, United States, 1970-1982	Wrong population
Centers for	Invasive group A streptococcus in a skilled nursing facility	
Disease, 2011	Pennsylvania, 2009-2010	Wrong population
Chan, 2009	Toxic shock syndrome and rhinosinusitis in children	Wrong population
	The microbiological profile and presence of bloodstream	
Chen, 2011	infection influence mortality rates in necrotizing fasciitis	Wrong population
Chen, 2011	Clinical Characteristics and Risk Factor Analysis for Lower-	Wrong population
	Extremity Amputations in Diabetic Patients With Foot Ulcer	
Chen, 2015	Complicated by Necrotizing Fasciitis	Wrong population
Clien, 2013	Macro- and Microvascular Parameters After Toxic Shock	Wrong population
Chan 2019	Syndrome Syndrome	Wrong population
Chen, 2018		wrong population
China 2010	Prospective surveillance of pediatric invasive group A	Whoma nameletica
Ching, 2019	Streptococcus infection	Wrong population
CI. I	Changing epidemiology of invasive Streptococcus pyogenes	
Chiobotaru,	infections in southern Israel: differences between two ethnic	***
1997	population groups	Wrong population
Christie, 1988	Bacteremia with group A streptococci in childhood	Wrong population
	Negration a familia of the systemitics, implementation of	
C 2016	Necrotising fasciitis of the extremities: implementation of	W/
Corona, 2016	new management technologies	Wrong population
	Surveillance for hospital outbreaks of invasive group a	
Daneman, 2007	streptococcal infections in Ontario, Canada, 1992 to 2000	Wrong population
	TT 1: 1 1: 0 ::	
D 2005	Hospital-acquired invasive group A streptococcal infections	337 1 d
Daneman, 2005	in Ontario, Canada, 1992-2000	Wrong population
	Invasive group A streptococcal infections in Ontario, Canada.	
Davies, 1996	Ontario Group A Streptococcal Study Group	Wrong population
,	Toxic shock syndrome: a critique of the 1980 Wisconsin case-	81 1
Davis, 1982	control study	Wrong population
De Almeida	- Control Study	Teng population
Torres, 2013	Group a streptococcus meningitis in children	Wrong population
101105, 2015	Incidence and severity of invasive Streptococcus pneumoniae,	Wrong population
	group A Streptococcus, and group B Streptococcus infections	
Deutscher, 2011	among pregnant and postpartum women	Wrong population
200000001, 2011	Necrotising soft tissue infections: The effect of hyperbaric	Tong population
Devaney, 2015	oxygen on mortality	Wrong population
2013	Investigation of a prolonged Group A Streptococcal outbreak	TOTE Population
	among residents of a skilled nursing facility, Georgia, 2009-	
Dooling, 2013	2012	Wrong population
Douling, 2015	LU1L	wrong population
	The epidemiology of necrotizing fasciitis including factors	
Dworkin, 2009		Wrong population
	associated with death and amputation	wrong population
,		wrong population
,	Epidemiology and Outcome of Necrotizing Fasciitis in	Wrong population
	Epidemiology and Outcome of Necrotizing Fasciitis in Children: An Active Surveillance Study of the Canadian	
Eneli, 2007	Epidemiology and Outcome of Necrotizing Fasciitis in Children: An Active Surveillance Study of the Canadian Paediatric Surveillance Program	Wrong population
Eneli, 2007	Epidemiology and Outcome of Necrotizing Fasciitis in Children: An Active Surveillance Study of the Canadian Paediatric Surveillance Program Risk factors for pediatric invasive group A streptococcal	Wrong population
	Epidemiology and Outcome of Necrotizing Fasciitis in Children: An Active Surveillance Study of the Canadian Paediatric Surveillance Program	

Fauno Thrane, 2017	Hyperbaric oxygen may only be optional in head and neck necrotizing fasciitis: a retrospective analysis of 43 cases and review of the literature	Wrong population
Fichtenbaum, 1993	Ehrlichiosis presenting as a life-threatening illness with features of the toxic shock syndrome Incidence of periorbital necrotising fasciitis in the UK	Wrong population
Flavahan, 2014	population: A BOSU study Capsule-negative EMM types are an increasing cause of	Wrong population
Flores, 2019	pediatric group a streptococcal infections at a large pediatric hospital in Texas Clinical and Microbiological Characteristics of Invasive	Wrong population
Frere, 2016	Group A Streptococcal Infections Before and After Implementation of a Universal Varicella Vaccine Program	Wrong population
Givner, 1998	Invasive disease due to group A beta-hemolytic streptococci: Continued occurrence in children in North Carolina	Wrong population
Givner, 1991	Apparent increase in the incidence of invasive group A beta- hemolytic streptococcal disease in children	Wrong population
Gooskens, 2005	Streptococcal toxic shock syndrome by an iMLS resistant M type 77 Streptococcus pyogenes in the Netherlands	Wrong population
Gonzalez, 1996	Necrotizing fasciitis of the upper extremity	Wrong population
Lesko, 2001	Invasive group A streptococcal infection and nonsteroidal antiinflammatory drug use among children with primary varicella	Wrong population
Lin, 2013	Group a streptococcal necrotizing fasciitis in the emergency department	Wrong population
Lin, 2015	Early Differentiation of Kawasaki Disease Shock Syndrome and Toxic Shock Syndrome in a Pediatric Intensive Care Unit	Wrong population
Parks, 2019	Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus	Wrong population
Stromberg, 1991	Outbreak of group A streptococcal bacteremia in Sweden: an epidemiologic and clinical study	Wrong population
Haggar, 2012	Clinical and microbiologic characteristics of invasive Streptococcus pyogenes infections in north and south India	Relationship between prognostic factor and outcome not reported or quantified
Laupland, 2000	Invasive group A streptococcal disease in children and association with varicella-zoster virus infection. Ontario Group A Streptococcal Study Group	Relationship between prognostic factor and outcome not reported or quantified
Linnemann, 1986	Increasing incidence of toxic shock syndrome in the 1970s	Relationship between prognostic factor and outcome not reported or quantified
Miday, 1988	Toxic shock syndrome: incidence and geographic distribution from a hospital medical records reporting system	Relationship between prognostic factor and outcome not reported or quantified
Mosites, 2018	Outbreak of Invasive Infections from Subtype emm26.3 Group A Streptococcus among Homeless Adults-Anchorage, Alaska, 2016-2017	Relationship between prognostic factor and outcome not reported or quantified

O'Grady, 2007	The epidemiology of invasive group A streptococcal disease in Victoria, Australia	Relationship between prognostic factor and outcome not reported or quantified
Petitti, 1989	Update through 1985 on the incidence of toxic shock syndrome among members of a prepaid health plan	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Pilon, 2019	Invasive group A streptococcal infection outbreaks of typeemm118 in a long-term care facility, and of type emm74 in the homeless population, Montreal, Quebec	prognostic factor and outcome not reported or quantified
Rantala, 2012	Streptococcus pyogenes bacteraemia, emm types and superantigen profiles	Relationship between prognostic factor and outcome not reported or quantified
Tanner, 1981	Toxic shock syndrome	Relationship between prognostic factor and outcome not reported or quantified
Teatero, 2018	Canada-Wide Epidemic of emm74 Group A Streptococcus Invasive Disease	Relationship between prognostic factor and outcome not reported or quantified
Todd, 1985	Toxic shock syndrome. II. Estimated occurrence in Colorado as influenced by case ascertainment methods	Relationship between prognostic factor and outcome not reported or quantified
Tsai, 2014	Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia	Relationship between prognostic factor and outcome not reported or quantified
Vallalta Morales, 2006	Group A streptococcal bacteremia: outcome and prognostic factors	Relationship between prognostic factor and outcome not reported or quantified
Vlaminckx, 2004	Epidemiological features of invasive and noninvasive group A streptococcal disease in the Netherlands, 1992-1996	Relationship between prognostic factor and outcome not reported or quantified
Aydin, 2017	Clinical indications of intravenous immunoglobulin use in pediatric infectious diseases clinic	Relationship between prognostic factor and outcome not reported or quantified
Ben-Abraham, 2002	Invasive group A streptococcal infections in a large tertiary center: epidemiology, characteristics and outcome	Relationship between prognostic factor and outcome not reported or quantified
Bochicchio, 2001	Group A Streptococcus (GAS) soft-tissue infections: a lethal organism on the rise	Relationship between prognostic factor and outcome not reported or quantified
Cancellara, 2016	Multicenter study on invasive Streptococcus pyogenes infections in children in Argentina	Relationship between prognostic factor and

		outcome not reported or quantified
Chen, 2016	Toxic shock syndrome in Australian children	Relationship between prognostic factor and outcome not reported or quantified
Doctor, 1995	Group A beta-hemolytic streptococcal bacteremia: historical overview, changing incidence, and recent association with varicella	Relationship between prognostic factor and outcome not reported or quantified
Eriksson, 2003	Group A streptococcal infections in Sweden: a comparative study of invasive and noninvasive infections and analysis of dominant T28 emm28 isolates	Relationship between prognostic factor and outcome not reported or quantified
Norrby-Teglund, 2003	The treatment of severe group a streptococcal infections	Relationship between prognostic factor and outcome not reported or quantified
Rodriguez- Nunez, 2011	Clinical characteristics of children with group A streptococcal toxic shock syndrome admitted to pediatric intensive care units	Relationship between prognostic factor and outcome not reported or quantified
Snall, 2016	Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Eriksson, 1998	Epidemiological and clinical aspects of invasive group A streptococcal infections and the streptococcal toxic shock syndrome	prognostic factor and outcome not reported or quantified
Sahli, 2014	Necrotizing fasciitisin in diabetic patients: A report of 14 cases	Not in English
Arnholm, 2004	High-dose immunoglobulin - Life-saving in invasive group a streptococcal infection [S. Pyogenes invasive disease in a paediatric hospital: 1996-	Not in English
Caetano, 2010 Costa Orvay,	2009] [Toxic shock syndrome: experience in a pediatric intensive	Not in English
2007 Dosil Gallardo,	care unit] [Streptococcal toxic shock syndrome: an emerging	Not in English
2009	pathology?]	Not in English
Emmi, 1999	Severe infection from invasive beta-hemolytic streptococcus group A. Three cases of toxic shock observed in resuscitation	Not in English
Faye, 2014	Management of severe invasive group A streptococcal infections	Not in English
Floret, 2001	Clinical aspects of staphylococcal and streptococcal toxinic diseases	Not in English
Hua, 2018	[Streptococcal toxic shock syndrome caused by Streptococcus pyogenes: a retrospective study of 15 pediatric cases]	Not in English
Kach, 1993	[Necrotizing soft tissue infections]	Not in English
Kaul, 1999	Intravenous immunoglobulin therapy for streptococcal toxic shock syndromea comparative observational study. The Canadian Streptococcal Study Group	Duplicate
Salinas, 2005	Immunoglobulins in sepsis and septic shock	Not in English

Shands, 1982	Toxic shock syndrome: case-control studies at the Centers for Disease Control	Duplicate
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003	Duplicate
Urbina, 2019 Vallalta-	Early identification of patients at high risk of group A streptococcus-associated necrotizing skin and soft tissue infections: A retrospective cohort study [Streptococcal toxic shock syndrome: ten years' experience at	Duplicate
Morales, 2005	a tertiary hospital]	Not in English
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Duplicate
Vugia, 1996	Invasive group A streptococcal infections in children with varicella in Southern California	Duplicate
Zachariadou, 2014	Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections	Duplicate
Bernard, 1995	[Bacterial dermo-hypodermatitis in adults. Incidence and role of streptococcal etiology]	Not in English
Bleton, 1991	Necrotizing fasciitis of the upper limb. 12 cases	Not in English
Bleton, 1991	Necrotising fasciitis of the upper limb. Report of twelve cases	Duplicate
Fan, 2014	[Clinical characteristics and antimicrobial resistance of invasive group A beta-hemolytic streptococcus infection in children]	Not in English
Fica, 2003	Molecular epidemiology of a streptococcus pyogenes related nosocomial outbreak in a burn unit	Not in English
Fredlund, 1990	[Increased frequency of group A hemolytic streptococci. Old age and immune deficiency among the risk factors]	Not in English
Georgiev, 1993	Puerperal streptococcal sepsis	Not in English
Khan, 2003	Treatment of necrotizing fasciitis with quinolones	Wrong population
Frosi, 1999	Necrotizing fasciitis: A serious and uncommon alcohol related disease Necrotizing Soft Tissue Infections: Case Reports, from the	Wrong study design
Nedrebo, 2020	Clinician's Perspectives.	Wrong study design
Reicher, 2021	450 Obstetrically related group a streptococcal infection and predictors for severity - retrospective 12-year cohort study	Wrong study design
Bajpai, 2020	Anti-microbial-resistance and profile of exotoxins of invasive beta-haemolytic-streptococci infections in trauma patients Can gram-negative-like biomarker values in Streptococcus	Wrong population
Adamkova, 2020	pyogenes sepsis negatively influence right choice of initial antibiotic therapy?	Wrong population
Bandi, 2021	Group A streptococcal infections in children	Wrong population
Ceccato, 2020	Use of corticosteroids in patients with severe CAP admitted to ICU, experience in a real-life setting	Wrong population
Tepper, 2021	Long-term safety and tolerability of atogepant following once daily dosing over 1 year for the preventive treatment of migraine	Wrong population

	Clinical, epidemiological and microbiological features of	
Melo, 2021	streptococcus pyogenes invasive infection - 10 year retrospective review	Wrong population
101010, 2021	Clinical characteristics and outcomes of children with toxic	Wrong population
	shock syndrome admitted to a pediatric intensive care unit: A	
Bringel, 2021	case series	Wrong population
	Characterisation of clinical manifestations and treatment	
NI 66 2020	strategies for invasive beta-haemolytic streptococcal	
Neff, 2020	infections in a Swiss tertiary hospital.	Wrong population
	Assessing and applying individualized treatment for group A	
Urbina, 2020	streptococcal necrotizing soft-tissue infection is possible	Wrong population
	Correlation between immunoglobulin dose administered and	
Bergsten, 2020	plasma neutralization of streptococcal superantigens in patients with necrotizing soft tissue infections	Wrong population
Bergsten, 2020	A prospective survey of Streptococcus pyogenes infections in	wrong population
	French Brittany from 2009 to 2017: Comprehensive dynamic	
Boukthir, 2020	of new emergent emm genotypes.	Wrong population
	Clinical Features and Outcomes of Streptococcus anginosus	
Escribuela-	Group Infective Endocarditis: A Multicenter Matched Cohort	
Vidal, 2021	Study.	Wrong population
	Effectiveness of adjunctive clindamycin in beta-lactam antibiotic-treated patients with invasive beta-haemolytic	
	streptococcal infections in US hospitals: a retrospective	
Babiker, 2021	multicentre cohort study.	Wrong population
	▼	
Cui, 2021	Necrotizing soft tissue infection: clinical characteristics, diagnosis, and management of 32 cases in Beijing.	Wrong population
		wrong population
Link-Gelles,	Characteristics of Intracranial Group A Streptococcal	
2020	Infections in US Children, 1997-2014. Use of Intravenous Immunoglobulins in Patients with	Wrong population
Peetermans,	Suspected Toxin-Mediated Shock Requiring Extracorporeal	
2020	Membrane Oxygenation.	Wrong population
	Beta-Hemolytic Streptococci and Necrotizing Soft Tissue	811
Bruun, 2020	Infections.	Wrong population
	Multisystem inflammatory syndrome in children (MIS-C)	
I : G # 2021	during SARS-CoV-2 pandemic in Brazil: a multicenter,	337
Lima-Setta, 2021	prospective cohort study.	Wrong population
	Kininogen supports inflammation and bacterial spreading	
Kohler, 2020	during Streptococccus Pyogenes Sepsis.	Wrong population
	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective	
Bruun, 2021	Study.	Wrong population
210011, 2021	•	Tong population
Diorals 2020	Morbidity and mortality in critically ill patients with invasive	Wrong nonulation
Bjorck, 2020	group A streptococcus infection: an observational study.	Wrong population
	Menstrual toxic shock syndrome: a French nationwide	337 I d
Contou, 2021	multicenter retrospective study.	Wrong population
	Association of characteristics of tampon use with menstrual	
Billon, 2020	toxic shock syndrome in France.	Wrong population
		Relationship between
	Invasiva Group A Strontogogous Infaction in Children in	prognostic factor and
Canetti, 2021	Invasive Group A Streptococcus Infection in Children in Central Israel in 2012-2019	outcome not reported or quantified
Cancui, 2021	Central 181401 III 2012-2017	quantinou

Vilhonen, 2020	Group A streptococcal bacteremias in Southwest Finland 2007-2018: epidemiology and role of infectious diseases consultation in antibiotic treatment selection.	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Thielemans, 2020	Clinical Description and Outcomes of Australian Children With Invasive Group A Streptococcal Disease.	prognostic factor and outcome not reported or quantified
Madsen, 2020	Treatment of Necrotizing Soft Tissue Infections: IVIG	Wrong study design
Deniskin, 2019	Clinical Manifestations and Bacterial Genomic Analysis of Group A Streptococcus Strains That Cause Pediatric Toxic Shock Syndrome.	Relationship between prognostic factor and outcome not reported or quantified
Mosites, 2018	Outbreak of Invasive Infections From Subtype emm26.3 Group A Streptococcus Among Homeless Adults-Anchorage, Alaska, 2016-2017.	Relationship between prognostic factor and outcome not reported or quantified
Hasin, 2020	Invasive Group A Streptococcus Infection in Children in Southern Israel Before and After the Introduction of Varicella Vaccine.	Wrong population
Ching, 2019	Prospective Surveillance of Pediatric Invasive Group A Streptococcus Infection.	Wrong population
Loewen, 2017	Epidemiologic features of invasive group A Streptococcus infection in a rural hospital: 6-year retrospective report and literature review.	Wrong population
Bergsten, 2020	Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections.	Wrong population
Kobayashi, 2016	A Cluster of Group A Streptococcal Infections in a Skilled Nursing Facility-the Potential Role of Healthcare Worker Presenteeism.	Wrong population
Adebanjo, 2020	Evaluating Household Transmission of Invasive Group A Streptococcus Disease in the United States Using Population-based Surveillance Data, 2013-2016.	Wrong population
Link-Gelles, 2020	Characteristics of Intracranial Group A Streptococcal Infections in US Children, 1997-2014.	Wrong population
Bruun, 2021	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study.	Wrong population
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection.	Wrong study design
Hayata, 2021	Nationwide study of mortality and survival in pregnancy- related streptococcal toxic shock syndrome.	Duplicate

Table of additional study characteristics

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Abuhammour 2004	Cohort	United States	2	9	100	NR	NR	NR	NR	NR	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
											any antibiotic - clinical cure/improvement^
											any antibiotic - ICU admission
											any antibiotic - mortality
Adalat 2014	Cohort	United Kingdom, Ireland	29	4 (median)	62	NR	NR	28	38	62	IVIG - mortality
Al-Ajmi 2012	Case-series	Qatar	2	35	0	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
Barnham 2002	Case-series	England	12	57	64	NR	NR	58	17	83	age - ICU admission^
											age - mortality^
											any antibiotic - ICU admission
											any antibiotic - mortality
											clindamycin - ICU admission^
											clindamycin - mortality
											emm type - ICU admission^
											emm type - mortality^
											immunocompromised - ICU admission^
											immunocompromised - mortality
											IVIG - ICU admission
											IVIG - mortality
											IVIG - time to mortality^
											NF - ICU admission
											NF - mortality
											NSAIDs - ICU admission
											NSAIDs - mortality
Bernaldo de Quiros 1997	Cohort	Spain	9	NR	NR	NR	NR	NR	NR	NR	immunocompromised - mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Brogan 1995	Case-series	United States	5	6	60	NR	NR	100	60	40	age - clinical cure/improvement^
											age - hospital LOS^
											age - ICU admission^
											age - ICU LOS^
											age - mortality^
											NSAIDs - clinical cure/improvement^
											NSAIDs - hospital LOS^
											NSAIDS - ICU admission
											NSAIDs - ICU LOS^
											NSAIDs - mortality
											sex - clinical cure/improvement
											sex - hospital LOS^
											sex - ICU admission
											sex - ICU LOS^
											sex - mortality
Butragueno Laiseca 2017	Case-series	Spain	13	2	50	NR	NR	15	15	85	acute renal failure - clinical cure/improvement^
											acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - clinical cure/improvement^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											clindamycin - clinical cure/improvement^
											clindamycin - ICU LOS^
											clindamycin - mechanical ventilation^
											clindamycin - mortality
											hemodialysis - clinical cure/imrpovement
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
											IVIG - clinical cure/improvement
											IVIG - ICU LOS
											IVIG - mechanical ventilation
											IVIG - mortality
											NF - clinical cure/improvement
											NF - ICU LOS^
											NF - mechanical ventilation
											NF - mortality
Carapetis 1995	Case-series	Australia	5	NR	NR	NR	NR	NR	NR	NR	age - mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination o interest reported
Carapetis 2014	Cohort	Australia	37	60	50	NR	NR	100	0	100	age - mortality^
											IVIG - mortality
											sex - mortality
Cimolai 1992	Case-series	Canada	4	8	50	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - mortality^
											sex - clinical cure/improvement
											sex - mortality
Cook 2020	Cohort	United States	27	9	44	NR	NR	19	56	44	other - other^
Cowan 1994	Case-series	United States	3	2	67	NR	NR	NR	100	0	age - clinical cure/improvement^
											age - ICU admission^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											sex - clinical cure/improvement
											sex - ICU admission
											sex - ICU LOS^
											sex - mechanical ventilation
											sex - mortality
Crum 2004	Case-series	United States	2	24	100	NR	NR	50	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mechanical ventilation^
											age - mortality^
											hemodialysis - clinical cure/improvement
											hemodialysis - ICU admission
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
Dahl 2002	Case-series	United States	5	53	NR	NR	NR	100	0	100	age - mortality^
											immunocompromised - mortality
Darenberg 2003	Randomized trial	Sweden, Norway, Finland,	18	52	48	NR	NR	NR	11	89	IVIG - change in SOFA score^
		Netherlands									IVIG - mortality
											IVIG - time to clinical cure/improvement^
											IVIG - time to mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Donaldson 1993	Case-series	England	5	67	20	NR	NR	100	NR	NR	age - mortality^
											any antibiotic - mortality
											sex - mortality
Erdem 2004	Case-series	United States	3	52	67	NR	NR	100	NR	33	age - mortality^
											sex - mortality
Eriksson 1999	Cohort	Sweden	6	46	83	NR	NR	NR	0	100	age - mortality^
											emm type - mortality^
											sex - mortality
Forni 1995	Case-series	United States	5	54	83	NR	17	50	0	100	acure renal failure - ICU admission^
											acute renal failure - mortality
											age - hospital LOS^
											age - ICU admission^
											age - mortality^
											emm type - ICU admission^
											emm type - mortality^
											NF - ICU admission
											NF - mortality
Fronhoffs 2000	Case-series	Germany	7	49	71	14	14	86	86	14	acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - mechanical ventilation^
											age - mortality^
											immunocompromised - mechanical ventilation^
											immunocompromised - mortality
											NF - mechanical ventilation
											NF - mortality
											NSAIDs - mechanical ventilation^
											NSAIDs - mortality
											sex - mechanical ventilation
											sex - mortality
Hasegawa 2004	Case-control	Japan	66*	Range: 0 to 70	59	NR	18	NR	100	0	acute renal failure - mortality
Hayata 2021	Cohort	Japan	28	NR	0	NR	NR	NR	0	100	age - mortality^
											NSAIDs - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination o interest reported
Huang 2001	Case-series	Taiwan	3	6	100	NR	NR	NR	33	67	age - mortality^
Kansal 2000	Cohort	Canada	28	NR	NR	NR	NR	NR	NR	NR	NF - other^
Kaul 1999	Case-control	Canada	53	57	55	NR	NR	NR	NR	NR	dindamycin - mortality IVIG - duration of mechanical ventilation^ IVIG - hospital LOS IVIG - mortality
Linder 2017	Cohort	United States	10	NR	NR	NR	NR	NR	0	100	NF - mortality
Linder 2017	Conort	United States	10	NK	NK	NK	NK	NK	U	100	immunocompromised - mortality
Linnér 2014	Cohort	Sweden	67	63	42	48	16	28	NR	NR	age - mortality^ dindamycin - mortality IVIG - hospital LOS IVIG - mortality
Luca-Harari 2009	Cohort	Cyprus, Czech Republic, Denmark, Finand, France, Germany, Greece, Italy, Romania, Sweden, United Kingdom	476	NR	NR	NR	NR	NR	NR	NR	emm type - mortality^
Nelson 2016	Cohort	United States	381	NR	NR	NR	NR	19	NR	NR	age - mortality NF - mortality
O'Loughlin 2007	Cohort	United States	309	NR	NR	NR	NR	20	NR	NR	age - mortality NF - mortality
Page 2011	Cohort	Canada	16	NR	NR	NR	NR	NR	NR	NR	other - other^
Safar 2011	Cohort	New Zealand	30	NR	NR	NR	NR	17	0	100	age - mortality NF - mortality
Schwartz 1992	Case-series	United States	8	40	40	NR	NR	NR	0	100	age - mortality^ emm type - mortality^ sex - mortality
Shah 2009	Cohort	United States	192	8	49	NR	NR	NR	NR	NR	IVIG - cost^ IVIG - hospital LOS IVIG - ICU admission IVIG - ICU LOS IVIG - mechanical ventilation IVIG - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Sriskandan 2000	Cohort	England	7	NR	NR	NR	NR	NR	NR	NR	other - other^
Stegmayr 1992	Case-series	Sweden	11	42	64	NR	NR	NR	27	73	age - clinical cure/improvement^
											age - ICU admission^
											age - mechanical ventilation^
											age - mortality^
											hemodialysis - clinical cure/improvement
											hemodialysis - ICU admission
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
											IVIG - clinical cure/improvement
											IVIG - ICU admission
											IVIG - mechanical ventilation
											IVIG - mortality
											NF - clinical cure/improvement
											NF - ICU admission
											NF - mechanical ventilation
											NF - mortality
											sex - clinical cure/improvement
											sex - ICU admission
											sex - mechanical ventilation
											sex - mortality
											,
Stevens 1989	Case-series	United States	19	41	53	80	5	21	0	100	age - mortality^
											emm type - mortality^
											hemodialysis - mortality
											NF - mortality
											sex - mortality
Stockmann 2012	Cohort	United States	53	30 (median)	NR	58	19	32	NR	NR	age - ICU admission^
											age - mortality
Tagini 2017	Case-series	Switzerland	5	18	60	NR	NR	NR	20	80	age - mortality^
-											emm type - mortality^
											sex - mortality
Zachariadou 2013	Cohort	Greece	19	NR	NR	NR	NR	NR	0	100	age - mortality
											emm type - mortality^

*More than 80% of STSS cases due to group A Streptococcus

^Excluded from meta-analysis

NF=necrotizing fasciitis

NSAIDs=non-steroidal anti-inflammatory drugs

ICU=intensive care unit

IVIG=intravenous immunoglobulin

GAS=group A Streptococcus

STSS=streptococcal toxic shock syndrome

NR=not reported

Risk of bias assessment of included studies

Author	Study participation	Study Attrition	Prognostic Factor Measurement	Outcome Measurement	Study Confounding	Statistical Analysis and Presentation Summary	Overall Risk of Bias
Abuhammour 2004	Low	Low	Low	Low	High	High	High
Adalat 2014	Low	High	High	Low	High	High	High
Al-Ajmi 2012	NA	NA	NA	NA	NA	NA	High
Barnham 2002	NA	NA	NA	NA	NA	NA	High
Bernaldo de Quiros 1997	Low	Low	Low	Low	High	High	High
Brogan 1995	NA	NA	NA	NA	NA	NA	High
Butragueno Laiseca 2017	NA	NA	NA	NA	NA	NA	High
Carapetis 1995	NA	NA	NA	NA	NA	NA	High
Carapetis 2014	Low	Low	Low	Low	High	High	High
Cimolai 1992	NA	NA	NA	NA	NA	NA	High
Cook 2021	Low	Low	Low	Low	High	High	High
Cowan 1994	NA	NA	NA	NA	NA	NA	High
Crum 2004	NA	NA	NA	NA	NA	NA	High
Dahl 2002	NA	NA	NA	NA	NA	NA	High
Darenberg 2003	Low	Moderate	Low	Moderate	Low	Low	Moderate
Donaldson 1993	NA	NA	NA	NA	NA	NA	High
Erdem 2004	NA	NA	NA	NA	NA	NA	High
Eriksson 1999	Low	Low	Low	Low	High	High	High
Forni 1995	NA	NA	NA	NA	NA	NA	High
Fronhoffs 2000	NA	NA	NA	NA	NA	NA	High
Hasegawa 2004	Low	Low	Moderate	Low	High	High	High
Hayata 2021	Low	Low	Low	Low	High	High	High
Huang 2001	NA	NA	NA	NA	NA	NA	High
Kansal 2000	Moderate	Low	Moderate	Low	High	High	High
Kaul 1999	Low	Low	Low	Low	High	High	High

<u>-</u>							
Linder 2017	Low	Moderate	Low	Moderate	High	High	High
Linner 2014	Low	Low	Low	Low	Moderate	Low	Low
Luca-Harari 2009	Low	High	Low	Low	High	High	High
Nelson 2016	Low	Low	Low	Low	High	High	High
O'Loughlin 2007	Low	Low	Low	Low	High	High	High
Page 2011	Low	Low	Low	Low	Moderate	High	Moderate
Safar 2011	Low	Low	Low	Low	High	High	High
Schwartz 1992	NA	NA	NA	NA	NA	NA	High
Shah 2009	Low	High	Low	Low	Moderate	Moderate	Moderate
Sriskandan 2000	Moderate	Moderate	High	Low	High	High	High
Stegmayr 1992	NA	NA	NA	NA	NA	NA	High
Stevens 1989	NA	NA	NA	NA	NA	NA	High
Stockmann 2012	Low	Low	Low	Low	High	High	High
Tagini 2017	NA	NA	NA	NA	NA	NA	High
Zachariadou 2013	Low	Low	Low	Low	High	High	High

NA, Not Applicable because case-series study design and rated at high risk of bias.

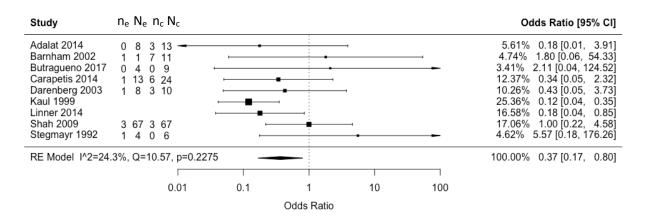
Forest plots

 $\mathbf{n}_{e:}$ number of patients with the outcome exposed to or experiencing the prognostic factor (experimental group) $\mathbf{N}_{e:}$ total number of patients exposed to or experiencing the prognostic factor (experimental group) $\mathbf{n}_{e:}$ number of patients with the outcome not exposed to or experiencing the prognostic factor (control group) $\mathbf{N}_{e:}$ total number of patients not exposed to or experiencing the prognostic factor (control group)

Percentages in forest plots correspond to the percent weight contribution of each study in the meta-analysis.

For mortality, ICU admission and need for mechanical ventilation outcomes, an odds ratio greater than 1 corresponds with a worse STSS prognosis and an odds ratio less than 1 corresponds with a better STSS prognosis.

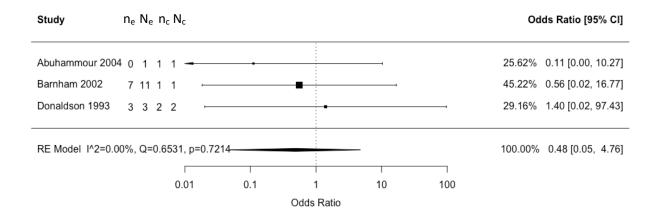
For clinical cure or improvement outcome, an odds ratio greater than 1 corresponds with a better STSS prognosis and an odds ratio less than 1 corresponds with a worse STSS prognosis.

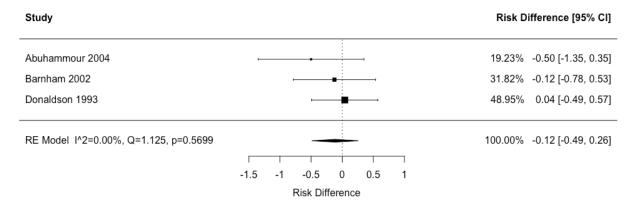

For duration of hospitalization and ICU stay outcomes, a mean difference greater than 1 corresponds with a worse STSS prognosis and a mean difference less than 1 corresponds with a better STSS prognosis.

Mortality

1. Sex: male vs female (reference)

Study	$n_e N_e n_c N_c$	Odds Ratio [95% CI]
Brogan 1995	0 3 0 2	5.52% 0.71 [0.01, 49.71]
Carapetis 2014	0 1 1 1 -	4.85% 0.11 [0.00, 10.27]
Cimolai 1992	0 2 1 2 -	6.93% 0.20 [0.00, 8.82]
Cowan 1994	0 2 0 1 -	5.11% 0.60 [0.01, 49.45]
Donaldson 1993	1 1 4 4 -	5.29% 0.33 [0.00, 25.41]
Erdem 2004	2 2 1 1	5.11% 1.67 [0.02, 137.35]
Eriksson 1999	1 5 0 1	7.28% 1.00 [0.02, 40.28]
Fronhoffs 2000	1 5 0 2	7.87% 1.67 [0.05, 58.28]
Schwartz 1992	2 2 1 4	7.72% 11.67 [0.32, 422.14]
Stegmayr 1992	0 7 1 4 -	8.39% 0.16 [0.00, 4.87]
Stevens 1989	4 10 2 9	28.46% 2.08 [0.32, 13.46]
Tagini 2017	0 2 1 3 -	7.47% 0.33 [0.01, 12.82]
RE Model I^2=0.0	00%, Q=5.876, p=0.8815	100.00% 0.91 [0.34, 2.46]
	 	
	0.01 0.1 1 10 100	
	Odds Ratio	


2.A) IVIG in all STSS patients: yes vs no (reference)



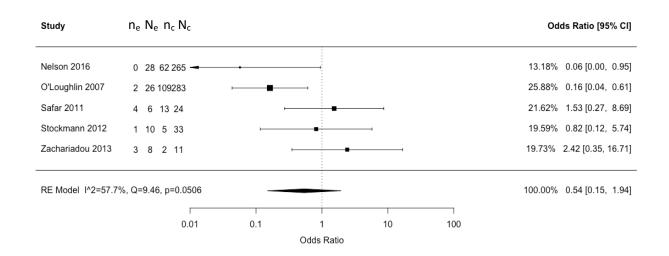
2.B) IVIG in the subset of STSS patients treated with clindamycin: yes vs no (reference)

Study	$n_e \ N_e \ n_c \ N_c$					Od	ds Ratio [95	5% CI]
Adalat 2014	0 8 3 13 -			_		6.68%	0.18 [0.01,	3.91]
Barnham 2002	1 1 2 6	-		-		5.08%	5.40 [0.15, 1	88.83]
Carapetis 2014	1 13 6 24	-				17.50%	0.34 [0.05,	2.32]
Darenberg 2003	1 8 3 10	-	-	_		13.70%	0.43 [0.05,	3.73]
Kaul 1999						21.92%	0.18 [0.03,	1.01]
Linner 2014	3 21 11 31		-			35.12%	0.34 [0.09,	1.30]
RE Model I^2=0.	00%, Q=3.055, p=0.691	15	_			100.00%	0.34 [0.15,	0.75]
			i					
	0.01	0.1	1	10	100			
			Odds Ratio					

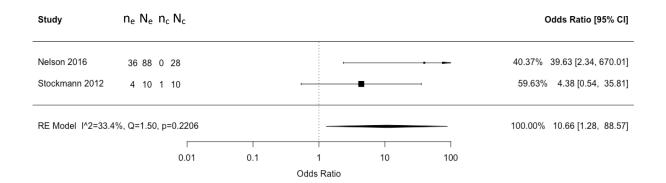
3. Any antibiotic: yes vs no (reference)

4. Necrotizing fasciitis: yes vs no (reference)

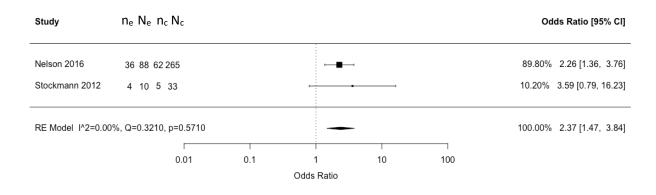
Study	$n_e \; N_e \; n_c \; N_c$					Odds Ratio [95% CI]
Barnham 2002	5 7 3 5	-				4.12% 1.57 [0.17, 14.28]
Butragueno 2017	0 2 0 11	-			-	1.22% 4.60 [0.07, 292.29]
Forni 1995	2 3 1 2	-			→	2.24% 1.67 [0.08, 34.72]
Fronhoffs 2000	1 6 0 1	-			4	1.54% 0.82 [0.02, 32.27]
Kaul 1999	7 23 21 30	-	i			13.04% 0.20 [0.06, 0.64]
Nelson 2016	20 73 78 308		⊢			33.77% 1.13 [0.64, 1.99]
O'Loughlin 2007	22 62 89 247		<u> </u>			33.35% 0.98 [0.55, 1.75]
Safar 2011	1 5 16 25	-				4.89% 0.19 [0.03, 1.44]
Stegmayr 1992	0 1 1 10	-	. _			1.58% 2.11 [0.06, 79.97]
Stevens 1989	1 4 5 15	-	-			4.24% 0.82 [0.09, 7.19]
RE Model I^2=15.4	%, Q=10.64, p=0.301	1				100.00% 0.81 [0.51, 1.29]
			i	ı		
	0.01	0.1	1	10	100	
			Odds Ratio			

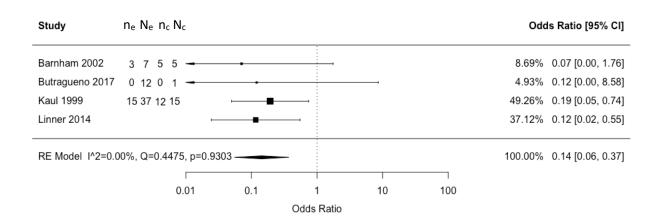

5. NSAIDs: yes vs no (reference)

Study	$n_e \; N_e \; n_c \; N_c$					Odds Ratio [95% CI]
Barnham 2002	6 9 0 1					14.11% 5.57 [0.18, 176.26]
Brogan 1995	0 3 0 2		-			9.35% 0.71 [0.01, 49.71]
Fronhoffs 2000	0 2 1 5		-			13.32% 0.60 [0.02, 20.98]
Hayata 2021	9 12 4 16		-	-		63.22% 7.54 [1.47, 38.55]
RE Model I^2=0	.00%, Q=2.340, p=0.504	9				100.00% 4.14 [1.13, 15.14]
			- i -			
	0.01	0.1	1	10	100	
			Odds Ratio			

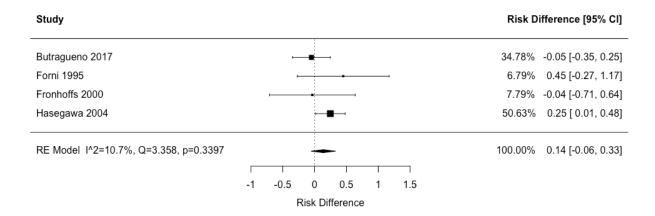

6. Immunocompromised: yes vs no (reference)

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Barnham 2002	2 3 5 8		-			44.06% 1.06 [0.09, 12.02]
Dahl 2002	1 1 4 4 🔫		•			13.83% 0.33 [0.00, 25.41]
Fronhoffs 2000	0 1 1 6		-		—	19.23% 1.22 [0.03, 48.20]
Linder 2017	2 2 2 8		-			22.88% 13.00 [0.45, 377.47]
RE Model I^2=0	.00%, Q=2.119, p=0.548	32				100.00% 1.65 [0.33, 8.26]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

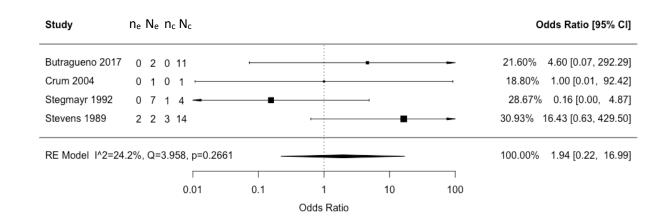

7. Age: <18 years vs 18-64 years (reference)


8. Age: ≥65 years vs <18 years (reference)

9: Age: ≥65 years vs 18-64 years (reference)

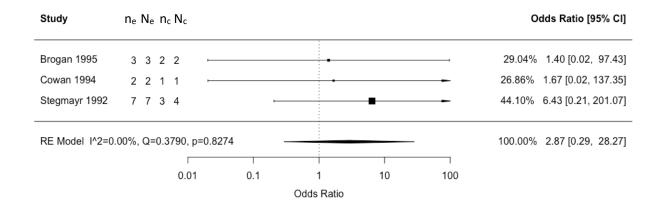


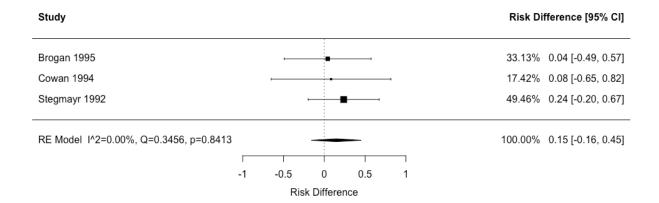
10. Clindamycin antibiotic vs no clindamycin antibiotic (reference)



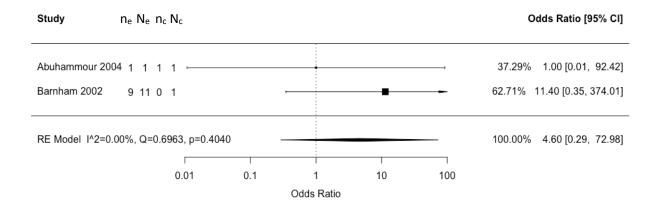
11. Acute renal failure: yes vs no (reference)

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	0 9 0 4 -				ı	5.36% 0.47 [0.01, 27.94]
Forni 1995	3 4 0 1	-			-	6.41% 7.00 [0.17, 291.34]
Fronhoffs 2000	1 6 0 1 ⊢		-		-	6.60% 0.82 [0.02, 32.27]
Hasegawa 2004	23 42 7 24					81.62% 2.81 [0.99, 8.00]
RE Model I^2=0.0	00%, Q=1.336, p=0.720	06				100.00% 2.50 [0.97, 6.42]
		1	i			
	0.01	0.1	1	10	100	
			Odds Ratio			

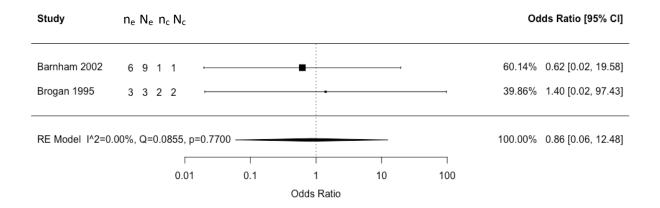

12. Hemodialysis: yes vs no (reference)

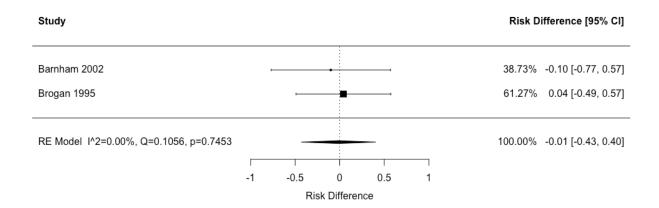


ICU admission

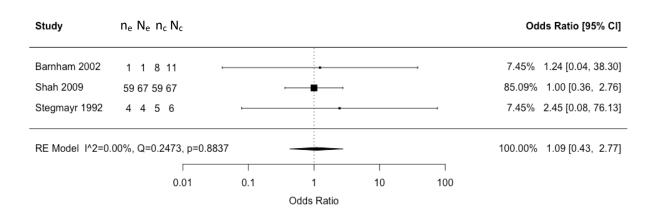

This note pertains to meta-analyses of the outcome ICU admission that include the study Stegmayr 1992. For this study, 10 of 11 STSS patients were admitted to the ICU. Despite no explicit mention of which one patient was not admitted to the ICU, our interpretation of the clinical profiles and patient-level data allowed us to deduce that patient 1 likely did not require ICU admission. We reached out to the corresponding author to confirm if our interpretation was correct, but did not receive a response.

1. Sex: male vs female (reference)


2. Any antibiotic: yes vs no (reference)

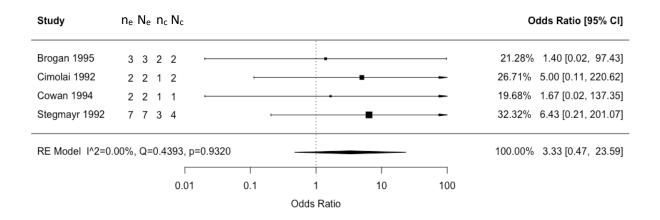


3. Necrotizing fasciitis: yes vs no (reference)

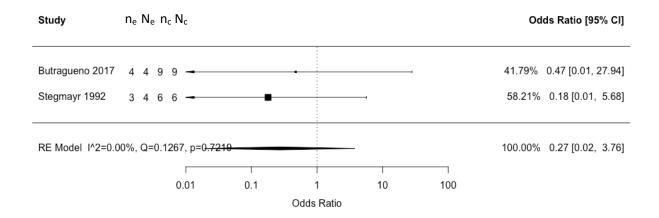

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Barnham 2002	5 7 4 5		-			57.42% 0.73 [0.07, 7.90]
Forni 1995	3 3 2 2 ⊢					18.02% 1.40 [0.02, 97.43]
Stegmayr 1992	1 1 9 10		•			24.56% 0.47 [0.01, 17.94]
RE Model I^2=0.	00%, Q=0.1447, p=0.93	302 ——				100.00% 0.74 [0.12, 4.48]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

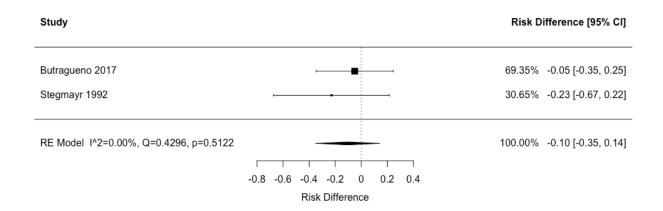
4. NSAIDs: yes vs no (reference)

5. IVIG in all STSS patients: yes vs no (reference)

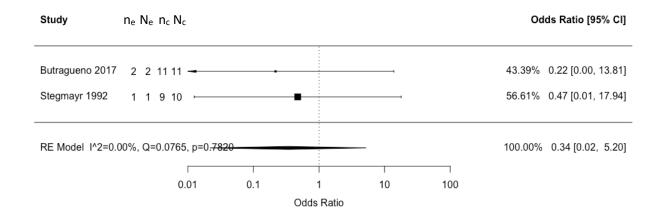


6. Hemodialysis: yes vs no (reference)

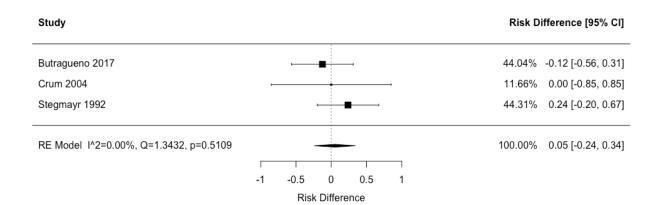

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Crum 2004	1 1 1 1					36.65% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	63.35% 6.43 [0.21, 201.07]
RE Model I^2=0	.00%, Q=0.4113, p=0.5	213 —				100.00% 3.25 [0.21, 50.35]
			- i	1		
	0.01	0.1	1	10	100	
			Odds Ratio			


Clinical cure or improvement

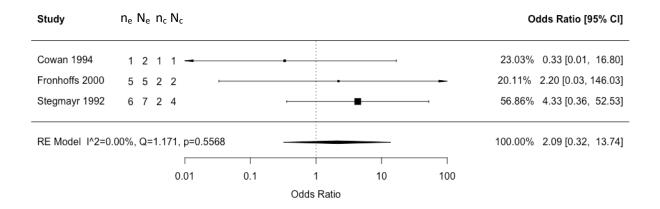
1. Sex: male vs female (reference)

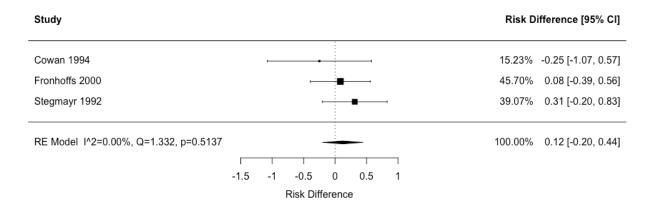


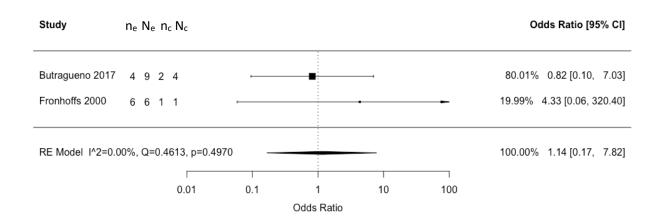
2. IVIG in all STSS patients: yes vs no (reference)



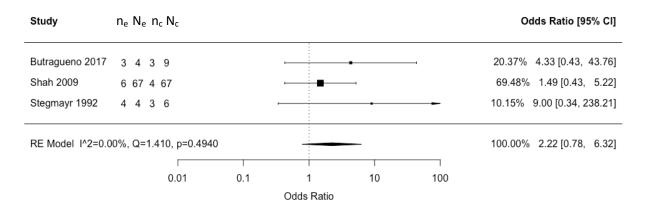
3. Necrotizing fasciitis: yes vs no (reference)


4. Hemodialysis: yes vs no (reference)

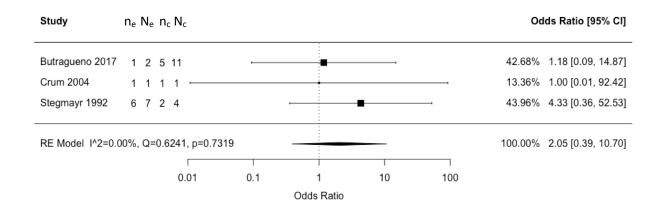

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	2 2 11 11 -					30.35% 0.22 [0.00, 13.81]
Crum 2004	1 1 1 1		-			25.53% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	44.13% 6.43 [0.21, 201.07]
RE Model I^2=00	.0%, Q=1.5470, p=0.46	i14 —				100.00% 1.43 [0.15, 14.08]
			- i	T		
	0.01	0.1	1	10	100	
			Odds Ratio			


Mechanical ventilation

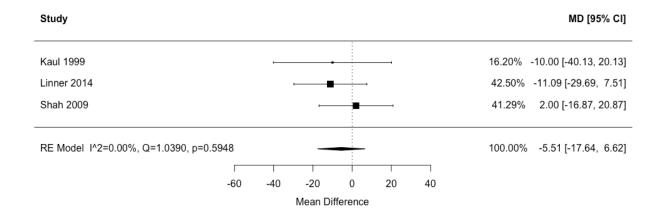
1. Sex: male vs female (reference)



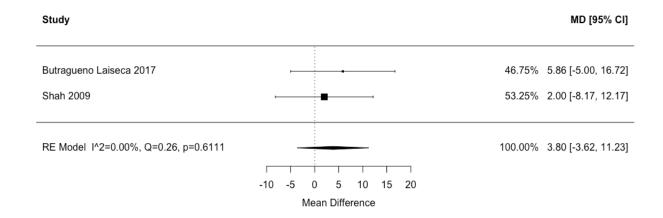
2. Acute renal failure: yes vs no (reference)


3. IVIG in all STSS patients: yes vs no (reference)

4. Necrotizing fasciitis: yes vs no (reference)


Study	$n_e \; N_e \; n_c \; N_c$					Odds Ratio [95% CI]
Butragueno 2017	2 2 4 11		-			40.57% 8.33 [0.32, 215.68]
Fronhoffs 2000	6 6 1 1					23.19% 4.33 [0.06, 320.40]
Stegmayr 1992	1 1 7 10	-	-			36.23% 1.40 [0.04, 43.79]
RE Model I^2=0.0	00%, Q=0.5503, p=0.7	594			-	100.00% 3.75 [0.47, 29.81]
			- i	1		
	0.01	0.1	1	10	100	
			Odds Ratio			

5. Hemodialysis: yes vs no (reference)


Hospital length-of-stay

1. IVIG: yes vs no (reference)

ICU length-of-stay

1. IVIG: yes vs no (reference)

Description of studies ineligible for meta-analysis by outcome

Mortality

N reporting	N analyzed	Reasons for exclusion from meta-analysis
4		
		n=17 case-series with <10 patients, precluding
		the aggregation of patient-level data; n=6 study population consisted of patients all within same
28	5	age category
3	3	
4	4	
0	0	
7	0	n=7 variability in reporting of molecular
		characteristics and comparators
4	4	n=1 insufficient data for meta-analysis (only p
5	4	value reported)
9	9	
6	6	
10	10	
4	4	
12	12	
1	0	Meta-analysis precluded with only one study
	28 3 4 0 7 4 5 9 6 10 4 12	reporting analyzed 4 4 28 5 3 3 4 4 0 0 7 0 4 4 9 9 6 6 10 10 4 4 12 12 1 0

(P)ICU admission

Drognostia faatar of interest	N	N analyzed	Descent for evaluation from moto analysis
Prognostic factor of interest	reporting	V	Reasons for exclusion from meta-analysis
acute renal failure	1	0	Meta-analysis precluded with only one study n=5 case-series with <10 patients, precluding the
			aggregation of patient-level data; n=3 study
			population consisted of patients all within same
age	9	0	age category; n=1 eligible for analysis, but meta- analysis precluded with only one study
antibiotic	2	2	
clindamycin	1	0	Meta-analysis precluded with only one study
early hypotension	0	0	
. 0.	2	0	n=2 variability in reporting of molecular
emmtype	2	0	characteristics and comparators
hemodialysis	2	2	
immunocompromised	1	0	Meta-analysis precluded with only one study
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	3	3	
NSAIDs	2	2	
sex	3	3	
timetoantibiotic	0	0	

Clinical cure or improvement

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	1	0	Meta-analysis precluded with only one study
			n=6 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study population consisted of patients all within same
age	8	0	age category
antibiotic	1	0	Meta-analysis precluded with only one study
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated patients	0	0	
NF	2	2	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	4	4	
timetoantibiotic	0	0	

Mechanical ventilation

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	2	2	9
			n=3 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study population consisted of patients all within same
age	5	0	age category
antibiotic	0	0	
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	1	0	Meta-analysis precluded with only one study
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	3	3	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	3	3	
timetoantibiotic	0	0	

Hospital length-of-stay

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
			n=2 case-series with <10 patients, precluding
age	2	0	the aggregation of patient-level data
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	1	0	Meta-analysis precluded with only one study
timetoantibiotic	0	0	

Duration of mechanical ventilation

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

ICU length-of-stay

D (1.6.)	N	NT I	
Prognostic factor of interest	reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
			n=2 case-series with <10 patients, precluding the aggregation of patient-level data; n=1 study population consisted of patients all within same
age	3	0	age category
antibiotic	0	0	
clindamycin	1	0	Meta-analysis precluded with only one study
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated			
patients	0	0	
NF	1	0	Meta-analysis precluded with only one study
NSAIDs	1	0	Meta-analysis precluded with only one study
			n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with
sex	2	0	only one study
timetoantibiotic	0	0	

Change in SOFA score from baseline

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Functional status

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	<u> </u>
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Health related quality of life

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Cost

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	7
antibiotic	0	0	
clindamycin	0	0	<u>O</u> .
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to mortality

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	Tensons for execution from ment unitysis
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	0	n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with only one study n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis
IVIG in clindamycin-treated patients	2	0	precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to clinical improvement or resolution of shock

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	1	0	Meta-analysis precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT	ı		
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	4
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	4
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4-9
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	4-9
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	4-9
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	4-9
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	4-9
Data items 10a		List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4-9
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4-9
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	4-9
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	4-9
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	4-9
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4-9
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4-9
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4-9
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4-9
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4-9
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	4-9
Certainty	15	Describe any methods use obtopassess/certainty (ortopnfillenics) in the body of evidence for iale butsonhem	4-9

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
assessment			
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	9-17
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	9-17
Study characteristics	17	Cite each included study and present its characteristics.	9-17
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	9-17
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	9-17
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	9-17
syntheses	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	9-17
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	9-17
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	9-17
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.	9-17
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	9-17
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	17-19
, 	23b	Discuss any limitations of the evidence included in the review.	17-19
	23c	Discuss any limitations of the review processes used.	17-19
	23d	Discuss implications of the results for practice, policy, and future research.	17-19
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	4
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	4
,	24c	Describe and explain any amendments to information provided at registration or in the protocol.	4
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	20
Competing interests	26	Declare any competing interests of review authors.	20
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:

MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist

A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Reporting of Background		
Problem definition		
Hypothesis statement		
Description of Study Outcome(s)		
Type of exposure or intervention used		
Type of study design used		
Study population		
Reporting of Search Strategy		
Qualifications of searchers (eg, librarians		
and investigators)		
Search strategy, including time period		
included in the synthesis and keywords		
Effort to include all available studies,		
including contact with authors		
Databases and registries searched		
Search software used, name and		
version, including special features used		
(eg, explosion)		
Use of hand searching (eg, reference		
lists of obtained articles)		
List of citations located and those		
excluded, including justification		
Method for addressing articles		
published in languages other than		
English		
Method of handling abstracts and	<i>O</i> ,	
unpublished studies		
Description of any contact with authors		
Reporting of Methods		
Description of relevance or		
appropriateness of studies assembled for		
assessing the hypothesis to be tested		
Rationale for the selection and coding of		
data (eg, sound clinical principles or		
convenience)		
Documentation of how data were		
classified and coded (eg, multiple raters,		
blinding, and interrater reliability)		
Assessment of confounding (eg,		
comparability of cases and controls in		
studies where appropriate		

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Assessment of study quality, including		
blinding of quality assessors;		
stratification or regression on possible		
predictors of study results		
Assessment of heterogeneity		
Description of statistical methods (eg,		
complete description of fixed or random		
effects models, justification of whether		
the chosen models account for predictors		
of study results, dose-response models,		
or cumulative meta-analysis) in sufficient		
detail to be replicated		
Provision of appropriate tables and		
graphics		
Reporting of Results		
Table giving descriptive information for		
each study included		
Results of sensitivity testing (eg,		
subgroup analysis)		
Indication of statistical uncertainty of		
findings		
Reporting of Discussion		
Quantitative assessment of bias (eg,		
publication bias)		
Justification for exclusion (eg, exclusion		
of non–English-language citations)		
Assessment of quality of included studies		
Reporting of Conclusions		
Consideration of alternative explanations		
for observed results		
Generalization of the conclusions (ie,		
appropriate for the data presented and		
within the domain of the literature review)		
Guidelines for future research		
Disclosure of funding source		
	•	•

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.

BMJ Open

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-063023.R2
Article Type:	Original research
Date Submitted by the Author:	29-Sep-2022
Complete List of Authors:	Bartoszko, Jessica; McMaster University, Department of Health Research Methods, Evidence and Impact Elias, Zeyad; University of Toronto, Department of Medicine Rudziak, Paulina; Western University, Department of Biology Lo, Carson KL; McMaster University, Department of Medicine Thabane, Lehana; McMaster University, Department of Health Research Methods, Evidence and Impact; McMaster University, Departments of Anesthesia and Pediatrics Mertz, Dominik; McMaster University, Department of Health Research Methods, Evidence and Impact; McMaster University, Department of Medicine Loeb, Mark; McMaster University, Department of Health Research Methods, Evidence and Impact; McMaster University, Department of Pathology and Molecular Medicine
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Evidence based practice
Keywords:	Epidemiology < INFECTIOUS DISEASES, EPIDEMIOLOGY, BACTERIOLOGY, GENERAL MEDICINE (see Internal Medicine)

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Jessica J Bartoszko HBSc¹, Zeyad Elias BSc², Paulina Rudziak BSc(c)³, Carson KL Lo MD⁴, Lehana Thabane PhD^{1,5,6}, Dominik Mertz MD^{1,4,7,8}, Mark Loeb MD^{1,7,8}

Corresponding author:

Dr. Mark Loeb, loebm@mcmaster.ca, McMaster University, Hamilton, Canada, L8S 4L8

Key words: streptococcal toxic shock syndrome (STSS); systematic review; meta-analysis

Word count: 4320

¹ Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada

² Department of Medicine, University of Toronto, Toronto, Ontario, Canada

³ Department of Biology, Western University, London, Ontario, Canada

⁴ Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada

⁵ Departments of Anesthesia and Pediatrics, McMaster University, Hamilton, Ontario, Canada

⁶ Biostatistics Unit, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada

⁷ Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada

⁸ Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada

ABSTRACT

Objectives: To quantify the prognostic effects of demographic and modifiable factors in streptococcal toxic shock syndrome (STSS).

Design: Systematic review and meta-analysis.

Data sources: MEDLINE, EMBASE and CINAHL from inception to 19 September 2022, along with citations of included studies.

Eligibility criteria: Pairs of reviewers independently screened potentially eligible studies of patients with GAS-induced STSS that quantified the association between at least one prognostic factor and outcome of interest.

Data extraction and synthesis: We performed random-effects meta-analysis after duplicate data extraction and risk of bias assessments. We rated the certainty of evidence using the GRADE approach.

Results: One randomized trial and 40 observational studies were eligible (n=1,918 patients). We found a statistically significant association between clindamycin treatment and mortality (n=144; odds ratio [OR] 0.14, 95% CI 0.06 to 0.37), but the certainty of evidence was low. Within clindamycin-treated STSS patients, we found a statistically significant association between intravenous immunoglobulin (IVIG) treatment and mortality (n=188; OR 0.34, 95% CI 0.15 to 0.75), but the certainty of evidence was also low. The odds of mortality may increase in patients \geq 65 years when compared to patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84), but the certainty of evidence was low. We are uncertain whether non-steroidal anti-inflammatory drugs (NSAIDs) increased the odds of mortality (n=50; OR 4.14, 95% CI 1.13 to 15.14; very low certainty). Results failed to show a significant association between any other prognostic factor and outcome combination (very low to low certainty evidence) and no studies quantified the association between a prognostic factor and morbidity post-infection in STSS survivors.

Conclusions: Treatment with clindamycin and within clindamycin-treated patients, IVIG, was each significantly associated with mortality, but the certainty of evidence was low. Future research should focus on morbidity post-infection in STSS survivors.

STRENGTHS AND LIMITATIONS OF THIS STUDY

- Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients.
- These strengths directly address limitations of an existing narrative synthesis of STSS prognosis restricted to the critical care setting.
- In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence.
- v are lin.
 idence is the lack
 tion in STSS survivors. A limitation of the evidence is the lack of long-term outcome data reported, including morbidity post-infection in STSS survivors.

Introduction

Streptococcal toxic shock syndrome (STSS) is an acute and severe life-threatening complication of predominantly invasive Group A *Streptococcus* (GAS) infections. STSS is relatively uncommon, but is fatal [1]. Using US data from 2000 to 2004, the Center for Diseases Control and Prevention estimated an annual incidence rate of 0.2 cases per 100,000 people and a fatality rate of 36% [2]. STSS has important consequences for morbidity as well, in which patients may require radical surgical debridement, and patients with organ failure may have permanent respiratory and renal insufficiency [1].

Although extensive multidisciplinary clinical management efforts by intensivists, infectious disease specialists, and surgeons have curbed STSS all-cause mortality [1], data on the natural history of long-term sequelae in surviving patients, such as renal, respiratory and neuropsychiatric complications, are sparse [1-4]. Published studies of prognostic and treatment factors for STSS have consistently focused on associations with all-cause mortality [5-14], with few reporting on outcomes capturing the morbidity post-infection in STSS survivors [7, 12]. Furthermore, a thorough and systematic review to corroborate this evidence is lacking. A narrative review of STSS was limited by the lack of a systematic or explicit search of the literature, it included studies that were only narratively synthesized, and the focus was limited to studies within a critical care setting [1].

Understanding prognosis of STSS is important for patients, clinicians, and healthcare decision makers. We conducted a systematic review to summarize the prognostic and treatment factors, and outcomes of STSS. We aimed to capture a wide breadth of patient-important outcomes with follow up that included both short- and long-term outcomes within and outside of critical care.

Materials and methods

We registered a protocol for the present systematic review and meta-analysis with PROSPERO (CRD42020166961) [15, 16]. We report this systematic review and meta-analysis following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Meta-analyses of Observational Studies in Epidemiology (MOOSE) checklists [17, 18]. Decisions regarding criteria for study inclusion, search methods for identification of

studies, data collection, risk of bias, evaluation of the certainty of evidence and analysis were established a priori.

Search strategy and selection criteria

We searched MEDLINE (OVID interface, Epub Ahead of Print, In-Process & Other Non-Indexed Citations, 1946 to 19 September 2022), EMBASE (OVID interface, 1974 to 19 September 2022) and the Cumulative Index to Nursing And Allied Health Literature (CINAHL) from inception to 19 September 2022, with no restrictions on publication date. We applied search filters for randomized controlled trials and non-randomized studies (cohort, case-control and case series with at least 2 STSS patients) [19, 20], and tailored search strategies to each database. We restricted included studies to the English language to facilitate screening of full-texts [21, 22] and searched citations of included studies to minimize the risk of failing to include relevant studies.

We included studies of randomized and non-randomized designs that reported the association of at least one prognostic factor of interest on at least one outcome of interest, and compared GASinduced STSS patients with the prognostic factor of interest (i.e. exposed) to GAS-induced STSS patients without the prognostic factor of interest (i.e. unexposed). Studies of patients with microbiologically confirmed STSS, probable cases of STSS and patients with clinical evidence of STSS as defined by study authors and generally consistent with the below criteria were eligible [3, 23]. Clinical evidence of STSS included hypotension and at least two of the following: renal impairment, coagulopathy, liver function abnormality, acute respiratory distress syndrome, generalized erythematous macular rash (with desquamation), soft-tissue necrosis (including necrotizing fasciitis, myositis or gangrene), or meningitis. Probable cases of STSS were defined as meeting clinical evidence with GAS isolated from a non-sterile site (e.g. throat, sputum, superficial skin lesion) or antigen detected. Confirmed cases of STSS were defined as meeting clinical evidence with GAS isolated from a sterile site (e.g. blood, cerebrospinal fluid, deep tissue specimen taken during surgery) [3, 23]. Demographic, comorbidity, infection, modifiable and process variables were prognostic factors of interest. Informed by clinical expertise in the review team, we selected outcomes based on importance to patients. Further, we aimed to capture the long-term sequelae in patients surviving STSS [1, 2, 4]. We chose the

following outcomes of interest: (time to) mortality, hospital length-of-stay, pediatric (P) intensive care unit (ICU) admission, (P)ICU length-of-stay, mechanical ventilation, duration of mechanical ventilation, (time to) clinical cure/improvement or resolution of shock, change in Sequential Organ Failure Assessment (SOFA) score from baseline, functional status (e.g. physical component summary (PCS) score on the 36-item short form health survey (SF-36)) and health related quality of life (HRQoL). We also extracted on cost outcomes, which are relevant to hospital and patient payees.

We excluded case reports and conference abstracts, and studies in which the population was less than 80% GAS-induced STSS cases (i.e. toxic shock syndrome of bacterial aetiologies other than GAS made up more than 20% of the study population). Because prognostic evidence in STSS patients is scarce [1, 2, 4], we did not apply any restrictions based on analytical method (e.g. conducting an adjusted, multivariable analysis) or sample size.

Using a systematic review software, Rayyan [24], following training and calibration exercises, pairs of reviewers independently screened all titles and abstracts, followed by full-texts of records that were identified as potentially eligible. When necessary, consensus was reached through discussion between the review pair, and arbitration by a senior co-investigator in the absence of consensus.

Data analysis

For each eligible study, pairs of reviewers extracted data independently using a standardized, pilot tested data extraction form. Reviewers collected information on study characteristics (study design as defined by study authors, sample size, country), patient characteristics (age, sex), disease characteristics (confirmed vs probable STSS, presence of necrotizing fasciitis), prognostic factors and outcomes of interest (means or medians and measures of variability for continuous outcomes and the proportion of participants who experienced an event for dichotomous outcomes). If multiple time points were reported for outcomes of interest, we extracted all time points. To minimize risk of confounding associated with prognostic effect estimates on dichotomous outcomes in non-randomized studies, we preferentially extracted adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CI) over proportions

when both were reported. We used the proportions to calculate crude ORs when no adjusted ORs were provided. Reviewers resolved discrepancies by discussion and, when necessary, with adjudication by a senior co-investigator.

Following training and calibration exercises, reviewers, independently and in duplicate, used the Quality in Prognosis Studies (QUIPS) tool to rate each prognostic factor and outcome combination at low, moderate or high risk of bias. Based on prespecified sets of questions, we assessed risk of bias across the following domains: participation, attrition, prognostic factor measurement, outcome measurement, confounding, and statistical analysis and reporting [25]. For studies addressing more than one prognostic factor and outcome combination, we reported the highest risk of bias rating among the prognostic factor and outcome combinations within a study for each domain. In addition to assessing risk of bias at the domain-level as outlined in the QUIPS tool, we applied the following rules to assess risk of bias overall at the study-level. We rated overall study risk of bias as low if the study was prospective and five or more domains were assessed as low risk of bias, and high if two or more domains were assessed as high risk of bias. All other studies were rated as moderate risk of bias overall. Due to high risk of selection bias and residual confounding, we rated all case series as high risk of bias overall. Reviewer pairs resolved discrepancies by discussion and, when needed, with adjudication by a senior coinvestigator.

Pairs of reviewers used the grading of recommendations, assessment, development, and evaluation (GRADE) approach to independently assess the certainty of prognostic evidence for each meta-analysed outcome. Criteria for rating the certainty for each prognostic factor and outcome as high, moderate, low, or very low, included considerations of risk of bias, inconsistency, indirectness, size and precision of the association and publication bias [26, 27]. Judgments of imprecision for this systematic review were made using a minimally contextualised approach. This approach considers whether confidence intervals include the null effect. Further, the terminology used to report GRADE ratings (e.g. low certainty evidence) is based on published GRADE guidance [28, 29]. The supplementary file presents the detailed guidance we developed to facilitate the certainty of the evidence assessment in this review. To facilitate interpretation of the results in which the summary measure was an OR, we used the median

event rate in the reference group of studies reporting proportions to calculate baseline risks and subsequently calculated absolute effects. GRADE evidence summaries (Summary of Findings tables) were generated in the MAGIC Authoring and Publication Platform (www.magicapp.org).

When at least two included studies reported on the same prognostic factor and outcome in patients with GAS-induced STSS, we conducted DerSimonian and Laird random-effects metaanalyses using the *metafor* package in R version 4.0.4 (R Studio, Boston, MA, USA) [30]. We summarised the effects of prognostic factors on dichotomous outcomes using ORs and corresponding 95% CI, and on continuous outcomes using mean differences and corresponding 95% CI. For prognostic factor and dichotomous outcome combinations in which every patient in the reference arm experienced the outcome, we summarised the effects by directly calculating risk differences and corresponding 95% CI. We set the criterion for statistical significance at alpha = 0.05. Visual inspection of forest plots and the chi-square test were performed to evaluate heterogeneity. We interpreted an I² statistic value of 0%-40%, 30%-60%, 50%-90%, or 75%-100% as not likely important, moderate, substantial, or considerable heterogeneity, respectively [31]. If an I² statistic value was within a range of overlapping values (e.g. 80%), we would interpret heterogeneity as more important (e.g. considerable instead of substantial) if the metaanalysis contained few studies, we observed inconsistent magnitudes and directions of summary estimates upon visual inspection of the forest plots, or the chi-square test was significant [31]. For meta-analyses of continuous outcomes, we imputed means and standard deviations for studies reporting medians and (interquartile) ranges, respectively [32, 33].

Patient-level data from case-series were aggregated when possible to enable comparative analysis via meta-analysis. We planned to perform a regression analysis for each study for which age was reported at the patient level to generate a study and age category (0 to 17 years old vs 18 to 64 years old vs 65 years old or older) specific OR that could be used in meta-analysis when a study had at least 10 observations for continuous outcomes and 10 events for dichotomous outcomes; however, no study met the sample size or event number requirements. Further, scarcity and variability of data precluded our plan to narratively synthesize the evidence from included studies for which meta-analysis of a prognostic factor and outcome combination was not possible.

The analysis plan included performing subgroup analyses of STSS patients treated with clindamycin vs no clindamycin, STSS patients with necrotizing fasciitis vs without necrotizing fasciitis, age (0 to 17 years old vs 18 to 64 years old vs 65 years old or older), sex (male vs female) and risk of bias (high vs moderate vs low) when at least two studies were present for each subgroup. Because select meta-analyses were limited by small numbers of events, we performed a post-hoc sensitivity analysis using the Peto method for meta-analysis, which is recommended for meta-analysis of rare events [34], and compared the results to those from the DerSimonian and Laird method we applied in this review.

Patient and public involvment

It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.

Results

After screening 27,321 titles and abstracts, and 305 full texts, 41 studies that reported on the association between at least one prognostic factor and outcome of interest in STSS patients proved eligible (Figure 1). All but one study (40/41, 98%) were non-randomized. Eligible studies were published between 1989 and 2021, ranged in sample size from 2 to 476, included 1,918 STSS patients in total and were conducted in 22 different countries, most commonly in the United States (15/41, 37%).

Table 1 describes the characteristics of included studies reporting on the association of at least one prognostic factor and outcome of interest. The supplementary data includes additional study characteristics for each study. Of the 41 included studies, 29 (71%) reported on demographic prognostic factors of interest, 5 (12%) medical history of being immunocompromised, 11 (27%) early disease characteristics, and 16 (39%) treatment. Of the dichotomous outcomes, mortality was most commonly reported (36/41, 88%), followed by (P)ICU admission (10/41, 24%), clinical cure or improvement (8/41, 20%) and need for mechanical ventilation (6/41, 15%). Few studies reported on hospital (3/41, 7%) and ICU length-of-stay (2/41, 5%). Two studies reported on time to mortality in days [7, 35]; however, only one reported sufficient data precluding meta-

analysis [7]. One study each reported on cost [14], change in SOFA score [7], time to clinical improvement or resolution of shock [7] and duration of mechanical ventilation [10] precluding meta-analysis for these continuous outcomes. No studies quantified the association between a prognostic factor and functional status or health related quality of life outcomes. A multivariable analysis was conducted in two (5%) of the included studies [10, 11]. A total of 19 of the 41 studies were cohort studies (authors reported on at least one comparative analysis), 19 were case series (authors did not report a comparative analysis) and 2 were case-control studies. To meta-analyse the data, we aggregated the data from the individual patients the case series reported on. Further, we pooled the one randomized study [7] with non-randomized studies in meta-analyses and included patients receiving intravenous or intramuscular IVIG from one non-randomized study [36].

Table 1. Study characteristics. Values are numbers (percentages) of studies unless stated otherwise.

Characteristics	(41 studies, 1918 patients)
Range of publication year	1989 to 2021
Median (IQR) No. of patients	11 (5 to 29)
Geographical region:	
North America	19 (46)
Europe	14 (34)
Central/South America	0 (0)
Asia	4 (10)
Other	4 (10)
Study design:	
Randomized trial	1 (2)
Cohort	19 (46)
Case-control	2 (5)
Case-series	19 (46)
Case definition:	
Probable STSS patients	115 (6)
Confirmed STSS patients	227 (12)
Prognostic factor type:	
Demographic	29 (71)
Medical history	5 (12)
Early disease	11 (27)
Treatment	16 (39)

IQR=interquartile range STSS=streptococcal toxic shock syndrome Medical history included prognostic variable: immunocompromised Early disease included prognostic variables: necrotizing fasciitis, acute renal failure

The supplementary material includes the forest plots depicting the studies included in the metaanalysis of each prognostic factor-outcome combination. It also includes the list of studies reporting on prognostic factor-outcome combinations of interest that were not eligible for any meta-analysis, along with the reasons for exclusion from meta-analysis.

Risk of bias in included studies

The supplementary file presents the risk of bias assessment of the 41 included studies. The majority of studies were rated as high risk of bias overall owing to residual confounding and lack of adjustment for confounding in statistical analyses (37/41, 90%) [2, 5, 6, 10, 35-67]. Three studies were rated at moderate risk of bias overall [7, 14, 68] and one at low risk of bias overall [11].

Prognostic factors for mortality

Eleven prognostic factors from 32 studies including 1343 patients were eligible for analysis (table 2, supplementary data). We found a statistically significant association between clindamycin treatment and mortality (figure 2A; n=144; odds ratio [OR] 0.14, 95% CI 0.06 to 0.37), but the certainty of evidence was low. Within clindamycin-treated STSS patients, we found a statistically significant association between intravenous immunoglobulin (IVIG) treatment and mortality (figure 2B; n=188; OR 0.34, 95% CI 0.15 to 0.75), but the certainty of evidence was also low. We are uncertain whether IVIG treatment reduces the odds of mortality in all STSS patients regardless of concurrent clindamycin treatment (n=365, OR 0.37, 95% CI 0.17 to 0.80; very low certainty of evidence). The odds of mortality may increase in patients ≥65 years when compared to patients 18-64 years (n=396; OR 2.37, 95% CI 1.47 to 3.84), but the certainty of evidence was low. We are less certain whether the same is true for patients ≥65 years compared to patients <18 years (n=136, OR 10.66, 95% CI 1.28 to 88.57; very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (n=50, OR 4.14, 95% CI 1.13 to 15.14; very low certainty of evidence). Very low certainty evidence failed

to show a significant association with any other prognostic factor and mortality in STSS patients: male vs female (n=80, OR 0.95, 95% CI 0.36 to 2.52), patients <18 years vs patients 18 to 64 years (n=694, OR 0.54, 95% CI 0.15 to 1.94), immunocompromised vs not immunocompromised (n=33, OR 1.65, 95% CI 0.33 to 8.26), necrotizing fasciitis vs no necrotizing fasciitis (n=840, OR 0.81, 95% CI 0.51 to 1.29), acute renal failure vs no acute renal failure (n=91, OR 2.50, 95% CI 0.97 to 6.42), hemodialysis vs no hemodialysis (n=42, OR 1.94, 95% CI 0.22 to 16.99) and any antibiotic vs no antibiotic (n=19, OR 0.48, 95% CI 0.05 to 4.76).

Table 2. Summary of findings for prognostic factor – outcome meta-analyses.

			Absolute effe	ect estimates				
Prognostic factor	Number of patients (studies)	Odds ratio (95% confidence interval)	Risk without prognostic factor	Risk with prognostic factor	GRADE: Certainty of the Evidence			
		MORTAL	ITY					
		Demograp	ohic					
			250 per 1000	241 per 1000	Very low			
Male vs Female	80 (13)	0.95 (0.36 to 2.52)	-9 (-143	to 207)	Due to very serious risk of bias and imprecision			
40.40.64	604 (5)	0.51/0.15 . 100	234 per 1000	142 per 1000	Very low			
<18 vs 18-64 years	694 (5)	0.54 (0.15 to 1.94)	-92 (-190	,	Due to very serious risk of bias and imprecision, and serious inconsistency			
>65 40	12((2)	10 (((1 20 4- 00 57)*	50 per 1000	359 per 1000	Very low			
≥65 vs <18 years	136 (2)	10.66 (1.28 to 88.57)*	309 (13		Due to very serious risk of bias and serious imprecision			
≥65 vs 18–64 years	396 (2)	2.37 (1.47 to 3.84)*	193 per 1000	362 per 1000	Low			
	370 (2)		169 (67	to 286)	Due to very serious risk of bias			
	Medical history							
Immunocompromised vs Not	22 (4)	1 65 (0 22 to 9 26)	438 per 1000	563 per 1000	Very low			
Immunocompromised	33 (4)	1.65 (0.33 to 8.26)	125 (-233 to 428)		Due to very serious risk of bias and imprecision			
		Early dise						
Acute Renal Failure vs No Acute	01 (4)	2.50 (0.07.4- (.42)	NA per 1000	NA per 1000	Very low			
Renal Failure	91 (4)	2.50 (0.97 to 6.42)	140 (-60		Due to very serious risk of bias and imprecision			
Necrotizing Fasciitis vs No	0.40 (10)		347 per 1000	301 per 1000	Very low			
Necrotizing Fasciitis	840 (10)	0.81 (0.51 to 1.29)	-46 (-13	4 to 60)	Due to very serious risk of bias and imprecision			
		Treatme	T					
IVIG vs No IVIG (all STSS	365 (9)	0.37 (0.17 to 0.80)*	231 per 1000	100 per 1000	Very low			
patients)	303 (9)	0.37 (0.17 to 0.80)	-131 (-18	,	Due to very serious risk of bias and serious imprecision			
IVIG vs No IVIG (subset of STSS	100 (6)	0.24 (0.15 + 0.75)*	300 per 1000	127 per 1000	Low			
patients treated with clindamycin)	188 (6)	0.34 (0.15 to 0.75)*	-173 (-24	0 to -57)	Due to serious risk of bias and imprecision			
	10.00	0.40 (0.05 (4.75)	NA per 1000	NA per 1000	Very low			
Any Antibiotic vs No Antibiotic	19 (3)	0.48 (0.05 to 4.76)	-120 (-49	, , , , , , , , , , , , , , , , , , ,	Due to very serious risk of bias and imprecision			
Clindamycin vs No Clindamycin	144.25	0.14 (0.06 : 0.07) *	800 per 1000	359 per 1000	Low			
Antibiotic	144 (4)	0.14 (0.06 to 0.37)*	-441 (-606 to -203)		Due to serious risk of bias and imprecision			
Hemodialysis vs No Hemodialysis	42 (4)	1.94 (0.22 to 16.99)	107 per 1000	189 per 1000	Very low			

,		I						
			82 (-81 to	564)	Due to very serious risk of bias and imprecision			
NGAYO N. NGAYO		4.14 (1.12) 15.14)*	100 per 1000 315 per 1000		Very low			
NSAIDs vs No NSAIDs	50 (4)	4.14 (1.13 to 15.14)*	215 (12 to	o 527)	Due to very serious risk of bias and serious imprecision			
ICU ADMISSION								
		Demogra						
Male vs Female	19 (3)	2.87 (0.29 to 28.27)	NA per 1000	NA per 1000	Very low			
Maie vs Pemaie	19 (3)	2.87 (0.29 to 28.27)	150 (-160	to 450)	Due to very serious risk of bias and imprecision			
		Early disc		Г				
Necrotizing Fasciitis vs No	28 (3)	0.74 (0.12 to 4.48)	900 per 1000	869 per 1000	Very low Due to very serious risk of bias and			
Necrotizing Fasciitis	20 (3)	0.74 (0.12 to 4.40)	-31 (-381	to 76)	imprecision			
		Treatme	·					
IVIG vs No IVIG (all STSS	156 (2)	1.00 (0.42 to 2.77)	833 per 1000	845 per 1000	Very low			
patients)	156 (3)	1.09 (0.43 to 2.77)	12 (-151 t	o 100)	Due to very serious risk of bias and imprecision			
Anna Anadhine - NY Andrew	14 (2)	4 (0 (0 20) 72 00)	500 per 1000	821 per 1000	Very low			
Any Antibiotic vs No Antibiotic	14 (2)	4.60 (0.29 to 72.89)	321 (-275	to 486)	Due to very serious risk of bias and imprecision			
			875 per 1000	958 per 1000	Very low			
Hemodialysis vs No Hemodialysis	13 (2)	3.25 (0.21 to 50.35)	83 (-280 t	o 122)	Due to very serious risk of bias and imprecision			
			NA per 1000	NA per 1000	Very low			
NSAIDs vs No NSAIDs	15 (2)	0.86 (0.06 to 12.48)	-10 (-430	to 400)	Due to very serious risk of bias and imprecision			
		CLINICAL CURE OR	IMPROVEMENT		,			
		Demogra	phic					
			875 per 1000	959 per 1000	Very low			
Male vs Female	23 (4)	3.33 (0.47 to 23.59)	33 (0.47 to 23.59) 84 (-108 to 119)		Due to very serious risk of bias and imprecision			
		Early disc	ease		· ·			
Necrotizing Fasciitis vs No	24 (2)	0.24 (0.02 (5.20)	950 per 1000	866 per 1000	Very low			
Necrotizing Fasciitis	24 (2)	0.34 (0.02 to 5.20)	-84 (-675 to 40)		Due to very serious risk of bias and serious imprecision			
		Treatme	ent					
IVIG vs No IVIG (in all STSS			NA per 1000	NA per 1000	Very low			
patients)	23 (2)	0.27 (0.02 to 3.76)	-100 (-350	to 140)	Due to very serious risk of bias and imprecision			
			NA per 1000 NA per 1000		Very low			
Hemodialysis vs No Hemodialysis	26 (3)	1.43 (0.15 to 14.08)	50 (-240 t	o 340)	Due to very serious risk of bias and			
		NEED FOR MECHANIC	AL VENTILATION		imprecision			
		Demogra						
			NA per 1000	NA per 1000	Very low			
Male vs Female		2.09 (0.32 to 13.74)	120 (-200		Due to very serious risk of bias and			
	21 (3)		120 (-200	to 440)	imprecision			
	21 (3)	Early dis	<u> </u>	to 440)				
Acute Renal Failure vs No Acute		Early disc	<u> </u>	774 per 1000	imprecision Very low			
Acute Renal Failure vs No Acute Renal Failure	20 (2)	, , ,	ease	774 per 1000	imprecision			
Renal Failure	20 (2)	Early disc 1.14 (0.17 to 7.82)	750 per 1000	774 per 1000	Very low Due to very serious risk of bias and imprecision Very low			
		Early disc	750 per 1000 24 (-412 t	774 per 1000 o 209) 897 per 1000	Very low Due to very serious risk of bias and imprecision			
Renal Failure Necrotizing Fasciitis vs No	20 (2)	Early disc 1.14 (0.17 to 7.82)	750 per 1000 24 (-412 t 700 per 1000 197 (-177	774 per 1000 o 209) 897 per 1000	Very low Due to very serious risk of bias and imprecision Very low Due to very serious risk of bias and			
Renal Failure Necrotizing Fasciitis vs No	20 (2)	Early dise 1.14 (0.17 to 7.82) 3.75 (0.47 to 29.81)	750 per 1000 24 (-412 t 700 per 1000 197 (-177	774 per 1000 o 209) 897 per 1000	Very low Due to very serious risk of bias and imprecision Very low Due to very serious risk of bias and			

			500 per 1000	672 per 1000	Very low		
Hemodialysis vs No Hemodialysis	26 (3)	2.05 (0.39 to 10.70)	172 (-219 to 415)		Due to very serious risk of bias and imprecision		
DURATION OF HOSPITALIZATION							
Treatment							
IVIG vs no IVIG (all STSS	201 (3)	NA	NA per 1000	NA per 1000	Low		
patients)			On average, 5.51 fewer days		Due to serious risk of bias and		
T			(17.64 fewer to 6.62 more)		imprecision		
		DURATION OF INTENSIV	E CARE UNIT ST.	AY			
	Treatment						
IVIG vs no IVIG (all STSS	SS 131 (2)	NA	NA per 1000	NA per 1000	Very low		
patients)			On average, 3.		Due to very serious risk of bias and		
F ,			(3.62 fewer to 11.23 more)		serious imprecision		

^{*}statistical evidence of an association

Prognostic factors for ICU admission

Six prognostic factors from eight studies including 174 patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and ICU admission: male vs female sex (n=19, OR 2.87, 95% CI 0.29 to 28.27), necrotizing fasciitis vs no necrotizing fasciitis (n=28, OR 0.74, 95% CI 0.12 to 4.48), hemodialysis vs no hemodialysis (n=13, OR 3.25, 95% CI 0.21 to 50.35), NSAIDs vs no NSAIDs (n=15, OR 0.86, 95% CI 0.06 to 12.48), IVIG treatment vs no IVIG treatment (n=156, OR 1.09, 95% CI 0.43 to 2.77) and antibiotic treatment vs no antibiotic treatment (n=14, OR 4.60, 95% CI 0.29 to 72.98). The certainty of all ICU admission evidence was very low due to very serious risk of bias and imprecision.

Prognostic factors for clinical cure or improvement

Four prognostic factors from six studies including 38 STSS patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and clinical cure or improvement: male vs female sex (n=23, OR 3.33, 95% CI 0.47 to 23.59), necrotizing fasciitis vs no necrotizing fasciitis (n=24, OR 0.34, 95% CI 0.02 to 5.20), hemodialysis vs no hemodialysis (n=26, OR 1.43, 95% CI 0.15 to 14.08) and IVIG treatment vs no IVIG treatment (n=23, OR 0.27, 95% CI 0.02 to 3.76). The certainty of all clinical cure or improvement evidence was very low due to very serious risk of bias and serious or very serious imprecision.

Prognostic factors for mechanical ventilation

Five prognostic factors from six studies including 170 STSS patients were eligible for analysis (table 2, supplementary data). We found no statistical evidence of an association between any prognostic factor and need for mechanical ventilation: male vs female sex (n=21, OR 2.09, 95% CI 0.32 to 13.74), necrotizing fasciitis vs no necrotizing fasciitis (n=31, OR 3.75, 95% CI 0.47 to 29.81), acute renal failure vs no acute renal failure (n=20, OR 1.14, 95% CI 0.17 to 7.82), hemodialysis vs no hemodialysis (n=26, OR 2.05, 95% CI 0.39 to 10.70) and IVIG treatment vs no IVIG treatment (n=157, OR 2.22, 95% CI 0.78 to 6.32). The certainty of all need for mechanical ventilation evidence was very low due to very serious risk of bias and imprecision.

Prognostics factors for hospital length-of-stay

One prognostic factor from three studies including 201 STSS patients was eligible for analysis (table 2, supplementary data). Low certainty evidence – due to serious risk of bias and imprecision – provides no support for an association between IVIG treatment and hospital length-of-stay, when compared to no IVIG treatment (n=201, MD -5.51 days, 95% CI -17.64 to 6.62).

Prognostic factors for intensive care unit length-of-stay

One prognostic factor from two studies including 131 STSS patients was eligible for analysis (table 2, supplementary data). We are uncertain if IVIG treatment compared to no IVIG treatment is associated with ICU length-of-stay (n=131, MD 3.80 days, 95% CI -3.62 to 11.23; very low certainty evidence due to very serious risk of bias and serious imprecision).

Subgroup and sensitivity analysis

Sparsity of data precluded our planned subgroup analyses by clindamycin treatment, presence of necrotizing fasciitis and sex (i.e. each subgroup did not have at least two studies). We collapsed the low and moderate risk of bias categories to allow for subgroup analysis by risk of bias (low or moderate vs high). The prognostic factor-outcome combinations for which there was sufficient evidence for subgroup analysis by age or modified risk of bias level were IVIG-mortality and sex-mortality. We found no statistical evidence that the association between IVIG and mortality differed between low or moderate and high risk of bias studies in all STSS patients

(p=0.884) and clindamycin-treated STSS patients (p=0.867) or between studies with STSS patients <18 years and patients 18-64 years (p=0.328). We also found no statistical evidence that the association between sex and mortality differed between studies with patients <18 years and patients 18-64 years (p=0.666). Because results were consistent across Peto, and DerSimonian and Laird methods, our post-hoc sensitivity analysis applying the Peto method supported our main results.

Discussion

This systematic review and meta-analysis provides a comprehensive overview of the prognostic evidence for STSS. Prognostic factors for which there was a statistically significant association with mortality in STSS patients were age, clindamycin treatment, IVIG treatment and NSAIDs treatment. Patients ≥65 years compared to patients 18 to 64 years may have increased odds of mortality (low certainty of evidence); however we are uncertain if the same is true for patients ≥65 years compared to patients <18 years (very low certainty of evidence). We are also uncertain whether NSAIDs increase the odds of mortality (very low certainty of evidence). Low certainty evidence suggests the odds of mortality may be reduced by treatment with clindamycin and within clindamycin-treated patients, IVIG. We are highly uncertain whether IVIG reduces mortality in all STSS patients, regardless of clindamycin treatment (very low certainty of evidence). Results failed to show a significant association between all other meta-analyzed prognostic factors and outcomes (table 2). The certainty of STSS prognostic evidence was low or very low due to serious or very serious risk of bias and imprecision concerns.

Strengths of this review include its systematic and explicit search of the literature, capture of a wide breadth of patient-important outcomes within and outside of critical care and the use of meta-analysis to increase statistical power in studying relationships between prognostic factors and outcomes in STSS patients. These strengths directly address limitations of a narrative synthesis of STSS prognosis restricted to the critical care setting [1].

In the absence of large cohort studies and randomized trials, conclusions for STSS prognosis in this review are limited by very low to low certainty evidence. The majority of included studies were non-randomized (40/41, 98%) and small (median sample size was 11 patients), introducing

bias from residual confounding and imprecision around pooled summary estimates. Small numbers of events further contributed to the imprecision around summary estimates and limited the interpretation of our findings. With few participants and events, minor changes in the data can cause major changes in the results. In such instances, results can be exaggerated by the presentation of relative effect estimates only. To minimize the risk of misinterpreting results from the inclusion of small studies in our meta-analyses, we calculated an absolute effect estimate for each relative effect estimate (table 2). Further, despite expecting small studies to be more heterogeneous than large studies, we did not find statistical evidence of heterogeneity in any of our 33 meta-analyses and in interpreting the I² statistic value, we found not likely important heterogeneity in all but one meta-analysis [69]. Creation of an international registry of STSS patients may improve the credibility of prognostic evidence for STSS and facilitate the conduct of high-quality cohort studies. Although we meta-analyzed adjusted odds ratios from included studies when possible, almost all included studies reported crude data (39/41, 95%), precluding adjustment for important confounders. A limitation of the evidence is the lack of long-term outcome data reported. For example, no studies quantified associations between prognostic factors and functional status or health related quality of life outcomes post-infection in STSS survivors. Given the high morbidity associated with STSS [70], future research in STSS prognosis should quantify these patient-important outcomes, facilitating future meta-analyses and providing further insights into STSS prognosis.

Our finding that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment is consistent with a systematic review and meta-analysis of IVIG treatment in clindamycin-treated STSS patients, which found statistical evidence of a decreased risk of mortality in IVIG- and clindamycin-treated STSS patients when compared to only clindamycin-treated STSS patients [70]. For this question relevant to clindamycin-treated STSS patients, our meta-analysis included one additional non-randomized study, whose small sample size and imprecision contributed to an overall point estimate of greater magnitude [35]. Our findings suggest that treatment regimens of IVIG in adjunct to clindamycin and clindamycin alone may significantly improve STSS prognosis. We found a significant association between a regimen of IVIG regardless of clindamycin treatment and mortality; however, due to very serious risk of bias and serious imprecision, and thus very low certainty evidence, we cannot rule out the

possibility that clindamycin treatment may be necessary for STSS patients to benefit from IVIG treatment. Further, only one study reported on IVIG treatment in STSS patients that were not also treated with clindamycin [36]; therefore, our planned subgroup analysis to test if the beneficial effect of IVIG is modified in the absence of clindamycin was precluded. Based on very low certainty evidence, our finding that NSAID treatment is significantly associated with mortality in STSS patients can be explained by clinical and basic science literature, which suggests nonselective NSAIDs mask early signs and symptoms of GAS infection, such as fever, subsequently delaying time to antibiotic treatment – a risk factor for severe sepsis and shock, and mortality [71, 72].

After analyzing 30 different prognostic factor and outcome combinations, we found that clindamycin treatment was significantly associated with an improved STSS prognosis. Further, we found that IVIG treatment may reduce the odds of mortality in STSS patients who receive clindamycin treatment, but we are uncertain if this is true for all STSS patients, regardless of clindamycin treatment. Although these findings support the use of IVIG as an adjunctive treatment in clindamycin-treated STSS patients, the certainty of evidence was low due to serious risk of bias and imprecision. Age equal to or older than 65 years and treatment with NSAIDs were significantly associated with a worse STSS prognosis. Results from very low to low certainty evidence failed to show a significant association between any other factors of interest and STSS prognosis.

Contributors

All authors attest they meet the ICMJE criteria for authorship. All authors have made substantial contributions to the following: (1) the conception and design of the study (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), acquisition of data (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo), analysis and interpretation of data (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo, Mark Loeb); (2) drafting the article and revising it critically for important intellectual content (Jessica J Bartoszko, Lehana Thabane, Dominik Mertz, Mark Loeb), (3) final approval of the version to be submitted (Jessica J Bartoszko, Zeyad Elias, Paulina Rudziak, Carson KL Lo, Lehana Thabane, Dominik Mertz, Mark Loeb).

Declaration of interests

Mark Loeb declares grants or contracts from the World Health Organization, consulting fees from AVIR Pharma, and participating on data safety monitoring or advisory boards for Paladin Labs and Sunovion Pharmaceuticals.

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in BMJ Medicine and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Role of the funding source

There was no funding source for this study.

Data availability statement

Data extracted from individual studies are available upon reasonable request to the corresponding author. All other data relevant to the study are included in the article or uploaded as online supplemental information.

Ethics statement

Patient consent for publication not applicable.

Figure 1. PRISMA study flow diagram.

Figure 2. Meta-analyses comparing IVIG treatment to no IVIG treatment for the outcome mortality in A) all STSS patients; and B) the subset of STSS patients treated with clindamycin. Please note proportions are blank for study rows where we meta-analyzed adjusted odds ratios instead of crude proportions.

References

- 1. Schmitz, M., et al., Streptococcal toxic shock syndrome in the intensive care unit. Annals of intensive care, 2018. 8(1): p. 88-88.
- O'Loughlin, R.E., et al., The epidemiology of invasive group A streptococcal infection and 2. potential vaccine implications: United States, 2000-2004. Clin Infect Dis, 2007. 45(7): p. 853-62.
- 3. Canada, G.o., Group A Streptococcal diseases: For health professionals. https://www.canada.ca/en/public-health/services/diseases/group-a-streptococcaldiseases/health-professionals.html, 2019.
- 4. Davies, H.D., et al., Invasive Group A Streptococcal Infections in Ontario, Canada. New England Journal of Medicine, 1996. 335(8): p. 547-554.
- 5. Adalat, S., et al., Toxic shock syndrome surveillance in UK children. Arch Dis Child, 2014. **99**(12): p. 1078-82.
- Carapetis, J.R., et al., Effectiveness of clindamycin and intravenous immunoglobulin, and 6. risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis, 2014. **59**(3): p. 358-65.
- 7. Darenberg, J., et al., Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome: a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis, 2003. **37**(3): p. 333-40.
- 8. Kadri, S.S., et al., Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A Propensity Score-Matched Analysis From 130 US Hospitals. Clin Infect Dis, 2017. **64**(7): p. 877-885.
- 9. Kaul, R., et al., Population-based surveillance for group A streptococcal necrotizing fasciitis: Clinical features, prognostic indicators, and microbiologic analysis of seventyseven cases. Ontario Group A Streptococcal Study. Am J Med, 1997. 103(1): p. 18-24.
- 10. Kaul, R., et al., Intravenous immunoglobulin therapy for streptococcal toxic shock syndrome--a comparative observational study. The Canadian Streptococcal Study Group. Clin Infect Dis, 1999. **28**(4): p. 800-7.
- 11. Linnér, A., et al., Clinical efficacy of polyspecific intravenous immunoglobulin therapy in patients with streptococcal toxic shock syndrome: a comparative observational study. Clin Infect Dis, 2014. **59**(6): p. 851-7.
- 12. Madsen, M.B., et al., Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med, 2017. **43**(11): p. 1585-1593.
- 13. Mehta, S., et al., Morbidity and mortality of patients with invasive group A streptococcal infections admitted to the ICU. Chest, 2006. **130**(6): p. 1679-86.
- 14. Shah, S.S., et al., Intravenous immunoglobulin in children with streptococcal toxic shock syndrome. Clin Infect Dis, 2009. 49(9): p. 1369-76.
- York., C.f.R.a.D.U.o., PROSPERO. International prospective register of systematic reviews. 15. http://www.crd.york.ac.uk/PROSPERO/>. 2017.
- 16. Jessica Bartoszko, Z.E., Dominik Mertz, Lehana Thabane, Mark Loeb., Natural History and Prognosis of Streptococcal Toxic Shock Syndrome: Systematic Review and Meta-

Analysis. Available from:

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020166961, 2020.

- 17. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ, 2009. 339: p. b2535.
- Stroup, D.F., et al., Meta-analysis of observational studies in epidemiology: a proposal 18. for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Jama, 2000. **283**(15): p. 2008-12.
- Practice, B.B., Study design search filters. 19. https://bestpractice.bmj.com/info/toolkit/learn-ebm/study-design-search-filters/.
- Sterne, J.A.C., et al., Recommendations for examining and interpreting funnel plot 20. asymmetry in meta-analyses of randomised controlled trials. BMJ, 2011. 343: p. d4002.
- 21. Morrison, A., et al., The effect of English-language restriction on systematic reviewbased meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care, 2012. 28(2): p. 138-44.
- 22. Moher, D., et al., What contributions do languages other than English make on the results of meta-analyses? J Clin Epidemiol, 2000. 53(9): p. 964-72.
- 23. Canada, G.o., National case definition: Invasive group A streptococcal disease. 2008.
- 24. Ouzzani, M., et al., Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 2016. **5**(1): p. 210.
- 25. Hayden, J.A., et al., Assessing bias in studies of prognostic factors. Ann Intern Med, 2013. **158**(4): p. 280-6.
- Guyatt, G., et al., GRADE quidelines: 1. Introduction-GRADE evidence profiles and 26. summary of findings tables. (1878-5921 (Electronic)).
- 27. Huguet, A., et al., Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Systematic Reviews, 2013. 2(1): p. 71.
- Cochrane Style Manual: Common terms and terminology. Available from: 28. https://community.cochrane.org/style-manual/names-common-terms-andterminology/common-terms-and-terminology.
- 29. Guyatt, R.S.a.G. What is GRADE? BMJ Best Practice.
- Viechtbauer, W., Conducting Meta-Analyses in R with the metafor Package. Journal of 30. Statistical Software; Vol 1, Issue 3 (2010), 2010.
- Higgins JP, G.S., Cochrane handbook for systematic reviews of interventions version 5.1.0 31. (updated March 2011). The Cochrane Collaboration, 2011. handbook.cochrane.org, 2011.
- 32. Hozo, S.P., B. Djulbegovic, and I. Hozo, Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology, 2005. **5**(1): p. 13.
- 33. Wan, X., et al., Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Medical Research Methodology, 2014. **14**(1): p. 135.
- 34. Efthimiou, O., Practical quide to the meta-analysis of rare events. Evidence Based Mental Health, 2018. 21(2): p. 72.
- 35. Barnham, M.R., et al., Streptococcal toxic shock syndrome: a description of 14 cases from North Yorkshire, UK. Clin Microbiol Infect, 2002. 8(3): p. 174-81.

- 36. Stegmayr, B., et al., Septic shock induced by group A streptococcal infection: clinical and therapeutic aspects. Scand J Infect Dis, 1992. 24(5): p. 589-97.
- 37. Abuhammour, W., R.A. Hasan, and E. Unuvar, Group A beta-hemolytic streptococcal bacteremia. Indian J Pediatr, 2004. 71(10): p. 915-9.
- Al-ajmi, J.A., et al., Group A Streptococcus Toxic Shock Syndrome: An outbreak report 38. and review of the literature. J Infect Public Health, 2012. 5(6): p. 388-93.
- 39. Bernaldo de Quirós, J.C., et al., Group A streptococcal bacteremia. A 10-year prospective study. Medicine (Baltimore), 1997. 76(4): p. 238-48.
- 40. Brogan, T.V., et al., Group A streptococcal necrotizing fasciitis complicating primary varicella: a series of fourteen patients. Pediatr Infect Dis J, 1995. 14(7): p. 588-94.
- Butragueño Laiseca, L., et al., Toxic shock syndrome in a paediatric intensive care unit 41. over the last 15 years. Anales de Pediatría (English Edition), 2017. 87(2): p. 111-113.
- 42. Carapetis, J., et al., Increasing severity of invasive group A streptococcal disease in Australia: clinical and molecular epidemiological features and identification of a new virulent M-nontypeable clone. Clin Infect Dis, 1995. 21(5): p. 1220-7.
- Cimolai, N., et al., Invasive Streptococcus pyogenes infections in children. Can J Public 43. Health, 1992. 83(3): p. 230-3.
- 44. Cook, A., et al., Manifestations of Toxic Shock Syndrome in Children, Columbus, Ohio, USA, 2010-2017(1). Emerging infectious diseases, 2020. **26**(6): p. 1077-1083.
- 45. Cowan, M.R., et al., Serious group A beta-hemolytic streptococcal infections complicating varicella. Ann Emerg Med, 1994. 23(4): p. 818-22.
- 46. Crum, N.F., et al., A case series of group A Streptococcus necrotizing fasciitis in military trainees. Mil Med, 2004. 169(5): p. 373-5.
- Dahl, P.R., et al., Fulminant group A streptococcal necrotizing fasciitis: clinical and 47. pathologic findings in 7 patients. J Am Acad Dermatol, 2002. 47(4): p. 489-92.
- 48. Donaldson, P.M., et al., Rapidly fatal necrotising fasciitis caused by Streptococcus pyogenes. Journal of clinical pathology, 1993. 46(7): p. 617-620.
- 49. Erdem, G., et al., Characterization of a community cluster of group a streptococcal invasive disease in Maui, Hawaii. The Pediatric infectious disease journal, 2004. 23(7): p. 677-679.
- 50. Eriksson, B.K., et al., Invasive group A streptococcal infections: T1M1 isolates expressing pyrogenic exotoxins A and B in combination with selective lack of toxin-neutralizing antibodies are associated with increased risk of streptococcal toxic shock syndrome. J Infect Dis, 1999. **180**(2): p. 410-8.
- 51. Forni, A.L., et al., Clinical and microbiological characteristics of severe group A streptococcus infections and streptococcal toxic shock syndrome. Clin Infect Dis, 1995. **21**(2): p. 333-40.
- 52. Fronhoffs, S., et al., The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Report of seven patients. Intensive Care Med, 2000. **26**(10): p. 1566-70.
- 53. Hasegawa, T., et al., Factors determining prognosis in streptococcal toxic shock-like syndrome: results of a nationwide investigation in Japan. Microbes Infect, 2004. 6(12): p. 1073-7.

- 54. Hayata, E., et al., *Nationwide study of mortality and survival in pregnancy-related streptococcal toxic shock syndrome.* The journal of obstetrics and gynaecology research, 2021. **47**(3): p. 928-934.
- 55. Huang, Y.C., et al., A family cluster of streptococcal toxic shock syndrome in children: clinical implication and epidemiological investigation. Pediatrics, 2001. **107**(5): p. 1181-3.
- 56. Kansal, R.G., et al., *Inverse relation between disease severity and expression of the streptococcal cysteine protease, SpeB, among clonal M1T1 isolates recovered from invasive group A streptococcal infection cases.* Infect Immun, 2000. **68**(11): p. 6362-9.
- 57. Linder, K.A., et al., *Effect of underlying immune compromise on the manifestations and outcomes of group A streptococcal bacteremia*. J Infect, 2017. **74**(5): p. 450-455.
- 58. Luca-Harari, B., et al., *Clinical and microbiological characteristics of severe Streptococcus pyogenes disease in Europe.* J Clin Microbiol, 2009. **47**(4): p. 1155-65.
- 59. Nelson, G.E., et al., *Epidemiology of Invasive Group A Streptococcal Infections in the United States, 2005-2012.* Clin Infect Dis, 2016. **63**(4): p. 478-86.
- 60. Safar, A., et al., *Invasive Group A Streptococcal Infection and Vaccine Implications, Auckland, New Zealand.* Emerging Infectious Diseases, 2011. **17**(6): p. 983-989.
- 61. Schwartz, B., et al., *Clusters of invasive group A streptococcal infections in family, hospital, and nursing home settings.* Clin Infect Dis, 1992. **15**(2): p. 277-84.
- 62. Sriskandan, S. and J. Cohen, *Kallikrein-kinin system activation in streptococcal toxic shock syndrome*. Clin Infect Dis, 2000. **30**(6): p. 961-2.
- 63. Stockmann, C., et al., *Evolving epidemiologic characteristics of invasive group a streptococcal disease in Utah*, 2002-2010. Clin Infect Dis, 2012. **55**(4): p. 479-87.
- 64. Tagini, F., et al., *Importance of whole genome sequencing for the assessment of outbreaks in diagnostic laboratories: analysis of a case series of invasive Streptococcus pyogenes infections.* Eur J Clin Microbiol Infect Dis, 2017. **36**(7): p. 1173-1180.
- 65. Zachariadou, L., et al., *Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections.* Epidemiol Infect, 2014. **142**(3): p. 512-9.
- 66. Stevens, D.L., et al., Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med, 1989. **321**(1): p. 1-7.
- 67. Torimitsu, S., et al., *Streptococcal toxic shock syndrome with fatal outcome: Report on four forensic autopsy cases.* Leg Med (Tokyo), 2021. **50**: p. 101851.
- 68. Page, A.V., et al., *Systemic dysregulation of angiopoietin-1/2 in streptococcal toxic shock syndrome*. Clin Infect Dis, 2011. **52**(8): p. e157-61.
- 69. IntHout, J., et al., *Small studies are more heterogeneous than large ones: a meta-meta-analysis*. Journal of Clinical Epidemiology, 2015. **68**(8): p. 860-869.
- 70. Parks, T., et al., *Polyspecific Intravenous Immunoglobulin in Clindamycin-treated Patients With Streptococcal Toxic Shock Syndrome: A Systematic Review and Meta-analysis.*Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2018. **67**(9): p. 1434-1436.
- 71. Legras, A., et al., A multicentre case-control study of nonsteroidal anti-inflammatory drugs as a risk factor for severe sepsis and septic shock. Critical Care, 2009. **13**(2): p. R43.

Bryant, A.E., et al., The roles of injury and nonsteroidal anti-inflammatory drugs in the 72. development and outcomes of severe group A streptococcal soft tissue infections. Current Opinion in Infectious Diseases, 2015. 28(3).

Figure 1. PRISMA study flow diagram.

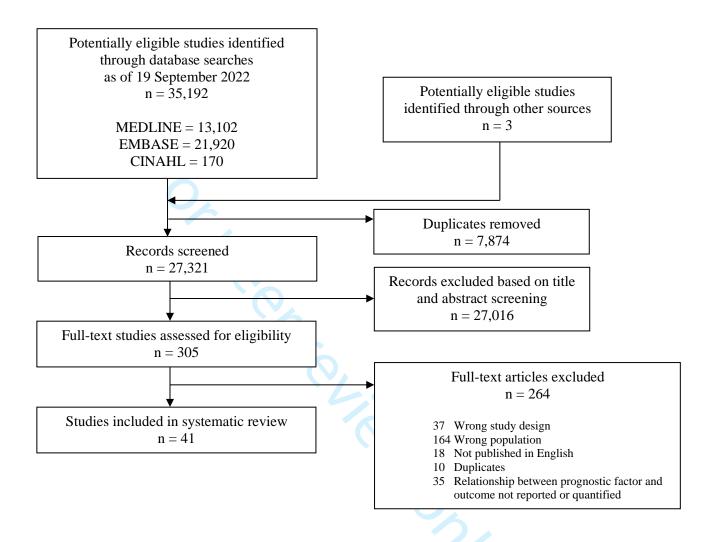
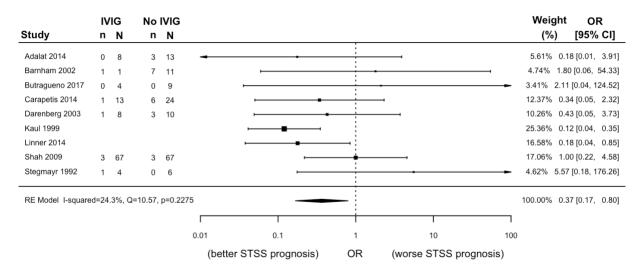



Figure 2. Meta-analyses comparing IVIG treatment to no IVIG treatment for the outcome mortality in A) all STSS patients; and B) the subset of STSS patients treated with clindamycin. Please note proportions are blank for study rows where we meta-analyzed adjusted odds ratios instead of crude proportions.

A)

B)

	IV	IG	No	IVIG					,	Neight	OR	1
Study	n	N	n	N						(%)	[95%	CI]
Adalat 2014	0	8	3	13	•					6.68%	0.18 [0.01,	3.91
Barnham 2002	1	1	2	6		-			-	5.08%	5.40 [0.15, 1	188.83
Carapetis 2014	1	13	6	24		-		→		17.50%	0.34 [0.05,	2.32
Darenberg 2003	1	8	3	10			-			13.70%	0.43 [0.05,	3.73
Kaul 1999						-				21.92%	0.18 [0.03,	1.01
Linner 2014	3	21	11	31						35.12%	0.34 [0.09,	1.30
RE Model I-square	ed=0.0	00%, Q	=3.055,	p=0.6915			_			100.00%	0.34 [0.15,	0.75
						1	- i -	1				
				0	.01	0.1	1	10	100			
					(better	STSS prognosis)	OR	(worse STSS progr	nosis)			

PROGNOSTIC FACTORS FOR STREPTOCOCCAL TOXIC SHOCK SYNDROME: SYSTEMATIC REVIEW AND META-ANALYSIS

Supplementary Material

Table of contents	Page
Search strategy	2
GRADE assessment guidance	4
Description of studies excluded at full text stage	6
Additional study characteristics	20
Risk of bias assessment	27
Forest plots for pairwise meta-analyses	29
Description of studies inclinible for meta analysis by outcome	11

Search strategies

1) Database: OVID Medline Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Ovid MEDLINE(R) Daily and Ovid MEDLINE(R) 1946 to Present

Search Strategy:

- toxic shock syndrome.mp. or exp Shock, Septic/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp Fasciitis, Necrotizing/ or septic shock.mp.
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/
- exp Cohort Studies/
- cohort\$.tw.
- controlled clinical trial.pt.
- epidemiologic methods/
- limit 6 to yr=1966-1989
- exp case-control studies/
- (case\$ and control\$).tw.
- (case\$ and series).tw.
- or/3-5,7-10
- randomized controlled trial.pt.
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- (retraction of publication or retracted publication).pt.
- or/12-14
- (animals not humans).sh.
- ((comment or editorial or meta-analysis or practice-guideline or review or letter) not randomized controlled trial).pt.
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not randomized controlled trial.pt.
- 15 not (16 or 17 or 18)
- animals/ not humans/
- (1 or 2) and (11 or 19)
- 21 not 20
- 2) Database: Embase <1974 to 2020 February 03>

Search Strategy:

- toxic shock syndrome.mp. or exp septic shock/ or STSS.mp. or streptococcal toxic shock syndrome.mp. or necrotizing fasciitis.mp. or exp necrotizing fasciitis/ or septic shock.mp. or exp toxic shock syndrome/
- (group a streptococc* or group A streptococc* or pyogenes or streptococcus pyogenes).mp. or exp Streptococcus pyogenes/ or exp Streptococcus group A/
- exp cohort analysis/
- exp longitudinal study/
- exp prospective study/

- exp follow up/
- cohort\$.tw.
- exp case control study/ or (case\$ and control\$).tw.
- exp case study/ or (case\$ and series).tw.
- or/3-9
- (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- RETRACTED ARTICLE/
- or/11-12
- (animal\$ not human\$).sh,hw.
- (book or conference paper or editorial or letter or review).pt. not exp randomized controlled trial/
- (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not exp randomized controlled trial/
- 13 not (14 or 15 or 16)
- exp animal/

- exp animal/
 exp human/
 18 not 19
 (1 or 2) and (10 or 17)
 21 not 20

GRADE assessment guidance

Based on GRADE guidance for prognostic studies, we start with high certainty evidence for each meta-analysis.

Risk of bias

For each meta-analysis, we downgraded the certainty of the evidence once for risk of bias when studies with moderate or high risk of bias contributed >50% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >50% weight to the pooled effect estimate (i.e. serious risk of bias). We downgraded the certainty of the evidence twice for risk of bias when studies with moderate or high risk of bias contributed >80% weight to the pooled effect estimates or when studies providing unadjusted estimates contributed >80% weight to the pooled effect estimate (i.e. very serious risk of bias).

Inconsistency

We used visual inspection of the forest plots and the I² statistic to assess inconsistency. For visual inspection of the forest plots, we considered the variability in point estimates and confidence interval overlap in relation to the null effect. Further, we downgraded the certainty of the evidence once when there was substantial (I² 50-90%) heterogeneity and twice when there was considerable (I² 75-100%) heterogeneity.

Imprecision

We downgraded the certainty of the evidence once for imprecision if:

- 1) The effect on the patient, or clinical action, would differ depending on whether the upper or the lower boundary of the confidence interval represented the truth, **OR**
- 2) The 95% CI of the pooled absolute estimate crossed the null effect by less than 50 people per 1000 on one or both sides, **OR**
- 3) In cases where we had large effects that did not cross the null, we assessed the optimal information size. If the ratio of the upper to the lower limit of the confidence interval of the relative estimate was >3, the optimal information size would never be met; thus, we rated down once for imprecision, **OR**
- 4) There were fewer than 10 outcome events for each prognostic variable (for dichotomous outcomes, **OR**
- 5) There were fewer than 100 cases reaching endpoint (for continuous outcomes). We downgraded the certainty of the evidence twice for imprecision if:
- 1) The 95% CI of the pooled absolute estimate crossed the null effect by more than 50 people per 1000 on both sides.

Indirectness

We rated down once if the study sample, the prognostic factor, and/or the outcome in the primary studies did not accurately reflect the review question.

Publication bias

We rated down once if:

1) Small studies reported higher rates compared to large studies, suggesting the selective publication of "positive" studies, **OR**

2) The value of the risk/protective factor in predicting the outcome has NOT been repetitively investigated (e.g. only exploratory studies with no external validation, replication or confirmation exist).

References

- 1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE Guidelines 6. Rating the Quality of Evidence—Imprecision. J Clin Epidemiol 2011; 64(12): 1283–93. https://doi.org/10.1016/j.jclinepi.2011.01.012
- 2. Huguet A, Hayden JA, Stinson J, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2:71. Published 2013 Sep 5. doi:10.1186/2046-4053-2-71

Table of excluded full texts (n=264)

Author, Year	Title	Reason for Exclusion
Hamilton, 2013	Pregnancy-related group a streptococcal infections: Temporal relationships between bacterial acquisition, infection onset, clinical findings, and outcome	Wrong study design
Ichiyama, 1997	Transmission of Streptococcus pyogenes causing toxic shock- like syndrome among family members and confirmation by DNA macrorestriction analysis	Wrong study design
Idubor, 2019	Invasive group a streptococcus infections among residents of multiple nursing Homes-Denver, Colorado, 2017-2018	Wrong study design
Ikebe, 2015	Increased prevalence of group A streptococcus isolates in streptococcal toxic shock syndrome cases in Japan from 2010 to 2012	Wrong study design
Klinker, 1997	Toxic shock syndrome in AIDS	Wrong study design
Langmuir, 1982	Toxic-shock syndromean epidemiologist's view	Wrong study design
McIvor, 1982	Treatment of recurrent toxic shock syndrome with oral contraceptive agents	Wrong study design
Pathi, 2013	Prompt recognition and multidisciplinary approach in Group A streptococcal sepsis	Wrong study design
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection	Wrong study design
Stallones, 1982	A review of the epidemiologic studies of toxic shock syndrome	Wrong study design
Stevens, 2000	Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome Emergence of a New Highly Successful Acapsular Group A	Wrong study design
Turner, 2015	Streptococcus Clade of Genotype emm89 in the United Kingdom	Wrong study design
Udagawa, 1999	Serious group A streptococcal infection around delivery	Wrong study design
Valiquette, 2006	A survey of physician's attitudes regarding management of severe group A streptococcal infections	Wrong study design
Valiquette, 2009	Assessing the impact of intravenous immunoglobulin in the management of streptococcal toxic shock syndrome: a noble but difficult quest	Wrong study design
Wozniak, 2012	M-protein gene-type distribution and hyaluronic acid capsule in group A Streptococcus clinical isolates in Chile: Association of emm gene markers with csrR alleles	Wrong study design
Anonymous, 1984	Diagnostic bias and toxic shock syndrome	Wrong study design
Blonde, 2017	A prospective multicentric study of severe cutaneous infections in pediatric intensive care: The SCIPIC cohort	Wrong study design
Busowski, 2010	Puerperal group A streptococci (GAS) infection: Reemergence of a dreaded disease - A case series	Wrong study design
Cimolai, 2002	Nonhemolytic Streptococcus pyogenes causing invasive infection	Wrong study design
Clark, 2010	Puerperal group a streptococcal sepsis and proinflammatory immune response	Wrong study design

Dahdi, 2018	Necrotizing soft tissue infection: Microbiological distribution from district region	Wrong study design
Das, 2012	Necrotizing fasciitis in New Zealand - Risk factors, microbiological findings and outcomes in a large case series	Wrong study design
De Zoysa, 2013	Invasive group A streptococcal disease in the UK, 2008-2012 and molecular characterisation of isolates during enhanced surveillance	Wrong study design
Donawa, 1984	Toxic shock syndrome: chronology of state and federal epidemiologic studies and regulatory decision-making	Wrong study design
Figueira, 2013	Peri-ocular necrotising fasciitis: A multicentre retrospective australian series	Wrong study design
Gaensbauer, 2016	Importance of toxic shock syndrome in pediatric septic shock clinical decision-making	Wrong study design
Goldberg, 2015	Group A beta streptococcal infections in children after oral or dental trauma: A case series of 5 patients	Wrong study design
McViety, 2014	Don't forget IGAS: Lessons learnt from review of 2 peak seasons in the north west and North Wales, UK	Wrong study design
7 2010	Epidemiology, outcomes from treatment, and the spectrum of soft tissue infections over time in hospitalized patients: A populationbased description of inpatients in the state of	
Zangara, 2019 Arias-Constanti,	Invasive disease by Streptococcus pyogenes: patients	Wrong study design
2018	hospitalized for 6 years Factors that affect the clinical course of group A beta-	Wrong population
	haemolytic streptococcal infections of the hand and upper	
Hankins, 2008	extremity: a retrospective study	Wrong population
Henrichsen, 1997	Invasive infections caused by Streptococcus pyogenes in Denmark 1990- 1994	Wrong population
Hoge, 1993	The changing epidemiology of invasive group A streptococcal infections and the emergence of streptococcal toxic shock-like syndrome. A retrospective population-based study	Wrong population
Jauregui, 2015	Life- and limb-threatening infections following the use of an external fixator	Wrong population
	Impact of Intravenous Immunoglobulin on Survival in Necrotizing Fasciitis With Vasopressor-Dependent Shock: A	4
Kadri, 2017	Propensity Score-Matched Analysis From 130 US Hospitals Group A streptococcal bacteremia in a mid-south children's	Wrong population
Leggiadro, 1993	Patient's characteristics and outcomes in necrotising soft-	Wrong population
Madsen, 2019	tissue infections: results from a Scandinavian, multicentre, prospective cohort study A strep in the wrong direction-invasive group a streptococcal	Wrong population
Mitchell, 2011	disease	Wrong population
Moses, 1995	Group A streptococcus bacteremia at the Hadassah Medical Center in Jerusalem	Wrong population
	Use of single-dose azithromycin to control a community outbreak of EMM26.3 group a streptococcus invasive disease-	
Mosites, 2017	Alaska, 2017 Risk for invasive streptococcal infections among adults	Wrong population
Mosites, 2019	experiencing homelessness, anchorage, Alaska, USA, 2002-2015	Wrong population

Mulla, 2007	Clinical and epidemiologic features of invasive group A streptococcal infections in children	Wrong population
Mulla, 2003	Invasive group A streptococcal infections in Florida A comparison of Streptococcus pyogenes (group A	Wrong population
Navarro, 1993	streptococcal) bacteremia at an urban and a suburban hospital. The importance of intravenous drug use	Wrong population
Norton, 2004	Invasive group A streptococcal disease in North Queensland (1996 - 2001) Blunt Trauma as a Risk Factor for Group A Streptococcal	Wrong population
Nuwayhid, 2007	Necrotizing Fasciitis	Wrong population
Oliver, 2019	Invasive group A Streptococcus disease in Australian children: 2016 to 2018 - a descriptive cohort study	Wrong population
Oliver, 2019	Recent trends in invasive group A Streptococcus disease in Victoria	Wrong population
Peterson, 1996	Risk factors for invasive group A streptococcal infections in children with varicella: A case-control study	Wrong population
Rainbow, 2008	Invasive group A streptococcal disease in nursing homes, Minnesota, 1995-2006 Suppurative group A beta-hemolytic streptococcal infections	Wrong population
Rathore, 1992	in children Epidemiology of toxic-shock syndrome, United States, 1960-	Wrong population
Reingold, 1984	1984	Wrong population
Reingold, 1989	Risk factors for menstrual toxic shock syndrome: results of a multistate case-control study	Wrong population
Remy, 2019	Septic shock and toxic shock syndrome-two infectious shocks with different immune response Epidemiology of invasive group a streptococcal disease in	Wrong population
Rudolph, 2016	Alaska, 2001 to 2013	Wrong population
Saldana, 2010	Periorbital necrotizing fasciitis: Outcomes using a CT-guided surgical debridement approach	Wrong population
Sarangi, 1995	A nursing home outbreak of group A streptococcal infection: case control study of environmental contamination	Wrong population
Scaber, 2011	Group a streptococcal infections during the seasonal influenza outbreak 2010/11 in South East England	Wrong population
Scheuer, 2018	Rising high rate of invasive group a streptococcus infections among persons experiencing homelessness in San Francisco, 2010-2017	Wrong population
Schlech, 1982	Risk factors for development of toxic shock syndrome. Association with a tampon brand	Wrong population
Schwartz, 1989	Nonmenstrual toxic shock syndrome associated with barrier contraceptives: report of a case-control study	Wrong population
Shands, 1982	Toxic shock syndrome: Case-control studies at the centers for disease control	Wrong population
Sharma, 2019	Real-time whole genome sequencing to control a Streptococcus pyogenes outbreak at a national orthopaedic hospital	Wrong population
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: Epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003	Wrong population

Simonart, 2004	The importance of serum creatine phosphokinase level in the early diagnosis and microbiological evaluation of necrotizing fasciitis	Wrong population
Smith, 2003	Mass antibiotic treatment for group A streptococcus outbreaks in two long-term care facilities	Wrong population
Spargen, 2011	Proinflammatory immune response and puerperal group a streptococcal sepsis	Wrong population
Steer, 2009	Prospective surveillance of invasive group A streptococcal disease, fiji, 2005-2007 High burden of invasive beta-haemolytic streptococcal	Wrong population
Steer, 2008	infections in Fiji	Wrong population
Tanna, 2006	Molecular characterization of clinical isolates of M non- typable group A streptococci from invasive disease cases	Wrong population
Tapiainen, 2016	Invasive Group A Streptococcal Infections in Children: A Nationwide Survey in Finland Molecular profiling of tissue biopsies reveals unique	Wrong population
Thanert, 2019	signatures associated with streptococcal necrotizing soft tissue infections	Wrong population
Theis, 2002	Severe necrotising soft tissue infections in orthopaedic surgery	Wrong population
Thigpen, 2007	Nursing home outbreak of invasive group A streptococcal infections caused by 2 distinct strains Early identification of patients at high risk of group A	Wrong population
Urbina, 2019	streptococcus-associated necrotizing skin and soft tissue infections: a retrospective cohort study	Wrong population
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Wrong population
Vlaminckx, 2005	Long-term surveillance of invasive group A streptococcal disease in The Netherlands, 1994-2003	Wrong population
Vugia, 1996 Waldhausen,	Invasive group A streptococcal infections in children with varicella in Southern California Surgical implications of necrotizing fasciitis in children with	Wrong population
1996	chickenpox Selective depletion of V beta-bearing T cells in patients with	Wrong population
Watanabe- Ohnishi, 1995	severe invasive group A streptococcal infections and streptococcal toxic shock syndrome. Ontario Streptococcal Study Project	Wrong population
Wheeler, 1991	Outbreak of group A streptococcus septicemia in children: Clinical, epidemiologic, and microbiological correlates	Wrong population
Wilson, 1995	Group A streptococcal necrotizing fasciitis following varicella in children: Case reports and review A Cluster of Pediatric Invasive Group A Streptococcus	Wrong population
Wong, 2019	Disease in Melbourne, Australia, Coinciding with a High- Burden Influenza Season	Wrong population
Yagupsky, 1987	Group A beta-hemolytic streptococcal bacteremia in children A case-control study of necrotizing fasciitis during primary	Wrong population
Zerr, 1999	varicella	Wrong population
Zimbelman, 1999	Improved outcome of clindamycin compared with beta-lactam antibiotic treatment for invasive Streptococcus pyogenes infection	Wrong population

Abraham, 2016	Distribution of emm types of beta hemolytic streptococci associated with necrotizing fascitis: Clinical profile and outcome Severe Maternal Sepsis in the UK, 2011-2012: A National	Wrong population
Acosta, 2014	Case-Control Study	Wrong population
Adams, 2010	Investigation into an outbreak of invasive Group A Streptococcal (iGAS) infection at a general hospital in 2010	Wrong population
Adem, 2009	Identification of invasive streptococcal disease in a pediatric and infant death Cohort-Iowa, 2007-2008	Wrong population
Afifi, 2008	Acute necrotizing fasciitis in Egyptian patients: A case series	Wrong population
Al-Khadidi, 2017	Group A Streptococcal bacteraemia. Experience at King Fahad Medical City in Riyadh, Saudi Arabia	Wrong population
Alva, 2013	Necrotising fasciitis: A series of seven cases	Wrong population
Anonymous, 2007	Summaries for patients. Invasive streptococcal infections in hospitals in Ontario, Canada, 1992 to 2000	Wrong population
Aronoff, 2008	Postpartum invasive group A streptococcal disease in the modern era	Wrong population
Babbar, 2018	Pivotal Role of Preexisting Pathogen-Specific Antibodies in the Development of Necrotizing Soft-Tissue Infections	Wrong population
Babbar, 2016	A serological evaluation of the host immune response during Necrotizing Soft Tissue Infections caused by Streptococcus pyogenes	Wrong population
Babiker, 2019	Impact of adjunctive clindamycin in invasive beta-hemolytic streptococcal infections: A propensity score-matched analysis of 1956 beta-lactam treated patients from 118 us hospitals	Wrong population
Bajpai, 1977	Chemotherapy of acute bone and joint infections	Wrong population
Barnham, 2001	Bacteraemic Streptococcus pyogenes infection in the peri- partum period: now a rare disease and prior carriage by the patient may be important	Wrong population
Basma, 1999	Risk factors in the pathogenesis of invasive group A streptococcal infections: Role of protective humoral immunity	Wrong population
Bauer, 2015	Maternal deaths due to sepsis in the state of Michigan, 1999-2006	Wrong population
Beaudoin, 2014	Invasive group A Streptococcus infections associated with liposuction surgery at outpatient facilities not subject to state or federal regulation	Wrong population
D : 1 2012	Postoperative complications followed by septoplasty comparison between conventional nasal packing and glove	W 1.2
Beigh, 2012 Berkley, 1987	finger pack The relationship of tampon characteristics to menstrual toxic shock syndrome	Wrong population
Bingol-Kologlu, 2007	Necrotizing fasciitis in children: diagnostic and therapeutic aspects	Wrong population Wrong population
	Necrotizing soft tissue infections caused by Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis of	S11
Bruun, 2013	groups C and G in western Norway Risk factors and Predictors of Mortality in Streptococcal	Wrong population
Bruun, 2020	Necrotizing Soft-Tissue Infections: A Multicenter Prospective Study	Wrong population

Busowski, 2013	Puerperal group a streptococcal infections: A case series and discussion	Wrong population
2006	Clinical deterioration among patients with fever and	
Byer, 2006 Centers for	erythroderma	Wrong population
Disease, 1982	Toxic-shock syndrome, United States, 1970-1982	Wrong population
Centers for	Invasive group A streptococcus in a skilled nursing facility-	meng population
Disease, 2011	Pennsylvania, 2009-2010	Wrong population
Chan, 2009	Toxic shock syndrome and rhinosinusitis in children	Wrong population
	The microbiological profile and presence of bloodstream	
Chen, 2011	infection influence mortality rates in necrotizing fasciitis	Wrong population
	Clinical Characteristics and Risk Factor Analysis for Lower-	
G1 2015	Extremity Amputations in Diabetic Patients With Foot Ulcer	XX
Chen, 2015	Complicated by Necrotizing Fasciitis Macro- and Microvascular Parameters After Toxic Shock	Wrong population
Chen, 2018	Syndrome Syndrome	Wrong population
2010	Prospective surveillance of pediatric invasive group A	Tong population
Ching, 2019	Streptococcus infection	Wrong population
	Changing epidemiology of invasive Streptococcus pyogenes	
Chiobotaru,	infections in southern Israel: differences between two ethnic	Whome a contest on
1997	population groups	Wrong population
Christie, 1988	Bacteremia with group A streptococci in childhood	Wrong population
	Necrotising fasciitis of the extremities: implementation of	
Corona, 2016	new management technologies	Wrong population
	Surveillance for hospital outbreaks of invasive group a	
Daneman, 2007	streptococcal infections in Ontario, Canada, 1992 to 2000	Wrong population
	Hospital-acquired invasive group A streptococcal infections	
Daneman, 2005	in Ontario, Canada, 1992-2000	Wrong population
	Invasive group A streptococcal infections in Ontario, Canada.	
Davies, 1996	Ontario Group A Streptococcal Study Group	Wrong population
	Toxic shock syndrome: a critique of the 1980 Wisconsin case-	
Davis, 1982	control study	Wrong population
De Almeida Torres, 2013	Group a streptococcus meningitis in children	Wrong population
101103, 2013	Incidence and severity of invasive Streptococcus pneumoniae,	wrong population
	group A Streptococcus, and group B Streptococcus infections	
Deutscher, 2011	among pregnant and postpartum women	Wrong population
D 2015	Necrotising soft tissue infections: The effect of hyperbaric	W
Devaney, 2015	oxygen on mortality Investigation of a prolonged Group A Streptococcal outbreak	Wrong population
	among residents of a skilled nursing facility, Georgia, 2009-	
Dooling, 2013	2012	Wrong population
	The epidemiology of necrotizing fasciitis including factors	
Dworkin, 2009	associated with death and amputation	Wrong population
,	Epidemiology and Outcome of Necrotizing Fasciitis in	VI I
	Children: An Active Surveillance Study of the Canadian	
Eneli, 2007	Paediatric Surveillance Program	Wrong population
Factor, 2005	Risk factors for pediatric invasive group A streptococcal disease	Wrong population
Factor, 2003	Invasive group a streptococcal disease: Risk factors for adults	Wrong population

Fauno Thrane, 2017	Hyperbaric oxygen may only be optional in head and neck necrotizing fasciitis: a retrospective analysis of 43 cases and review of the literature	Wrong population
Fichtenbaum, 1993	Ehrlichiosis presenting as a life-threatening illness with features of the toxic shock syndrome Incidence of periorbital necrotising fasciitis in the UK	Wrong population
Flavahan, 2014	population: A BOSU study Capsule-negative EMM types are an increasing cause of	Wrong population
Flores, 2019	pediatric group a streptococcal infections at a large pediatric hospital in Texas Clinical and Microbiological Characteristics of Invasive	Wrong population
Frere, 2016	Group A Streptococcal Infections Before and After Implementation of a Universal Varicella Vaccine Program	Wrong population
Givner, 1998	Invasive disease due to group A beta-hemolytic streptococci: Continued occurrence in children in North Carolina	Wrong population
Givner, 1991	Apparent increase in the incidence of invasive group A beta- hemolytic streptococcal disease in children	Wrong population
Gooskens, 2005	Streptococcal toxic shock syndrome by an iMLS resistant M type 77 Streptococcus pyogenes in the Netherlands	Wrong population
Gonzalez, 1996	Necrotizing fasciitis of the upper extremity	Wrong population
Lesko, 2001	Invasive group A streptococcal infection and nonsteroidal antiinflammatory drug use among children with primary varicella	Wrong population
Lin, 2013	Group a streptococcal necrotizing fasciitis in the emergency department	Wrong population
Lin, 2015	Early Differentiation of Kawasaki Disease Shock Syndrome and Toxic Shock Syndrome in a Pediatric Intensive Care Unit	Wrong population
Parks, 2019	Elevated risk of invasive group A streptococcal disease and host genetic variation in the human leucocyte antigen locus	Wrong population
Stromberg, 1991	Outbreak of group A streptococcal bacteremia in Sweden: an epidemiologic and clinical study	Wrong population
Haggar, 2012	Clinical and microbiologic characteristics of invasive Streptococcus pyogenes infections in north and south India	Relationship between prognostic factor and outcome not reported or quantified
Laupland, 2000	Invasive group A streptococcal disease in children and association with varicella-zoster virus infection. Ontario Group A Streptococcal Study Group	Relationship between prognostic factor and outcome not reported or quantified
Linnemann, 1986		Relationship between prognostic factor and outcome not reported or
Miday, 1988	Increasing incidence of toxic shock syndrome in the 1970s Toxic shock syndrome: incidence and geographic distribution from a hospital medical records reporting system	quantified Relationship between prognostic factor and outcome not reported or quantified
Mosites, 2018	Outbreak of Invasive Infections from Subtype emm26.3 Group A Streptococcus among Homeless Adults-Anchorage, Alaska, 2016-2017	Relationship between prognostic factor and outcome not reported or quantified

O'Grady, 2007	The epidemiology of invasive group A streptococcal disease in Victoria, Australia	Relationship between prognostic factor and outcome not reported or quantified
3,	,	Relationship between
Petitti, 1989	Update through 1985 on the incidence of toxic shock syndrome among members of a prepaid health plan	prognostic factor and outcome not reported or quantified
Pilon, 2019	Invasive group A streptococcal infection outbreaks of typeemm118 in a long-term care facility, and of type emm74 in the homeless population, Montreal, Quebec	Relationship between prognostic factor and outcome not reported or quantified
		Relationship between prognostic factor and
Rantala, 2012	Streptococcus pyogenes bacteraemia, emm types and superantigen profiles	outcome not reported or quantified
		Relationship between prognostic factor and outcome not reported or
Tanner, 1981	Toxic shock syndrome	quantified
	Canada Wida Enidamia of anno 74 Cuayo A Strontaga ang	Relationship between prognostic factor and outcome not reported or
Teatero, 2018	Canada-Wide Epidemic of emm74 Group A Streptococcus Invasive Disease	quantified
Todd, 1985	Toxic shock syndrome. II. Estimated occurrence in Colorado as influenced by case ascertainment methods	Relationship between prognostic factor and outcome not reported or quantified
	Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae	Relationship between prognostic factor and outcome not reported or
Tsai, 2014	subspecies equisimilis bacteremia	quantified Relationship between
Vallalta Morales, 2006	Group A streptococcal bacteremia: outcome and prognostic factors	prognostic factor and outcome not reported or quantified
	Epidemiological features of invasive and noninvasive group A	Relationship between prognostic factor and outcome not reported or
Vlaminckx, 2004	streptococcal disease in the Netherlands, 1992-1996	quantified Relationship between
Aydin, 2017	Clinical indications of intravenous immunoglobulin use in pediatric infectious diseases clinic	prognostic factor and outcome not reported or quantified
Ben-Abraham,	Invasive group A streptococcal infections in a large tertiary	Relationship between prognostic factor and outcome not reported or
2002	center: epidemiology, characteristics and outcome	quantified Relationship between prognostic factor and
Bochicchio, 2001	Group A Streptococcus (GAS) soft-tissue infections: a lethal organism on the rise	outcome not reported or quantified
Cancellara, 2016	Multicenter study on invasive Streptococcus pyogenes infections in children in Argentina	Relationship between prognostic factor and

		outcome not reported or quantified
Chen, 2016	Toxic shock syndrome in Australian children	Relationship between prognostic factor and outcome not reported or quantified
Doctor, 1995	Group A beta-hemolytic streptococcal bacteremia: historical overview, changing incidence, and recent association with varicella	Relationship between prognostic factor and outcome not reported or quantified
Eriksson, 2003	Group A streptococcal infections in Sweden: a comparative study of invasive and noninvasive infections and analysis of dominant T28 emm28 isolates	Relationship between prognostic factor and outcome not reported or quantified
Norrby-Teglund, 2003	The treatment of severe group a streptococcal infections	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Rodriguez- Nunez, 2011	Clinical characteristics of children with group A streptococcal toxic shock syndrome admitted to pediatric intensive care units	prognostic factor and outcome not reported or quantified
Snall, 2016	Differential neutrophil responses to bacterial stimuli: Streptococcal strains are potent inducers of heparin-binding protein and resistin-release	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Eriksson, 1998	Epidemiological and clinical aspects of invasive group A streptococcal infections and the streptococcal toxic shock syndrome	prognostic factor and outcome not reported or quantified
Sahli, 2014	Necrotizing fasciitisin in diabetic patients: A report of 14 cases High-dose immunoglobulin - Life-saving in invasive group a	Not in English
Arnholm, 2004	streptococcal infection [S. Pyogenes invasive disease in a paediatric hospital: 1996-	Not in English
Caetano, 2010 Costa Orvay, 2007	[Toxic shock syndrome: experience in a pediatric intensive care unit]	Not in English Not in English
Dosil Gallardo, 2009	[Streptococcal toxic shock syndrome: an emerging pathology?]	Not in English
Emmi, 1999	Severe infection from invasive beta-hemolytic streptococcus group A. Three cases of toxic shock observed in resuscitation Management of severe invasive group A streptococcal	Not in English
Faye, 2014 Floret, 2001	infections Clinical aspects of staphylococcal and streptococcal toxinic diseases	Not in English Not in English
Hua, 2018	[Streptococcal toxic shock syndrome caused by Streptococcus pyogenes: a retrospective study of 15 pediatric cases]	Not in English
Kach, 1993	[Necrotizing soft tissue infections] Intravenous immunoglobulin therapy for streptococcal toxic	Not in English
Kaul, 1999	shock syndromea comparative observational study. The Canadian Streptococcal Study Group	Duplicate Not in English
Salinas, 2005	Immunoglobulins in sepsis and septic shock	Not in English

Shands, 1982	Toxic shock syndrome: case-control studies at the Centers for Disease Control	Duplicate
Sierra, 2006	Group A streptococcal infections in injection drug users in Barcelona, Spain: epidemiologic, clinical, and microbiologic analysis of 3 clusters of cases from 2000 to 2003 Early identification of patients at high risk of group A	Duplicate
Urbina, 2019	streptococcus-associated necrotizing skin and soft tissue infections: A retrospective cohort study	Duplicate
Vallalta- Morales, 2005	[Streptococcal toxic shock syndrome: ten years' experience at a tertiary hospital]	Not in English
Vasant, 2019	Mass prophylaxis in an outbreak of invasive group A streptococcal disease in a residential aged care facility	Duplicate
Vugia, 1996	Invasive group A streptococcal infections in children with varicella in Southern California	Duplicate
Zachariadou, 2014	Differences in the epidemiology between paediatric and adult invasive Streptococcus pyogenes infections	Duplicate
Bernard, 1995	[Bacterial dermo-hypodermatitis in adults. Incidence and role of streptococcal etiology]	Not in English
Bleton, 1991	Necrotizing fasciitis of the upper limb. 12 cases	Not in English
Bleton, 1991	Necrotising fasciitis of the upper limb. Report of twelve cases	Duplicate
Fan, 2014	[Clinical characteristics and antimicrobial resistance of invasive group A beta-hemolytic streptococcus infection in children]	Not in English
Fica, 2003	Molecular epidemiology of a streptococcus pyogenes related nosocomial outbreak in a burn unit	Not in English
Fredlund, 1990	[Increased frequency of group A hemolytic streptococci. Old age and immune deficiency among the risk factors]	Not in English
Georgiev, 1993	Puerperal streptococcal sepsis	Not in English
Khan, 2003	Treatment of necrotizing fasciitis with quinolones	Wrong population
Frosi, 1999	Necrotizing fasciitis: A serious and uncommon alcohol related disease Necrotizing Soft Tissue Infections: Case Reports, from the	Wrong study design
Nedrebo, 2020	Clinician's Perspectives.	Wrong study design
Reicher, 2021	450 Obstetrically related group a streptococcal infection and predictors for severity - retrospective 12-year cohort study	Wrong study design
Bajpai, 2020	Anti-microbial-resistance and profile of exotoxins of invasive beta-haemolytic-streptococci infections in trauma patients Can gram-negative-like biomarker values in Streptococcus	Wrong population
Adamkova, 2020	pyogenes sepsis negatively influence right choice of initial antibiotic therapy?	Wrong population
Bandi, 2021	Group A streptococcal infections in children	Wrong population
	Use of corticosteroids in patients with severe CAP admitted to	
Ceccato, 2020	ICU, experience in a real-life setting Long-term safety and tolerability of atogepant following once daily dosing over 1 year for the preventive treatment of	Wrong population
Tepper, 2021	migraine	Wrong population

	Clinical, epidemiological and microbiological features of streptococcus pyogenes invasive infection - 10 year	
Melo, 2021	retrospective review	Wrong population
141010, 2021	Clinical characteristics and outcomes of children with toxic shock syndrome admitted to a pediatric intensive care unit: A	wrong population
Bringel, 2021	case series	Wrong population
	Characterisation of clinical manifestations and treatment	
	strategies for invasive beta-haemolytic streptococcal	
Neff, 2020	infections in a Swiss tertiary hospital.	Wrong population
Urbina, 2020	Assessing and applying individualized treatment for group A streptococcal necrotizing soft-tissue infection is possible	Wrong population
Oloma, 2020	Correlation between immunoglobulin dose administered and	wrong population
	plasma neutralization of streptococcal superantigens in	
Bergsten, 2020	patients with necrotizing soft tissue infections	Wrong population
	A prospective survey of Streptococcus pyogenes infections in French Brittany from 2009 to 2017: Comprehensive dynamic	
Boukthir, 2020	of new emergent emm genotypes.	Wrong population
,	Clinical Features and Outcomes of Streptococcus anginosus	81 1
Escrihuela-	Group Infective Endocarditis: A Multicenter Matched Cohort	
Vidal, 2021	Study.	Wrong population
	Effectiveness of adjunctive clindamycin in beta-lactam	
	antibiotic-treated patients with invasive beta-haemolytic	
	streptococcal infections in US hospitals: a retrospective	
Babiker, 2021	multicentre cohort study.	Wrong population
	Necrotizing soft tissue infection: clinical characteristics,	
Cui, 2021	diagnosis, and management of 32 cases in Beijing.	Wrong population
Link-Gelles,	Characteristics of Intracranial Group A Streptococcal	
2020	Infections in US Children, 1997-2014.	Wrong population
2020	Use of Intravenous Immunoglobulins in Patients with	Trans population
Peetermans,	Suspected Toxin-Mediated Shock Requiring Extracorporeal	
2020	Membrane Oxygenation.	Wrong population
	Beta-Hemolytic Streptococci and Necrotizing Soft Tissue	
Bruun, 2020	Infections.	Wrong population
	Multisystem inflammatory syndrome in children (MIS-C) during SARS-CoV-2 pandemic in Brazil: a multicenter,	
Lima-Setta, 2021	prospective cohort study.	Wrong population
	Kininogen supports inflammation and bacterial spreading	
Kohler, 2020	during Streptococccus Pyogenes Sepsis.	Wrong population
) -= v	Risk Factors and Predictors of Mortality in Streptococcal	011
	Necrotizing Soft-tissue Infections: A Multicenter Prospective	
Bruun, 2021	Study.	Wrong population
	Morbidity and mortality in critically ill patients with invasive	
Bjorck, 2020	group A streptococcus infection: an observational study.	Wrong population
DJUICK, 2020		wrong population
	Menstrual toxic shock syndrome: a French nationwide	
Contou, 2021	multicenter retrospective study.	Wrong population
	Association of characteristics of tampon use with menstrual	
Billon, 2020	toxic shock syndrome in France.	Wrong population
		Relationship between
		prognostic factor and
	Invasive Group A Streptococcus Infection in Children in	outcome not reported or
Canetti, 2021	Central Israel in 2012-2019	quantified

Vilhonen, 2020	Group A streptococcal bacteremias in Southwest Finland 2007-2018: epidemiology and role of infectious diseases consultation in antibiotic treatment selection.	Relationship between prognostic factor and outcome not reported or quantified Relationship between
Thielemans, 2020	Clinical Description and Outcomes of Australian Children With Invasive Group A Streptococcal Disease.	prognostic factor and outcome not reported or quantified
Madsen, 2020	Treatment of Necrotizing Soft Tissue Infections: IVIG	Wrong study design
Deniskin, 2019	Clinical Manifestations and Bacterial Genomic Analysis of Group A Streptococcus Strains That Cause Pediatric Toxic Shock Syndrome.	Relationship between prognostic factor and outcome not reported or quantified
Mosites, 2018	Outbreak of Invasive Infections From Subtype emm26.3 Group A Streptococcus Among Homeless Adults-Anchorage, Alaska, 2016-2017.	Relationship between prognostic factor and outcome not reported or quantified
Hasin, 2020	Invasive Group A Streptococcus Infection in Children in Southern Israel Before and After the Introduction of Varicella Vaccine.	Wrong population
Ching, 2019	Prospective Surveillance of Pediatric Invasive Group A Streptococcus Infection.	Wrong population
Loewen, 2017	Epidemiologic features of invasive group A Streptococcus infection in a rural hospital: 6-year retrospective report and literature review.	Wrong population
Bergsten, 2020	Correlation Between Immunoglobulin Dose Administered and Plasma Neutralization of Streptococcal Superantigens in Patients With Necrotizing Soft Tissue Infections.	Wrong population
Kobayashi, 2016	A Cluster of Group A Streptococcal Infections in a Skilled Nursing Facility-the Potential Role of Healthcare Worker Presenteeism.	Wrong population
Adebanjo, 2020	Evaluating Household Transmission of Invasive Group A Streptococcus Disease in the United States Using Population-based Surveillance Data, 2013-2016.	Wrong population
Link-Gelles, 2020	Characteristics of Intracranial Group A Streptococcal Infections in US Children, 1997-2014.	Wrong population
Bruun, 2021	Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study.	Wrong population
Shah, 2015	Role of intravenous immune globulin in streptococcal toxic shock syndrome and Clostridium difficile infection.	Wrong study design
Hayata, 2021	Nationwide study of mortality and survival in pregnancy- related streptococcal toxic shock syndrome.	Duplicate
Fernandez- Galilea, 2022	Clindamycin but not Intravenous Immunoglobulins reduces mortality in a retrospective cohort of critically ill patients with bacteremic Group A Streptococcal infections.	Wrong population
Heil, 2021	Role of Clindamycin Versus Linezolid for Serious Group A Streptococcal Infections	Wrong population
Nanduri, 2022	Challenges in Surveillance for Streptococcal Toxic Shock Syndrome: Active Bacterial Core Surveillance, United States, 2014-2017.	Wrong study design

Hamada, 2022	Association between adjunct clindamycin and in-hospital mortality in patients with necrotizing soft tissue infection due to group A Streptococcus: a nationwide cohort study.	Wrong population
Fay, 2021	Patterns of Antibiotic Nonsusceptibility Among Invasive Group A Streptococcus Infections, ÄîUnited States, 2006, Äi2017.	Relationship between prognostic factor and outcome not reported or quantified
Horn, 2021	Outcomes of β-Hemolytic Streptococcal Necrotizing Skin and Soft-tissue Infections and the Impact of Clindamycin Resistance.	Relationship between prognostic factor and outcome not reported or quantified
Contou, 2022	Menstrual Toxic Shock Syndrome: A French Nationwide Multicenter Retrospective Study.	Wrong population
Valenciano, 2021	Invasive Group A Streptococcal Infections Among People Who Inject Drugs and People Experiencing Homelessness in the United States, 2010,Äì2017.	Relationship between prognostic factor and outcome not reported or quantified
	- A	•
Jutras, 2021	Intravenous Immunoglobulin Use In Critically Ill Children.	Wrong population
Mataalf 2022	Cluster Transmission Drives Invasive Group A Streptococcus Disease Within the United States and Is Focused on	
Metcalf, 2022	Communities Experiencing Disadvantage.	Wrong population Relationship between
		prognostic factor and
Dunne, 2022	Increasing Incidence of Invasive Group A Streptococcus Disease, Idaho, USA, 2008-2019.	outcome not reported or quantified
VanZeeland, 2022	Public health response following an iGAS outbreak in a residential aged care facility in Queensland.	Wrong population
5	Lithuanian tertiary pediatric centre experience of multi-system inflammatory syndrome in children (MIS-C): clinical cases	
Barisiene, 2021	study	Wrong population
Silvestre, 2022	Toxic shock syndrome: diagnosis and management.	Wrong study design
Nabarro, 2022	Invasive Group A Streptococcus Outbreaks Associated with Home Healthcare, England, 2018-2019.	Wrong population
Nagata, 2022	Necrotizing fasciitis of the extremities in high and low Charlson Comorbidity Index: A multi-center retrospective cohort study.	Wrong population
deNeergaard, 2022	Invasive streptococcal infection can lead to the generation of cross-strain opsonic antibodies	Wrong population
Pershing, 2021	Pediatric Group A Streptococcal Peritonitis: A Single-Center Eleven Patient Case Series	Wrong population
Nawijn, 2021	Incidence and mortality of necrotizing fasciitis in The Netherlands: the impact of group A Streptococcus.	Wrong population
Sahin, 2022	Clinical and Laboratory Features of Invasive Group A Streptococcal Infections: 8 Years Experience.	Wrong population
Thean, 2020	The epidemiology and clinical course of invasive staphylococcus aureus and group a streptococcus infections in Fiji: A prospective study	Wrong population

Nationwide study of mortality and survival in pregnancyrelated streptococcal toxic shock syndrome Duplicate

Table of additional study characteristics

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Abuhammour 2004	Cohort	United States	2	9	100	NR	NR	NR	NR	NR	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
											any antibiotic - clinical cure/improvement^
											any antibiotic - ICU admission
											any antibiotic - mortality
Adalat 2014	Cohort	United Kingdom, Ireland	29	4 (median)	62	NR	NR	28	38	62	IVIG - mortality
Al-Ajmi 2012	Case-series	Qatar	2	35	0	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mortality^
Barnham 2002	Case-series	England	12	57	64	NR	NR	58	17	83	age - ICU admission^
											age - mortality^
											any antibiotic - ICU admission
											any antibiotic - mortality
											clindamycin - ICU admission^
											clindamycin - mortality
											emm type - ICU admission^
											emm type - mortality^
											immunocompromised - ICU admission^
											immunocompromised - mortality
											IVIG - ICU admission
											IVIG - mortality
											IVIG - time to mortality^
											NF - ICU admission
											NF - mortality
											NSAIDs - ICU admission
											NSAIDs - mortality
Bernaldo de Quiros 1997	Cohort	Spain	9	NR	NR	NR	NR	NR	NR	NR	immunocompromised - mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Brogan 1995	Case-series	United States	5	6	60	NR	NR	100	60	40	age - clinical cure/improvement^
											age - hospital LOS^
											age - ICU admission^
											age - ICU LOS^
											age - mortality^
											NSAIDs - clinical cure/improvement^
											NSAIDs - hospital LOS^
											NSAIDS - ICU admission
											NSAIDs - ICU LOS^
											NSAIDs - mortality
											sex - clinical cure/improvement
											sex - hospital LOS^
											sex - ICU admission
											sex - ICU LOS^
											sex - mortality
Butragueno Laiseca 2017	Case-series	Spain	13	2	50	NR	NR	15	15	85	acute renal failure - clinical cure/improvement^
											acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - clinical cure/improvement^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											clindamycin - clinical cure/improvement^
											clindamycin - ICU LOS^
											clindamycin - mechanical ventilation^
											clindamycin - mortality
											hemodialysis - clinical cure/imrpovement
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
											IVIG - clinical cure/improvement
											IVIG - ICU LOS
											IVIG - mechanical ventilation
											IVIG - mortality
											NF - clinical cure/improvement
											NF - ICU LOS^
											NF - mechanical ventilation
											NF - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Carapetis 2014	Cohort	Australia	37	60	50	NR	NR	100	0	100	age - mortality^
											IVIG - mortality
											sex - mortality
Cimolai 1992	Case-series	Canada	4	8	50	NR	NR	NR	0	100	age - clinical cure/improvement^
											age - mortality^
											sex - clinical cure/improvement
											sex - mortality
Cook 2020	Cohort	United States	27	9	44	NR	NR	19	56	44	other - other^
Cowan 1994	Case-series	United States	3	2	67	NR	NR	NR	100	0	age - clinical cure/improvement^
											age - ICU admission^
											age - ICU LOS^
											age - mechanical ventilation^
											age - mortality^
											sex - clinical cure/improvement
											sex - ICU admission
											sex - ICU LOS^
											sex - mechanical ventilation
											sex - mortality
Crum 2004	Case-series	United States	2	24	100	NR	NR	50	0	100	age - clinical cure/improvement^
											age - ICU admission^
											age - mechanical ventilation^
											age - mortality^
											hemodialysis - clinical cure/improvement
											hemodialysis - ICU admission
											hemodialysis - mechanical ventilation
											hemodialysis - mortality
Dahl 2002	Case-series	United States	5	53	NR	NR	NR	100	0	100	age - mortality^
											immunocompromised - mortality
Darenberg 2003	Randomized trial	Sweden, Norway, Finland,	18	52	48	NR	NR	NR	11	89	IVIG - change in SOFA score^
		Netherlands									IVIG - mortality
											IVIG - time to clinical cure/improvement^
											IVIG - time to mortality^

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Donaldson 1993	Case-series	England	5	67	20	NR	NR	100	NR	NR	age - mortality^
											any antibiotic - mortality
											sex - mortality
Erdem 2004	Case-series	United States	3	52	67	NR	NR	100	NR	33	age - mortality^
											sex - mortality
Eriksson 1999	Cohort	Sweden	6	46	83	NR	NR	NR	0	100	age - mortality^
											emm type - mortality^
											sex - mortality
Forni 1995	Case-series	United States	5	54	83	NR	17	50	0	100	acure renal failure - ICU admission^
											acute renal failure - mortality
											age - hospital LOS^
											age - ICU admission^
											age - mortality^
											emm type - ICU admission^
											emm type - mortality^
											NF - ICU admission
											NF - mortality
Fronhoffs 2000	Case-series	Germany	7	49	71	14	14	86	86	14	acute renal failure - mechanical ventilation
											acute renal failure - mortality
											age - mechanical ventilation^
											age - mortality^
											immunocompromised - mechanical ventilation^
											immunocompromised - mortality
											NF - mechanical ventilation
											NF - mortality
											NSAIDs - mechanical ventilation^
											NSAIDs - mortality
											sex - mechanical ventilation
											sex - mortality
Hasegawa 2004	Case-control	Japan	66*	Range: 0 to 70	59	NR	18	NR	100	0	acute renal failure - mortality
Hayata 2021	Cohort	Japan	28	NR	0	NR	NR	NR	0	100	age - mortality^ NSAIDs - mortality

Study	Study Design	Country	Number of STSS cases	Mean age	% Male	Cardiovascular Disease (%)	Diabetes (%)	Presence of Necrotizing Fasciitis (%)	Probable GAS STSS (%)	Confirmed GAS STSS (%)	Prognostic factor and outcome combination of interest reported
Huang 2001	Case-series	Taiwan	3	6	100	NR	NR	NR	33	67	age - mortality^
Kansal 2000	Cohort	Canada	28	NR	NR	NR	NR	NR	NR	NR	NF - other^
Kaul 1999	Case-control	Canada	53	57	55	NR	NR	NR	NR	NR	clindamycin - mortality IVIG - duration of mechanical ventilation^ IVIG - hospital LOS IVIG - mortality NF - mortality
Linder 2017	Cohort	United States	10	NR	NR	NR	NR	NR	0	100	immunocompromised - mortality
Linnér 2014	Cohort	Sweden	67	63	42	48	16	28	NR	NR	age - mortality^ dindamycin - mortality IVIG - hospital LOS IVIG - mortality
Luca-Harari 2009	Cohort	Cyprus, Czech Republic, Denmark, Finand, France, Germany, Greece, Italy, Romania, Sweden, United Kingdom	476	NR	NR	NR	NR	NR	NR	NR	emm type - mortality^
Nelson 2016	Cohort	United States	381	NR	NR	NR	NR	19	NR	NR	age - mortality NF - mortality
O'Loughlin 2007	Cohort	United States	309	NR	NR	NR	NR	20	NR	NR	age - mortality NF - mortality
Page 2011	Cohort	Canada	16	NR	NR	NR	NR	NR	NR	NR	other - other^
Safar 2011	Cohort	New Zealand	30	NR	NR	NR	NR	17	0	100	age - mortality NF - mortality
Schwartz 1992	Case-series	United States	8	40	40	NR	NR	NR	0	100	age - mortality^ emm type - mortality^ sex - mortality
Shah 2009	Cohort	United States	192	8	49	NR	NR	NR	NR	NR	IVIG - cost^ IVIG - hospital LOS IVIG - ICU admission IVIG - ICU LOS IVIG - mechanical ventilation IVIG - mortality

Stegraeyr 1992 Case-series Sweden 11 42 64 NR NR NR 27 73 age - clinical or age - ica age -	and outcome combination of erest reported	-	Confirmed GAS STSS (%)	Probable GAS STSS (%)	Presence of Necrotizing Fasciitis (%)	Diabetes (%)	Cardiovascular Disease (%)	% Male	Mean age	Number of STSS cases	Country	Study Design	Study
age -rich age -rich age - rich age -	ther - other^	other - of	NR	NR	NR	NR	NR	NR	NR	7	England	Cohort	Sriskandan 2000
age - mechal age -	al cure/improvement^	age - clinical cure/i	73	27	NR	NR	NR	64	42	11	Sweden	Case-series	Stegmayr 1992
Age - Age	- ICU admission^	age - ICU adı											
hemodialys - din hemodialys hemodialys - din hemodialys hemodialys - din hemodialys hemodialys - din hemodialys hemodia	chanical ventilation^	age - mechanical											
hemodialysis - rn hemodialys	e - mortality^	age - mort											
Nemodalaysis - rr	clinical cure/improvement	hemodialysis - clinical o											
Nemodals Nide-clinical N	lysis - ICU admission	hemodialysis - IC											
Vi/G - dinical NF -	- mechanical ventilation	hemodialysis - mecha											
VIVIG - Next	lialysis - mortality	hemodialysis -											
Vig - mecha Vig - vig	cal cure/improvement	IVIG - clinical cure,											
NF - clinical c	- ICU admission	IVIG - ICU ac											
NF - clinical content NF - mechanism	echanical ventilation	IVIG - mechanica											
NF - ICO	IG - mortality	IVIG - mor											
NF - mechan	al cure/improvement	NF - clinical cure/											
NF -	- ICU admission	NF - ICU ad											
Stevens 1989 Case-series United States 19 41 53 80 5 21 0 100 age	chanical ventilation	NF - mechanical											
Stevens 1989 Case-series United States 19 41 53 80 5 21 0 100 age -1	IF - mortality	NF - mort											
Stevens 1989 Case-series United States 19 41 53 80 5 21 0 100 age -1	al cure/improvement												
Stevens 1989 Case-series United States 19 41 53 80 5 21 0 100 age - 1 100	- ICU admission												
Stevens 1989 Case-series United States 19 41 53 80 5 21 0 100 age -1	chanical ventilation	sex - mechanical											
emm typ hemodialy NF - sex - Stockmann 2012 Cohort United States 53 30 (median) NR 58 19 32 NR NR age - ICC age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR NR 20 80 age - ICC emm typ	ex - mortality	sex - mort											
hemodial NF - Stockmann 2012 Cohort United States 53 30 (median) NR 58 19 32 NR NR age - ICC age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR NR 20 80 age - ICC emm typ	e - mortality^	age - mort	100	0	21	5	80	53	41	19	United States	Case-series	Stevens 1989
NF - Stockmann 2012 Cohort United States 53 30 (median) NR 58 19 32 NR NR NR age - ICC age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR 20 80 age - ICC emm typ	type - mortality^	emm type - m											
Stockmann 2012 Cohort United States 53 30 (median) NR 58 19 32 NR NR NR age - ICC age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR NR 20 80 age - Temptype Emmitype E	lialysis - mortality	hemodialysis -											
Stockmann 2012 Cohort United States 53 30 (median) NR 58 19 32 NR NR NR age -ICL age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR NR 20 80 age -ICL emm typ	IF - mortality	NF - mort											
age - Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR 20 80 age - emm typ	ex - mortality	sex - mort											
Tagini 2017 Case-series Switzerland 5 18 60 NR NR NR NR 20 80 age - i emm typ	- ICU admission^	age - ICU adı	NR	NR	32	19	58	NR	30 (median)	53	United States	Cohort	Stockmann 2012
emm typ	ge - mortality	age - mor											
	e - mortality^	age - mort	80	20	NR	NR	NR	60	18	5	Switzerland	Case-series	Tagini 2017
sex-	type - mortality^	emm type - m											
	ex - mortality	sex - mort											
Torimitsu 2021 Case-series Japan 4 NR 75 NR 50 25 0 100 sex-	ex - mortality	sex - mort	100	0	25	50	NR	75	NR	4	Japan	Case-series	Torimitsu 2021
Zachariadou 2013 Cohort Greece 19 NR NR NR NR NR O 100 age -	ge - mortality	age - mor	100	0	NR	NR	NR	NR	NR	19	Greece	Cohort	Zachariadou 2013
emm typ	type - mortality^	emm type - m											

drome control of the *More than 80% of STSS cases due to group A Streptococcus

^Excluded from meta-analysis

NF=necrotizing fasciitis

NSAIDs=non-steroidal anti-inflammatory drugs

ICU=intensive care unit

IVIG=intravenous immunoglobulin

GAS=group A Streptococcus

STSS=streptococcal toxic shock syndrome

NR=not reported

Risk of bias assessment of included studies

Author	Study participation	Study Attrition	Prognostic Factor Measurement	Outcome Measurement	Study Confounding	Statistical Analysis and Presentation Summary	Overall Risk of Bias
Abuhammour 2004	Low	Low	Low	Low	High	High	High
Adalat 2014	Low	High	High	Low	High	High	High
Al-Ajmi 2012	NA	NA	NA	NA	NA	NA	High
Barnham 2002	NA	NA	NA	NA	NA	NA	High
Bernaldo de Quiros 1997	Low	Low	Low	Low	High	High	High
Brogan 1995	NA	NA	NA	NA	NA	NA	High
Butragueno Laiseca 2017	NA	NA	NA	NA	NA	NA	High
Carapetis 1995	NA	NA	NA	NA	NA	NA	High
Carapetis 2014	Low	Low	Low	Low	High	High	High
Cimolai 1992	NA	NA	NA	NA	NA	NA	High
Cook 2021	Low	Low	Low	Low	High	High	High
Cowan 1994	NA	NA	NA	NA	NA	NA	High
Crum 2004	NA	NA	NA	NA	NA	NA	High
Dahl 2002	NA	NA	NA	NA	NA	NA	High
Darenberg 2003	Low	Moderate	Low	Moderate	Low	Low	Moderate
Donaldson 1993	NA	NA	NA	NA	NA	NA	High
Erdem 2004	NA	NA	NA	NA	NA	NA	High
Eriksson 1999	Low	Low	Low	Low	High	High	High
Forni 1995	NA	NA	NA	NA	NA	NA	High
Fronhoffs 2000	NA	NA	NA	NA	NA	NA	High
Hasegawa 2004	Low	Low	Moderate	Low	High	High	High
Hayata 2021	Low	Low	Low	Low	High	High	High
Huang 2001	NA	NA	NA	NA	NA	NA	High
Kansal 2000	Moderate	Low	Moderate	Low	High	High	High
Kaul 1999	Low	Low	Low	Low	High	High	High

Linder 2017	Low	Moderate	Low	Moderate	High	High	High
Linner 2014	Low	Low	Low	Low	Moderate	Low	Low
Luca-Harari 2009	Low	High	Low	Low	High	High	High
Nelson 2016	Low	Low	Low	Low	High	High	High
O'Loughlin 2007	Low	Low	Low	Low	High	High	High
Page 2011	Low	Low	Low	Low	Moderate	High	Moderate
Safar 2011	Low	Low	Low	Low	High	High	High
Schwartz 1992	NA	NA	NA	NA	NA	NA	High
Shah 2009	Low	High	Low	Low	Moderate	Moderate	Moderate
Sriskandan 2000	Moderate	Moderate	High	Low	High	High	High
Stegmayr 1992	NA	NA	NA	NA	NA	NA	High
Stevens 1989	NA	NA	NA	NA	NA	NA	High
Stockmann 2012	Low	Low	Low	Low	High	High	High
Tagini 2017	NA	NA	NA	NA	NA	NA	High
Torimitsu 2021	NA	NA	NA	NA	NA	NA	High
Zachariadou 2013	Low	Low	Low	Low	High	High	High

NA, Not Applicable because case-series study design and rated at high risk of bias.

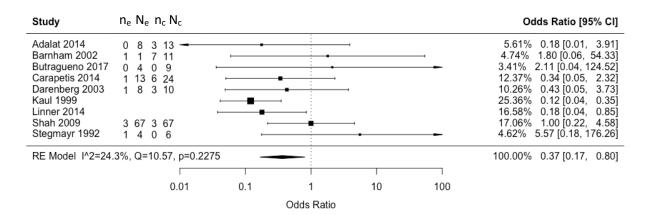
Forest plots

 $\mathbf{n}_{e:}$ number of patients with the outcome exposed to or experiencing the prognostic factor (experimental group) $\mathbf{N}_{e:}$ total number of patients exposed to or experiencing the prognostic factor (experimental group) $\mathbf{n}_{e:}$ number of patients with the outcome not exposed to or experiencing the prognostic factor (control group) $\mathbf{N}_{e:}$ total number of patients not exposed to or experiencing the prognostic factor (control group)

Percentages in forest plots correspond to the percent weight contribution of each study in the meta-analysis.

For mortality, ICU admission and need for mechanical ventilation outcomes, an odds ratio greater than 1 corresponds with a worse STSS prognosis and an odds ratio less than 1 corresponds with a better STSS prognosis.

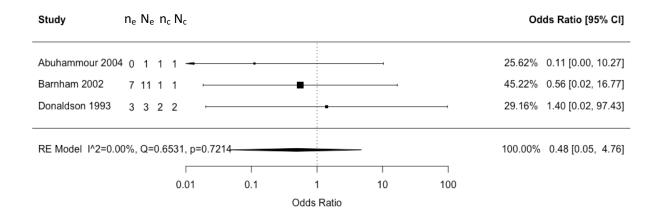
For clinical cure or improvement outcome, an odds ratio greater than 1 corresponds with a better STSS prognosis and an odds ratio less than 1 corresponds with a worse STSS prognosis.


For duration of hospitalization and ICU stay outcomes, a mean difference greater than 1 corresponds with a worse STSS prognosis and a mean difference less than 1 corresponds with a better STSS prognosis.

Mortality

1. Sex: male vs female (reference)

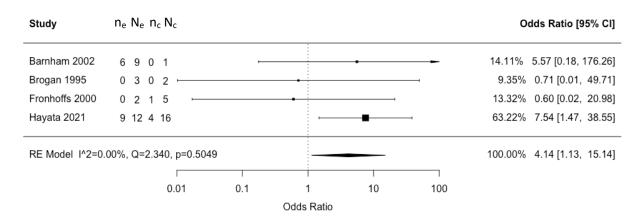
Brogan 1995	Study	$n_e \ N_e \ n_c \ N_c$	Odds Ratio [95% CI]
Cimolai 1992	Brogan 1995	0 3 0 2	5.25% 0.71 [0.01, 49.71]
Cowan 1994	Carapetis 2014	0 1 1 1 -	4.61% 0.11 [0.00, 10.27]
Donaldson 1993	Cimolai 1992	0 2 1 2 -	6.59% 0.20 [0.00, 8.82]
Erdem 2004	Cowan 1994	0 2 0 1 -	4.85% 0.60 [0.01, 49.45]
Eriksson 1999	Donaldson 1993	1 1 4 4 🕶	5.03% 0.33 [0.00, 25.41]
Fronhoffs 2000 1 5 0 2 7.48% 1.67 [0.05, 58.28] Schwartz 1992 2 2 1 4 7.34% 11.67 [0.32, 422.14] Stegmayr 1992 0 7 1 4 7.97% 0.16 [0.00, 4.87] Stevens 1989 4 10 2 9 7.05% 2.08 [0.32, 13.46] Tagini 2017 0 2 1 3 7.09% 0.33 [0.01, 12.82] Torimitsu 2021 3 3 1 1 4.97% 2.33 [0.03, 182.91] RE Model I^2=0.00%, Q=5.876, p=0.8815	Erdem 2004	2 2 1 1	4.85% 1.67 [0.02, 137.35]
Schwartz 1992 2 2 1 4 7.34% 11.67 [0.32, 422.14] Stegmayr 1992 0 7 1 4 7.97% 0.16 [0.00, 4.87] Stevens 1989 4 10 2 9 7.05% 2.08 [0.32, 13.46] Tagini 2017 0 2 1 3 7.09% 0.33 [0.01, 12.82] Torimitsu 2021 3 3 1 1 4.97% 2.33 [0.03, 182.91] RE Model I*2=0.00%, Q=5.876, p=0.8815	Eriksson 1999	1 5 0 1	6.92% 1.00 [0.02, 40.28]
Stegmayr 1992 0 7 1 4	Fronhoffs 2000	1 5 0 2	7.48% 1.67 [0.05, 58.28]
Stevens 1989 4 10 2 9 27.05% 2.08 [0.32, 13.46] Tagini 2017 0 2 1 3 7.09% 0.33 [0.01, 12.82] Torimitsu 2021 3 3 1 1 4.97% 2.33 [0.03, 182.91] RE Model I^2=0.00%, Q=5.876, p=0.8815	Schwartz 1992	2 2 1 4	7.34% 11.67 [0.32, 422.14]
Tagini 2017 0 2 1 3 7.09% 0.33 [0.01, 12.82] Torimitsu 2021 3 3 1 1 4.97% 2.33 [0.03, 182.91] RE Model I^2=0.00%, Q=5.876, p=0.8815 100.00% 0.95 [0.36, 2.52]	Stegmayr 1992	0 7 1 4 -	7.97% 0.16 [0.00, 4.87]
Torimitsu 2021 3 3 1 1 4.97% 2.33 [0.03, 182.91] RE Model I^2=0.00%, Q=5.876, p=0.8815 100.00% 0.95 [0.36, 2.52]	Stevens 1989	4 10 2 9	27.05% 2.08 [0.32, 13.46]
RE Model I^2=0.00%, Q=5.876, p=0.8815 100.00% 0.95 [0.36, 2.52]	Tagini 2017	0 2 1 3 -	7.09% 0.33 [0.01, 12.82]
	Torimitsu 2021	3 3 1 1	4.97% 2.33 [0.03, 182.91]
0.01 0.1 1 10 100	RE Model I^2=0.0	00%, Q=5.876, p=0.8815	100.00% 0.95 [0.36, 2.52]
0.01 0.1 1 10 100		· · · · · · · · · · · · · · · · · · ·	
		0.01 0.1 1 10 100	

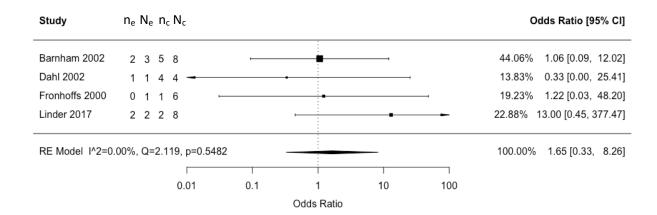

2.A) IVIG in all STSS patients: yes vs no (reference)

2.B) IVIG in the subset of STSS patients treated with clindamycin: yes vs no (reference)

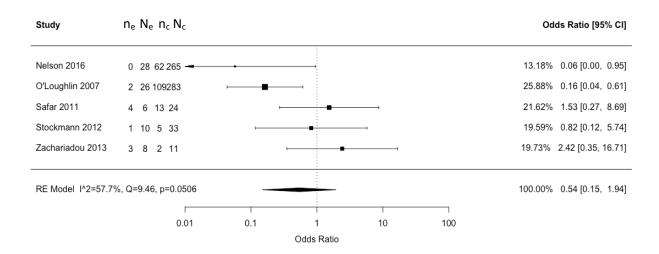
Study	$n_e \ N_e \ n_c \ N_c$					Od	lds Ratio [9	5% CI]
Adalat 2014	0 8 3 13 -			_		6.68%	0.18 [0.01,	3.91]
Barnham 2002	1 1 2 6	-		-	-	5.08%	5.40 [0.15, 1	88.83]
Carapetis 2014	1 13 6 24	-				17.50%	0.34 [0.05,	2.32]
Darenberg 2003	1 8 3 10	-	-	-		13.70%	0.43 [0.05,	3.73]
Kaul 1999			i			21.92%	0.18 [0.03,	1.01]
Linner 2014	3 21 11 31					35.12%	0.34 [0.09,	1.30]
RE Model I^2=0.	00%, Q=3.055, p=0.69	15	_			100.00%	0.34 [0.15,	0.75]
			i					
	0.01	0.1	1	10	100			
			Odds Ratio					

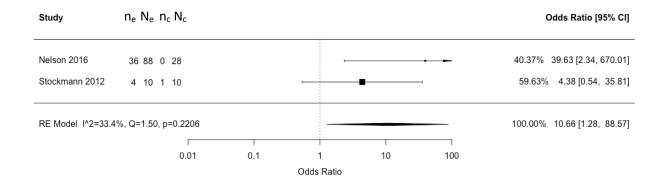
3. Any antibiotic: yes vs no (reference)

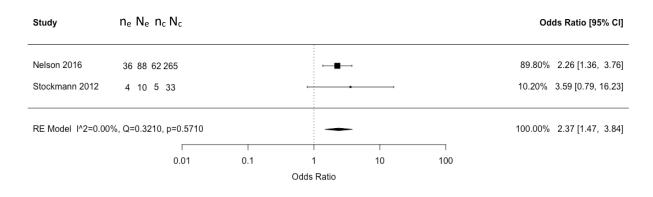

Study		Risk Difference [95% CI]
Abuhammour 2004		19.23% -0.50 [-1.35, 0.35]
Barnham 2002		31.82% -0.12 [-0.78, 0.53]
Donaldson 1993	-	48.95% 0.04 [-0.49, 0.57]
RE Model I^2=0.00%, Q=1.125, p=0.5699		100.00% -0.12 [-0.49, 0.26]
	 	
	-1.5 -1 -0.5 0 0.5 1	
	Risk Difference	

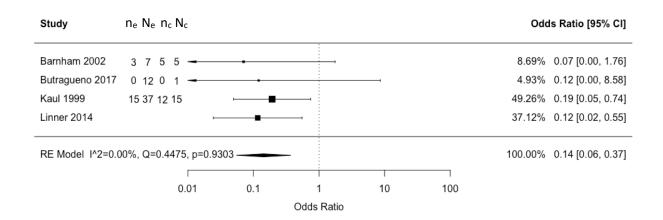

4. Necrotizing fasciitis: yes vs no (reference)

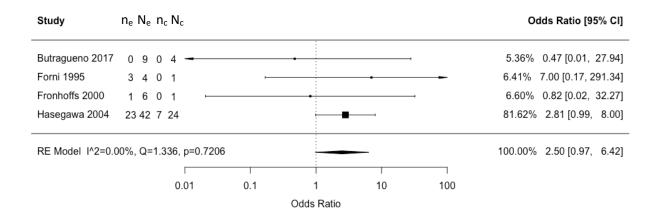
Study	$n_e \; N_e \; n_c \; N_c$					Odds Ratio [95% CI]
Barnham 2002	5 7 3 5	⊢				4.12% 1.57 [0.17, 14.28]
Butragueno 2017	0 2 0 11	-	<u> </u>		-	1.22% 4.60 [0.07, 292.29]
Forni 1995	2 3 1 2	-			→	2.24% 1.67 [0.08, 34.72]
Fronhoffs 2000	1 6 0 1				-	1.54% 0.82 [0.02, 32.27]
Kaul 1999	7 23 21 30	-				13.04% 0.20 [0.06, 0.64]
Nelson 2016	20 73 78 308		···			33.77% 1.13 [0.64, 1.99]
O'Loughlin 2007	22 62 89 247		<u> </u>			33.35% 0.98 [0.55, 1.75]
Safar 2011	1 5 16 25	-				4.89% 0.19 [0.03, 1.44]
Stegmayr 1992	0 1 1 10	-				1.58% 2.11 [0.06, 79.97]
Stevens 1989	1 4 5 15	-	-			4.24% 0.82 [0.09, 7.19]
RE Model I^2=15.4	%, Q=10.64, p=0.301	1	-			100.00% 0.81 [0.51, 1.29]
		1	i	1		
	0.01	0.1	1	10	100	
			Odds Ratio			

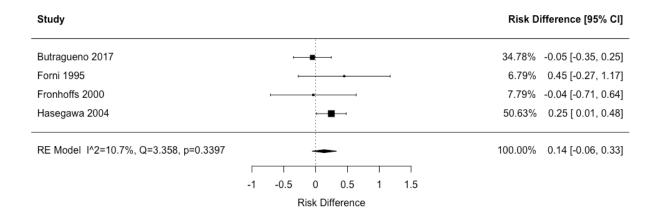

5. NSAIDs: yes vs no (reference)


6. Immunocompromised: yes vs no (reference)

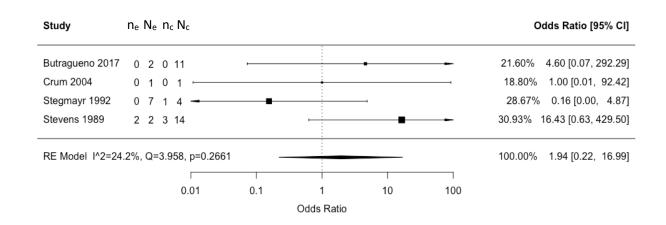

7. Age: <18 years vs 18-64 years (reference)


8. Age: ≥65 years vs <18 years (reference)

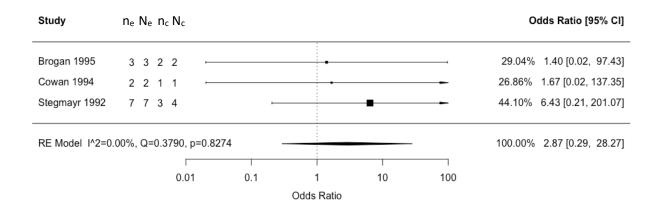

9: Age: ≥65 years vs 18-64 years (reference)

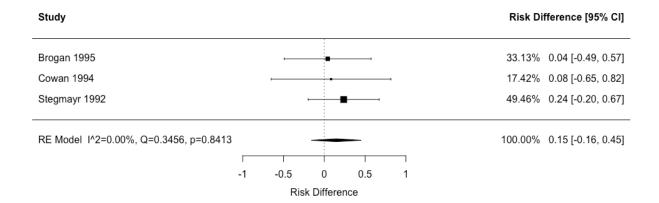


10. Clindamycin antibiotic vs no clindamycin antibiotic (reference)

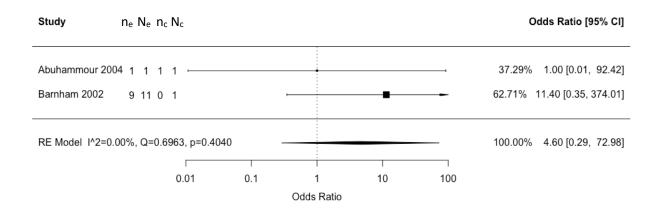


11. Acute renal failure: yes vs no (reference)

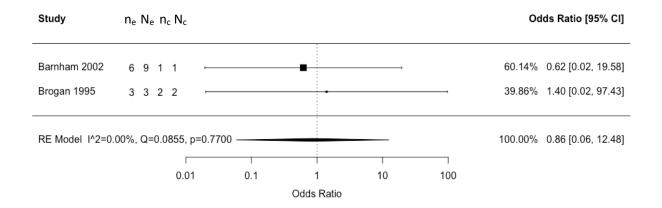

12. Hemodialysis: yes vs no (reference)

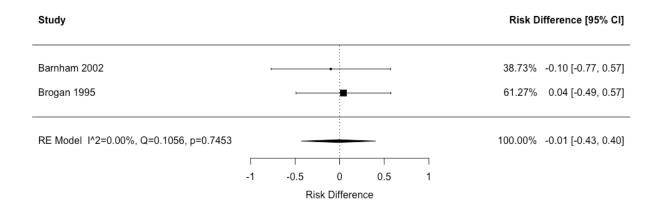


ICU admission

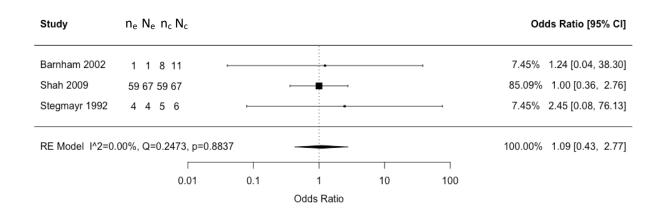

This note pertains to meta-analyses of the outcome ICU admission that include the study Stegmayr 1992. For this study, 10 of 11 STSS patients were admitted to the ICU. Despite no explicit mention of which one patient was not admitted to the ICU, our interpretation of the clinical profiles and patient-level data allowed us to deduce that patient 1 likely did not require ICU admission. We reached out to the corresponding author to confirm if our interpretation was correct, but did not receive a response.

1. Sex: male vs female (reference)


2. Any antibiotic: yes vs no (reference)



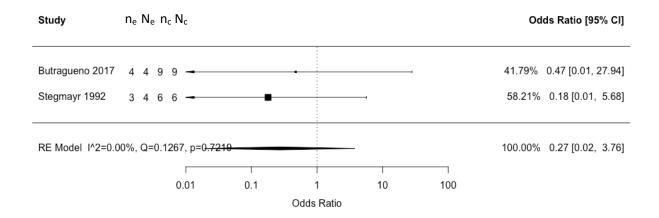
3. Necrotizing fasciitis: yes vs no (reference)

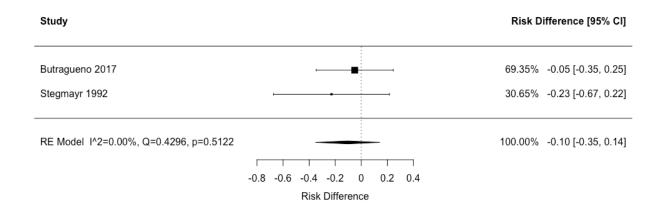

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Barnham 2002	5 7 4 5		•			57.42% 0.73 [0.07, 7.90]
Forni 1995	3 3 2 2		-			18.02% 1.40 [0.02, 97.43]
Stegmayr 1992	1 1 9 10		-			24.56% 0.47 [0.01, 17.94]
RE Model I^2=0.	00%, Q=0.1447, p=0.93	302 ——		_		100.00% 0.74 [0.12, 4.48]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

4. NSAIDs: yes vs no (reference)

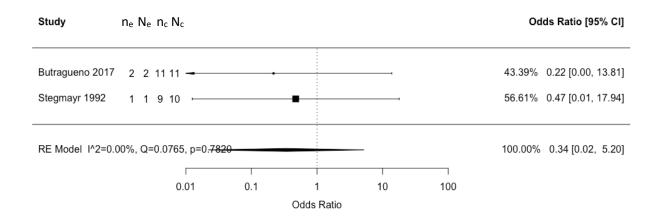
5. IVIG in all STSS patients: yes vs no (reference)

6. Hemodialysis: yes vs no (reference)

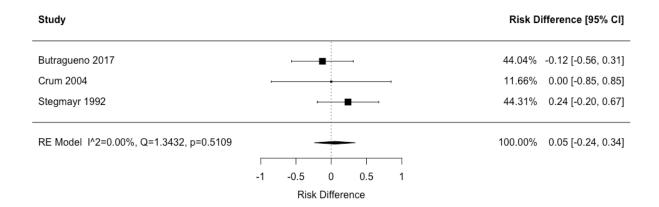

Study	$n_e \; N_e \; n_c \; N_c$					Odds Ratio [95% CI]
Crum 2004	1 1 1 1					36.65% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	63.35% 6.43 [0.21, 201.07]
RE Model I^2=0	.00%, Q=0.4113, p=0.5	213 —				100.00% 3.25 [0.21, 50.35]
			- i			
	0.01	0.1	1	10	100	
			Odds Ratio			


Clinical cure or improvement

1. Sex: male vs female (reference)

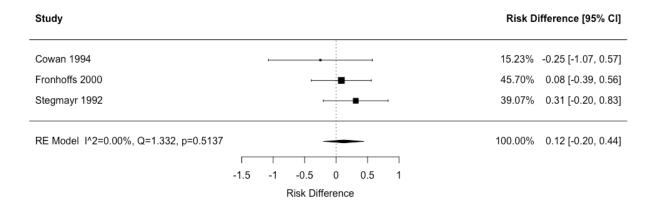

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Brogan 1995	3 3 2 2 ⊢					21.28% 1.40 [0.02, 97.43]
Cimolai 1992	2 2 1 2		-	-	-	26.71% 5.00 [0.11, 220.62]
Cowan 1994	2 2 1 1 ⊢				-	19.68% 1.67 [0.02, 137.35]
Stegmayr 1992	7 7 3 4			-		32.32% 6.43 [0.21, 201.07]
RE Model I^2=0	00%, Q=0.4393, p=0.93	320				100.00% 3.33 [0.47, 23.59]
			- i			
	0.01	0.1	1	10	100	
			Odds Ratio			

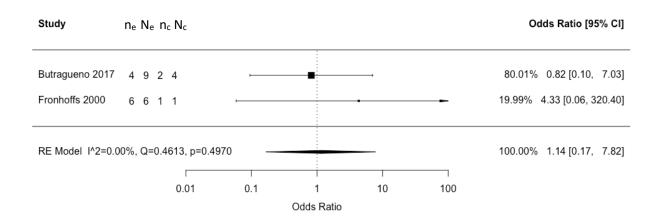
2. IVIG in all STSS patients: yes vs no (reference)



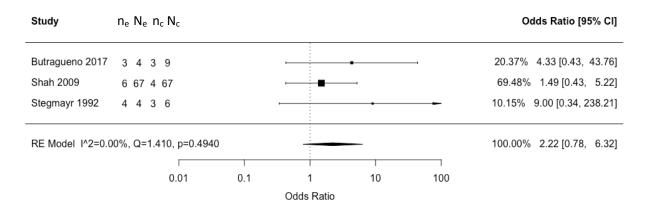
3. Necrotizing fasciitis: yes vs no (reference)

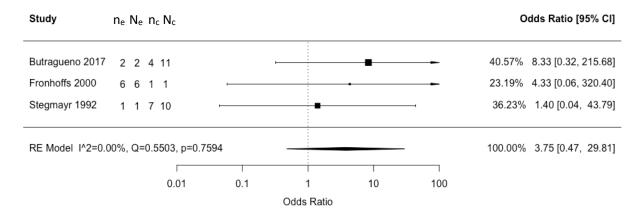
4. Hemodialysis: yes vs no (reference)

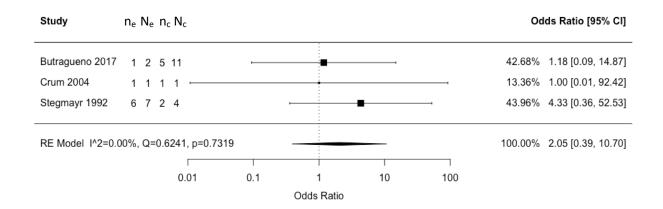

Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Butragueno 2017	2 2 11 11 -					30.35% 0.22 [0.00, 13.81]
Crum 2004	1 1 1 1		-			25.53% 1.00 [0.01, 92.42]
Stegmayr 1992	7 7 3 4	-		-	-	44.13% 6.43 [0.21, 201.07]
RE Model I^2=00	.0%, Q=1.5470, p=0.46	i14 —				100.00% 1.43 [0.15, 14.08]
			- i	T		
	0.01	0.1	1	10	100	
			Odds Ratio			


Mechanical ventilation

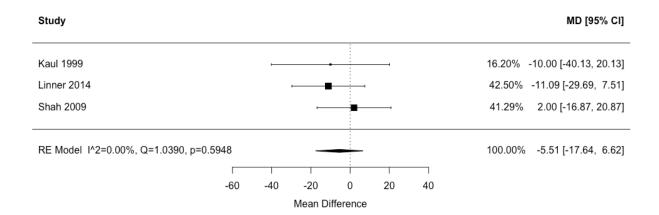
1. Sex: male vs female (reference)


Study	$n_e \ N_e \ n_c \ N_c$					Odds Ratio [95% CI]
Cowan 1994	1 2 1 1 -					23.03% 0.33 [0.01, 16.80]
Fronhoffs 2000	5 5 2 2	-	-		-	20.11% 2.20 [0.03, 146.03]
Stegmayr 1992	6 7 2 4			•		56.86% 4.33 [0.36, 52.53]
RE Model I^2=0	.00%, Q=1.171, p=0.556	68				100.00% 2.09 [0.32, 13.74]
			i			
	0.01	0.1	1	10	100	
			Odds Ratio			

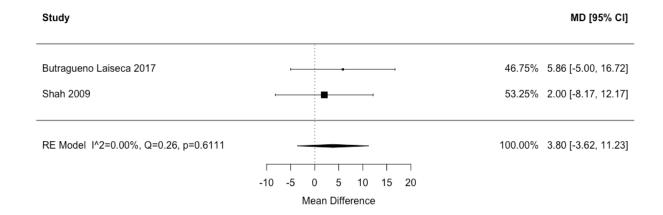

2. Acute renal failure: yes vs no (reference)


3. IVIG in all STSS patients: yes vs no (reference)

4. Necrotizing fasciitis: yes vs no (reference)



5. Hemodialysis: yes vs no (reference)


Hospital length-of-stay

1. IVIG: yes vs no (reference)

ICU length-of-stay

1. IVIG: yes vs no (reference)

Description of studies ineligible for meta-analysis by outcome

Mortality

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	4	4	
			n=17 case-series with <10 patients, precluding the aggregation of patient-level data; n=6 study population consisted of patients all within same
age	28	5	age category
antibiotic	3	3	
clindamycin	4	4	
early hypotension	0	0	
emmtype	7	0	n=7 variability in reporting of molecular characteristics and comparators
hemodialysis	4	4	
immunocompromised	5	4	n=1 insufficient data for meta-analysis (only p value reported)
IVIG in all STSS patients	9	9	
IVIG in clindamycin-treated patients	6	6	
NF	10	10	
NSAIDs	4	4	
sex	12	12	
timetoantibiotic	1	0	Meta-analysis precluded with only one study

(P)ICU admission

Duognostia faatav of interest	N reporting	N analyzed	Deceans for evaluation from mote analysis
Prognostic factor of interest			Reasons for exclusion from meta-analysis
acute renal failure	1	0	Meta-analysis precluded with only one study n=5 case-series with <10 patients, precluding the
			aggregation of patient-level data; n=3 study
			population consisted of patients all within same
	9	0	age category; n=1 eligible for analysis, but meta- analysis precluded with only one study
antibiotic	2	2	anarysis preciuded with only one study
			M. 1.1.1.11.11.11.1.1.1.1.1.1.1.1.1.1.1.
clindamycin	1	0	Meta-analysis precluded with only one study
early hypotension	0	0	n=2 variability in reporting of molecular
emmtype	2	0	characteristics and comparators
hemodialysis	2	2	·
immunocompromised	1	0	Meta-analysis precluded with only one study
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	3	3	
NSAIDs	2	2	
sex	3	3	
timetoantibiotic	0	0	

Clinical cure or improvement

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	1	0	Meta-analysis precluded with only one study
			n=6 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study population consisted of patients all within same
age	8	0	age category
antibiotic	1	0	Meta-analysis precluded with only one study
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated patients	0	0	
NF	2	2	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	4	4	
timetoantibiotic	0	0	

Mechanical ventilation

	3.7	.	
D	N _. .	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	2	2	
			n=3 case-series with <10 patients, precluding the aggregation of patient-level data; n=2 study population consisted of patients all within same
age	5	0	age category
antibiotic	0	0	
clindamycin	1	0	Meta-analysis precluded with only one study
earlyhypotension	0	0	
emmtype	0	0	
hemodialysis	3	3	
immunocompromised	1	0	Meta-analysis precluded with only one study
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	3	3	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	3	3	
timetoantibiotic	0	0	

Hospital length-of-stay

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
			n=2 case-series with <10 patients, precluding
age	2	0	the aggregation of patient-level data
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	3	3	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	1	0	Meta-analysis precluded with only one study
timetoantibiotic	0	0	

Duration of mechanical ventilation

	≥ T	N.T.	
Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
Frognostic factor of interest	reporting	anaryzeu	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	O ₂
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

ICU length-of-stay

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	3	0	n=2 case-series with <10 patients, precluding the aggregation of patient-level data; n=1 study population consisted of patients all within same age category
antibiotic	0	0	ngs emegery
clindamycin	1	0	Meta-analysis precluded with only one study
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	2	
IVIG in clindamycin-treated patients	0	0	
NF	1	0	Meta-analysis precluded with only one study
NSAIDs	1	0	Meta-analysis precluded with only one study
sex	2	0	n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with only one study
timetoantibiotic	0	0	

Change in SOFA score from baseline

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Functional status

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	/_
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	0,
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Health related quality of life

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	0	0	
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Cost

	N	N	
Prognostic factor of interest	reporting	analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	7
antibiotic	0	0	
clindamycin	0	0	O.
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	0	0	
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to mortality

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	2	0	n=1 study with one person in each group > cannot calculate mean; n=1 meta-analysis precluded with only one study n=1 study with one person in each group >
IVIG in clindamycin-treated patients	2	0	cannot calculate mean; n=1 meta-analysis precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Time to clinical improvement or resolution of shock

Prognostic factor of interest	N reporting	N analyzed	Reasons for exclusion from meta-analysis
acute renal failure	0	0	
age	0	0	
antibiotic	0	0	
clindamycin	0	0	
early hypotension	0	0	
emmtype	0	0	
hemodialysis	0	0	
immunocompromised	0	0	
IVIG in all STSS patients	1	0	Meta-analysis precluded with only one study
IVIG in clindamycin-treated patients	1	0	Meta-analysis precluded with only one study
NF	0	0	
NSAIDs	0	0	
sex	0	0	
timetoantibiotic	0	0	

Page 81 of 84

BMJ Open

47

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported		
TITLE					
Title	1	Identify the report as a systematic review.	1		
ABSTRACT					
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2		
INTRODUCTION					
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	4		
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	4		
METHODS					
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4-9		
		Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	4-9		
Search strategy	strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and limits used.		4-9		
Selection process	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each recand each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.		4-9		
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.			
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	4-9		
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	4-9		
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.			
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.			
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	4-9		
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	4-9		
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	4-9		
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	4-9		
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	4-9		
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	4-9		
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	4-9		
Certainty	15	Describe any methods usetotopassess/icertainty (ortconfidence) in the body of evidence for iale butsonnem!	4-9		

BMJ Open

Page 82 of 84

PRISMA 2020 Checklist

Section and Topic	Item #	Checklist item	Location where item is reported
assessment			
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	9-17
0	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	9-17
Study characteristics	17	Cite each included study and present its characteristics.	
4 Risk of bias in 5 studies	18	Present assessments of risk of bias for each included study.	
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	
Results of 9 syntheses 0	20a	For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies.	9-17
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	9-17
	20c	Present results of all investigations of possible causes of heterogeneity among study results.	9-17
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.	9-17
4 Reporting biases	iases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed.		9-17
5 Certainty of 6 evidence	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed.	
DISCUSSION			
BDiscussion	23a	Provide a general interpretation of the results in the context of other evidence.	17-19
	23b	Discuss any limitations of the evidence included in the review.	17-19
	23c	Discuss any limitations of the review processes used.	17-19
	23d	Discuss implications of the results for practice, policy, and future research.	17-19
OTHER INFORMA	TION		
Registration and	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	4
protocol	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	4
7	24c	Describe and explain any amendments to information provided at registration or in the protocol.	4
8 Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	
Competing interests	26	26 Declare any competing interests of review authors.	
Availability of data, code and other materials	ta, code and studies; data used for all analyses; analytic code; any other materials used in the review.		21

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi:

PRISMA 2020 Checklist

10.1136/bmj.n71

MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist

A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A.

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Reporting of Background		
Problem definition		
Hypothesis statement		
Description of Study Outcome(s)		
Type of exposure or intervention used		
Type of study design used		
Study population		
Reporting of Search Strategy		
Qualifications of searchers (eg, librarians		
and investigators)		
Search strategy, including time period		
included in the synthesis and keywords		
Effort to include all available studies,		
including contact with authors		
Databases and registries searched		
Search software used, name and	•	
version, including special features used		
(eg, explosion)		
Use of hand searching (eg, reference		
lists of obtained articles)		
List of citations located and those		
excluded, including justification		
Method for addressing articles		
published in languages other than		
English		
Method of handling abstracts and	<i>O</i> ,	
unpublished studies		
Description of any contact with authors		
Reporting of Methods		
Description of relevance or		
appropriateness of studies assembled for		
assessing the hypothesis to be tested		
Rationale for the selection and coding of		
data (eg, sound clinical principles or		
convenience)		
Documentation of how data were		
classified and coded (eg, multiple raters,		
blinding, and interrater reliability)		
Assessment of confounding (eg,		
comparability of cases and controls in		
studies where appropriate		

Reporting Criteria	Reported (Yes/No)	Reported on Page No.
Assessment of study quality, including		
blinding of quality assessors;		
stratification or regression on possible		
predictors of study results		
Assessment of heterogeneity		
Description of statistical methods (eg,		
complete description of fixed or random		
effects models, justification of whether		
the chosen models account for predictors		
of study results, dose-response models,		
or cumulative meta-analysis) in sufficient		
detail to be replicated		
Provision of appropriate tables and		
graphics		
Reporting of Results		
Table giving descriptive information for		
each study included		
Results of sensitivity testing (eg,		
subgroup analysis)		
Indication of statistical uncertainty of		
findings		
Reporting of Discussion		
Quantitative assessment of bias (eg,		
publication bias)		
Justification for exclusion (eg, exclusion	. 7	
of non–English-language citations)		
Assessment of quality of included studies		
Reporting of Conclusions		
Consideration of alternative explanations		
for observed results		
Generalization of the conclusions (ie,		
appropriate for the data presented and		
within the domain of the literature review)		
Guidelines for future research		

Once you have completed this checklist, please save a copy and upload it as part of your submission. DO NOT include this checklist as part of the main manuscript document. It must be uploaded as a separate file.