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Reviewer Comments & Decisions:  
Decision Letter, initial version: 

 
Subject: Decision on Nature Methods submission NMETH-A47051A 
Message: 7th Dec 2021 
 
 
Dear Jonathan, 
 
Your Article, "Detection of m6A from direct RNA sequencing using a Multiple Instance Learning 
framework", has now been seen by 4 reviewers. As you will see from their comments below, although 
the reviewers find your work of considerable potential interest, they have raised a number of concerns. 
We are interested in the possibility of publishing your paper in Nature Methods, but would like to 
consider your response to these concerns before we reach a final decision on publication. 
 
We therefore invite you to revise your manuscript to address these concerns. We would like to ask for 
an additional demonstration of m6Anet in a different organism, as also requested by the reviewers. We 
think reviewer#3's concern regarding the confounded training data is critical and should be fully 
addressed. 
 
We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 
us if there are specific requests from the reviewers that you believe are technically impossible or 
unlikely to yield a meaningful outcome. 
 
 
When revising your paper: 
 
* include a point-by-point response to the reviewers and to any editorial suggestions 
 
* please underline/highlight any additions to the text or areas with other significant changes to facilitate 
review of the revised manuscript 
 
* address the points listed described below to conform to our open science requirements 
 
* ensure it complies with our general format requirements as set out in our guide to authors at 
www.nature.com/naturemethods 
 
* resubmit all the necessary files electronically by using the link below to access your home page 
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[Redacted] This URL links to your confidential home page and associated information about manuscripts 
you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-
authors, please delete the link to your homepage. 
 
We hope to receive your revised paper within 10 weeks. If you cannot send it within this time, please let 
us know. In this event, we will still be happy to reconsider your paper at a later date so long as nothing 
similar has been accepted for publication at Nature Methods or published elsewhere. 
 
 
OPEN SCIENCE REQUIREMENTS 
 
REPORTING SUMMARY AND EDITORIAL POLICY CHECKLISTS 
When revising your manuscript, please update your reporting summary and editorial policy checklists. 
 
Reporting summary: https://www.nature.com/documents/nr-reporting-summary.zip 
Editorial policy checklist: https://www.nature.com/documents/nr-editorial-policy-checklist.zip 
 
If your paper includes custom software, we also ask you to complete a supplemental reporting 
summary. 
 
Software supplement: https://www.nature.com/documents/nr-software-policy.pdf 
 
Please submit these with your revised manuscript. They will be available to reviewers to aid in their 
evaluation if the paper is re-reviewed. If you have any questions about the checklist, please see 
http://www.nature.com/authors/policies/availability.html or contact me. 
 
Please note that these forms are dynamic ‘smart pdfs’ and must therefore be downloaded and 
completed in Adobe Reader. We will then flatten them for ease of use by the reviewers. If you would 
like to reference the guidance text as you complete the template, please access these flattened versions 
at http://www.nature.com/authors/policies/availability.html. 
 
IMAGE INTEGRITY 
When submitting the revised version of your manuscript, please pay close attention to our 
href="https://www.nature.com/nature-research/editorial-policies/image-integrity">Digital Image 
Integrity Guidelines.</a> and to the following points below: 
 
-- that unprocessed scans are clearly labelled and match the gels and western blots presented in figures. 
-- that control panels for gels and western blots are appropriately described as loading on sample 
processing controls 
-- all images in the paper are checked for duplication of panels and for splicing of gel lanes. 
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Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally 
archiving data in perpetuity, as these may be requested during the peer review and production process 
or after publication if any issues arise. 
 
 
DATA AVAILABILITY 
We strongly encourage you to deposit all new data associated with the paper in a persistent repository 
where they can be freely and enduringly accessed. We recommend submitting the data to discipline-
specific and community-recognized repositories; a list of repositories is provided here: 
http://www.nature.com/sdata/policies/repositories 
 
All novel DNA and RNA sequencing data, protein sequences, genetic polymorphisms, linked genotype 
and phenotype data, gene expression data, macromolecular structures, and proteomics data must be 
deposited in a publicly accessible database, and accession codes and associated hyperlinks must be 
provided in the “Data Availability” section. 
 
Refer to our data policies here: https://www.nature.com/nature-research/editorial-policies/reporting-
standards#availability-of-data 
 
To further increase transparency, we encourage you to provide, in tabular form, the data underlying the 
graphical representations used in your figures. This is in addition to our data-deposition policy for 
specific types of experiments and large datasets. For readers, the source data will be made accessible 
directly from the figure legend. Spreadsheets can be submitted in .xls, .xlsx or .csv formats. Only one (1) 
file per figure is permitted: thus if there is a multi-paneled figure the source data for each panel should 
be clearly labeled in the csv/Excel file; alternately the data for a figure can be included in multiple, 
clearly labeled sheets in an Excel file. File sizes of up to 30 MB are permitted. When submitting source 
data files with your manuscript please select the Source Data file type and use the Title field in the File 
Description tab to indicate which figure the source data pertains to. 
 
Please include a “Data availability” subsection in the Online Methods. This section should inform readers 
about the availability of the data used to support the conclusions of your study, including accession 
codes to public repositories, references to source data that may be published alongside the paper, 
unique identifiers such as URLs to data repository entries, or data set DOIs, and any other statement 
about data availability. At a minimum, you should include the following statement: “The data that 
support the findings of this study are available from the corresponding author upon request”, describing 
which data is available upon request and mentioning any restrictions on availability. If DOIs are 
provided, please include these in the Reference list (authors, title, publisher (repository name), 
identifier, year). For more guidance on how to write this section please see: 
http://www.nature.com/authors/policies/data/data-availability-statements-data-citations.pdf 
 
 
CODE AVAILABILITY 
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Please include a “Code Availability” subsection in the Online Methods which details how your custom 
code is made available. Only in rare cases (where code is not central to the main conclusions of the 
paper) is the statement “available upon request” allowed (and reasons should be specified). 
 
We request that you deposit code in a DOI-minting repository such as Zenodo, Gigantum or Code Ocean 
and cite the DOI in the Reference list. We also request that you use code versioning and provide a 
license. 
 
For more information on our code sharing policy and requirements, please see: 
https://www.nature.com/nature-research/editorial-policies/reporting-standards#availability-of-
computer-code 
 
 
MATERIALS AVAILABILITY 
As a condition of publication in Nature Methods, authors are required to make unique materials 
promptly available to others without undue qualifications. 
 
Authors reporting new chemical compounds must provide chemical structure, synthesis and 
characterization details. Authors reporting mutant strains and cell lines are strongly encouraged to use 
established public repositories. 
 
More details about our materials availability policy can be found at https://www.nature.com/nature-
portfolio/editorial-policies/reporting-standards#availability-of-materials 
 
SUPPLEMENTARY PROTOCOL 
To help facilitate reproducibility and uptake of your method, we ask you to prepare a step-by-step 
Supplementary Protocol for the method described in this paper. We <a 
href="https://www.nature.com/nature-research/editorial-policies/reporting-standards#protocols" 
target="new">encourage authors to share their step-by-step experimental protocols</a> on a protocol 
sharing platform of their choice and report the protocol DOI in the reference list. Nature Research's 
Protocol Exchange is a free-to-use and open resource for protocols; protocols deposited in Protocol 
Exchange are citable and can be linked from the published article. More details can found at <a 
href="https://www.nature.com/protocolexchange/about" 
target="new">www.nature.com/protocolexchange/about</a>. 
 
 
ORCID 
Nature Methods is committed to improving transparency in authorship. As part of our efforts in this 
direction, we are now requesting that all authors identified as ‘corresponding author’ on published 
papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 
the Manuscript Tracking System (MTS), prior to acceptance. This applies to primary research papers 
only. ORCID helps the scientific community achieve unambiguous attribution of all scholarly 
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contributions. You can create and link your ORCID from the home page of the MTS by clicking on 
‘Modify my Springer Nature account’. For more information please visit please visit <a 
href="http://www.springernature.com/orcid">www.springernature.com/orcid</a>. 
 
 
Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 
further. We look forward to seeing the revised manuscript and thank you for the opportunity to 
consider your work. 
 
 
Best regards, 
Lei 
 
Lei Tang, Ph.D. 
Senior Editor 
Nature Methods 
 
 
 
Reviewers' Comments: 
 
Reviewer #1: 
Remarks to the Author: 
In this manuscript Henra et al. introduce m6Anet, a supervised machine learning algorithm for 
predicting m6A methylation in nanopore direct RNA sequencing data. m6Anet uses Multiple Instance 
Learning (MIL) to call the methylation status of each site on a per-read level, and then pools the results 
into per-site methylation probabilities, which the authors show corresponds to the underlying 
stoichiometry. They train and test m6Anet on human HCT116 and HEK293T cell lines using labels from 
m6ACE-Seq data, and show that the results remain accurate when trained and tested using different 
genes from different cell lines. They compare their results against Tombo, EpiNano, nanom6A, and 
MINES, and show that m6Anet is substantially more accurate than all these methods. Comparing to 
m6ACE-Seq and miCLIP data, two immunoprecipitation-based methylation detection methods, they find 
that few sites are identified as methylation by all three methods, however m6Anet shares more sites 
between each method than the other methods share with each other. They also show that the 
methylation patterns across transcript regions are consistent with other methods, and that m6Anet can 
detect changes in methylation status caused by METTL3 knockouts. Finally, they show that m6Anet can 
detect changes in methylation stoichiometry by mixing different concentrations on wild-type and 
knockout samples and showing that the methylation probabilities correspond to the expected 
methylation fraction. 
 
The results in this manuscript are very promising and substantially outperform all methods they 
compared against. The code was also very easy to install and run on my own computer. The main 
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technical development in this method is the MIL framework used to call methylation on a per-read level. 
While I’m not aware of another project which uses this exact framework, the authors seem to have 
missed a recent RNA modification detection tool which detects modifications on the per-read level: 
nanoRMS (Begik et al., Quantitative profiling of pseudouridylation dynamics in native RNAs with 
nanopore sequencing, Nature Biotechnology 2021). NanoRMS was designed to detect pseudouridine, 
but like m6Anet, the authors state that it could be applied to any modification type. The methods are 
quite different (nanoRMS is not neural network based), but they do output per-read methylation calls 
and estimate site-level stoichiometry. Re-training nanoRMS for m6A modifications may not be practical, 
but some discussion of the similarities and differences between these methods should be included. 
 
By training and testing on different cell lines they demonstrated that m6Anet does not appear to be 
overtrained on any specific human sample, although since it was only trained with human data it is not 
clear if it would generalize to other species or even highly aberrant human cell lines. In particular, Fig. 1C 
shows the very uneven distribution of methylated k-mers in the data, and I wonder how much this could 
vary between species/samples. There is at least one project which examined Arabidopsis m6A 
methylation with publically nanopore sequencing data (Parker et al., Nanopore direct RNA sequencing 
maps the complexity of Arabidopsis mRNA processing and m6A modification, eLife 2020), which should 
be used to demonstrate greater generalizability (or a similar dataset, if available). 
 
 
 
Minor comments: 
- When describing ONT RNA-Seq in the third paragraph of the introduction, they write “...when an 
oligonucleotide passes through the pore…”. Is this limited to oligonucleotides, or any kind of RNA 
molecule? 
 
- The Fig. 1b axis labels and caption should clarify that they are plotting normalized units. It is described 
as showing the “difference in average features distribution”, which implies subtraction was used. 
“Comparison” might be a more accurate description. 
 
- The Fig. 1c caption says it is plotting “the top 4 modified 5-mers”, while the actual figure displays 18 5-
mers 
 
 
- The Fig. 2e caption says it is plotting the “true positive rate”, while the figure axis is labeled “precision”. 
Please clarify 
 
 
 
Reviewer #2: 
Remarks to the Author: 
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In this paper, “Detection of m6A from direct RNA sequencing using a multiple Instance Learning 
framework,” Hendra et al. summarize their work on “m6Anet,” a neural network-based method that 
uses multiple instance learning framework to handle missing read-level modification labels in site-level 
training data. They claim that m6Anet outperforms existing computational methods, shows similar 
accuracy as experimental approaches, and generalizes to different cell lines. This paper is a welcome 
additional tool to the field, but a few other questions remain about the paper and its data: 
 
1) The authors performed 5-fold cross validation with bases features (0-5 bases) flanking the candidate 
sites to evaluate the additional value of neighboring positions, but were any of these predictions 
affected by secondary structure? 
2) Figures 2a and 3a/b show a Venn diagram, but the area shown in each region should be proportional 
to the number of sites (a proportional Venn). 
3) The authors state that the “precision of m6Anet is underestimated when comparing it to labels 
obtained from miCLIP or m6ACE-Seq, most likely reflecting technology-specific m6A predictions,” but 
the best way to know this would be with a synthesized RNA molecule; have the authors looked at in 
vitro created RNA molecules that harbor the exact number of sites? 
4) The authors used a “hyper-dimensional representation of each read based on its signal 
and sequence features” to infer a read-level modification probability, but their data (Figure 4) shows a 
lot of overlap between these data clouds. Are the reads that are more ambiguous defined by any 
features that could separate them in a better way? For example, GC composition, secondary structure, 
or known motif densities? 
5) The m6A stoichiometry data on the METTL3 knockout and wild type samples is among the most 
compelling data, but it is not clear if the proportionality was equally effective across all genes or 
transcript types. An analysis of this by gene and transcript type (e.g. nuclear-enriched vs. cytosolic, or 
ribosome-associated vs. not) would be interesting and may explain some of the observed variance. 
6) Have the authors observed similar success with yeast or other direct RNA data? Their model might be 
overly-trained on the human data here, and it would be good to see validation on another model. 
7) Oxford Nanopore has recently released Q20 chemistry on their platform, and it would be good to 
address this as well in the paper, if possible. Some of this is referenced in the discussion, but we have 
seen dramatic differences in motif calling and base quality as a function of the version of the base caller, 
and this will likely be an issue for m6Anet; an estimate of this impact would be helpful for users of the 
software. 
 
 
 
Reviewer #3: 
Remarks to the Author: 
This manuscript describes m6Anet, a framework for detecting RNA modifications from nanopore direct 
RNA sequencing data using multiple instance learning. The authors have demonstrated the framework 
by training with m6ACE-seq data to detect N(6)methyladenosine. There are now many methods for 
detecting m6A in nanopore data, including another by the authors themselves (xPore). The main 
advantage of the m6Anet framework over these previous methods is that it does not require a low 
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modification control. This constitutes a significant advance. However, the manuscript is heavily focused 
on human data and more work is needed to demonstrate that their models can generalise to datasets 
from other organisms. 
 
• The data used to train the model seems likely to be partially confounded by sequence context because 
the authors use all DRACH motifs as negative examples. In reality, some DRACH motifs are much more 
commonly methylated than others (for example, there are ~1500 times more GGACU motifs than 
UAACC motifs in the authors positive training examples) whereas the distribution of motifs for negative 
samples is much more uniform (e.g. only 1.7 times more negative GGACU examples than UAACC). This 
means that the model can achieve a good accuracy on the training data by learning the motif bias of 
m6A, rather than by identifying methylation from signal data. When applied to a dataset where the m6A 
motif preference deviates from this expectation, i.e. in other organisms besides humans, m6Anet may 
perform sub optimally. Using the authors’ training data (file: 
data/cv_results/1_neighbour/test_results_pr_auc.csv.gz) I find that an extremely random forest 
classifier trained on one hot encoding of the central 5mer sequence (with random oversampling of 
positive examples) can achieve a 5-fold cross-val AUC of 0.80. The authors should therefore 
undersample their negative training examples to make the kmer distribution more similar to the positive 
examples. Alternatively, they could try training a model using signals from their METTL3 KO data at 
positions matched with positive examples from untreated data, so that sequence contexts are identical 
between positive and negative examples. 
• The authors train their model on modified and unmodified DRACH kmers from HCT116 cells, and then 
test on modified and unmodified DRACH kmers from HEK293T cells. Given that many positions between 
these cells will have identical contexts (presumably the authors used the same reference 
genome/transcriptome) this could be considered at risk of data leakage, since overfitting to the training 
data could provide a better score on the test set. The authors should alleviate this concern by 
benchmarking on a held-out set from HCT116 cells or using cross-validation scores to benchmark their 
model against others. 
• It is interesting that m6Anet performs much better on HCT116 cells than HEK293T cells, even when the 
model is trained on HEK cells. The difference in ROC AUC score for example is quite large (~0.84 for HEK 
cells vs ~0.93 for HCT cells). Can the authors shed any light on why this might be occurring? 
• The authors suggest that their model is able to generalise by demonstrating its use on datasets from 
other human cell lines. However, given that the sequence composition and m6A motif preference of 
these cell lines will be very similar to the HCT116 data used in training, I do not think that this 
demonstrates the level of generalisation that users of m6Anet would likely desire. The authors should 
therefore demonstrate that m6Anet generalises to other species with known differences in their m6A 
profile. For example, there is publicly available nanopore data for Plasmodium falciparum(Lee et al., 
2021), Arabidopsis thaliana(Parker et al., 2020), and Toxoplasma gondii(Farhat et al., 2021; Lee et al., 
2021), which have a stronger preference for A at -1 and -2 positions from m6A compared to 
humans(Baumgarten et al., 2019; Parker et al., 2020). These are also direct RNA datasets available for 
Mus musculus(Sessegolo et al., 2019) and C. elegans(Roach et al., 2020), the latter of which has mRNA 
m6A but not in DRACH contexts (only METTL16 is conserved; Mendel et al., 2021). 
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• m6Anet relies heavily on nanopolish to provide event level data (mean, std and dwell) for each 
transcriptomic position. This should be mentioned and cited in the results section “Training data for 
m6Anet model parameter estimation”. 
• Font size on figures is very small throughout, and should be increased. 
• Figure 1c, error bars are hard to read (some are also missing or misaligned) and are not described in 
the figure legend. I think they have been generated with seaborn barplot so are probably bootstrapped 
95% confidence intervals (of per gene kmer mod rate?). Legend also states it is only top 4 kmers but all 
are shown. 
• Fig 2d, m6ACE-seq is labelled in legend as orange but there is no orange line. Supp fig 2b, background 
is labelled in legend as grey but there is no grey line. 
• Figure 3e histogram bins are not aligned. 
 
References: 
• Baumgarten S, Bryant JM, Sinha A, Reyser T, Preiser PR, Dedon PC, Scherf A. 2019. Transcriptome-wide 
dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage 
development. Nat Microbiol 4:2246–2259. 
• Farhat DC, Bowler MW, Communie G, Pontier D, Belmudes L, Mas C, Corrao C, Couté Y, Bougdour A, 
Lagrange T, Hakimi M-A, Swale C. 2021. A plant-like mechanism coupling m6A reading to 
polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. 
Elife 10. doi:10.7554/eLife.68312 
• Lee VV, Judd LM, Jex AR, Holt KE, Tonkin CJ, Ralph SA. 2021. Direct Nanopore Sequencing of mRNA 
Reveals Landscape of Transcript Isoforms in Apicomplexan Parasites. mSystems 6. 
doi:10.1128/mSystems.01081-20 
• Mendel M, Delaney K, Pandey RR, Chen K-M, Wenda JM, Vågbø CB, Steiner FA, Homolka D, Pillai RS. 
2021. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 184:3125-
3142.e25. 
• Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJ, Barton GJ, Simpson GG. 
2020. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A 
modification. Elife 9. doi:10.7554/eLife.49658 
• Roach NP, Sadowski N, Alessi AF, Timp W, Taylor J, Kim JK. 2020. The full-length transcriptome of C. 
elegans using direct RNA sequencing. Genome Res 30:299–312. 
• Sessegolo C, Cruaud C, Da Silva C, Cologne A, Dubarry M, Derrien T, Lacroix V, Aury J-M. 2019. 
Transcriptome profiling of mouse samples using nanopore sequencing of cDNA and RNA molecules. Sci 
Rep 9:14908. 
 
 
 
Reviewer #4: 
Remarks to the Author: 
Oxford Nanopore Technologies Nanopore sequencing platform remains the only commercially available 
sequencing platform that directly measures single RNA and DNA molecules. Hence, it can provide 
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information on the base sequence of DNA and RNA molecules and measure distinct chemical 
modifications of individual bases of said nucleotide sequences. 
While the raw nanopore signal is rich in information, reliably extracting specific parameters such as 
modification status of RNA bases remains a yet not fully resolved challenge in the field of machine 
learning. More conventional machine learning methods such as Hidden Markov Models for base and 
base modification calls have now been replaced by applying deep neural network models. This 
methodological approach critically relies on extensive training datasets with a known "ground truth". 
Unfortunately, such datasets currently cannot be generated for all base modifications of interest with 
the precision required for most deep learning methods, neither with biological nor molecular protocols. 
 
Hendra, Göke, and colleagues address this relevant challenge in their manuscript "Detection of m6A 
from direct RNA sequencing using a Multiple Instance Learning (MIL) framework by implementing MIL 
for calling 6mA-modification in nanopore direct RNA sequencing datasets. 
The authors provide several rationally designed experiments and analyses corroborating the assumption 
that the performance of their novel approach surpasses those of existing tools and may be a first-in-
class tool enabling RNA 6mA modification calling on the single-molecule level using the MIL approach. 
 
Overall, we find m6ANet to be a promising tool for detecting RNAs methylated at 6A using native 
nanopore sequencing and will recommend it for publication. The use of the Multiple Instance Learning 
model is novel and scientifically sound, and it is exciting to see more use of a more comprehensive array 
of neural network methods in computational biology. Additionally, the manuscript includes several 
convincing analyses that their results are concordant with orthogonal (experimental) approaches. 
Finally, we were easily able to reproduce the results from the paper on CodeOcean as well as easily 
install the tool on our own servers and run it on the sample data provided in the documentation. 
 
Our criticisms focus mainly on the section entitled Novel m6Anet predictions are sensitive to METTL3 
knockout. In the first paragraph, the authors argue that the novel methylation sites predicted by 
m6ANet are often separately supported by other methylation detection methods and are therefore 
likely truly methylated. This is not convincing logic as a tool with a very high false-positive rate will, of 
course, have overlaps with false positives of other methods. 
 
It should also be further clarified that xPore calls differentially methylated sites and is not a 
"comparative" method to m6ANet. Overall, the take-home message of this paragraph is unclear and 
ambiguous. A user of your tool would like to know what percentage of the calls made by m6Anet are 
true positives. However, the authors only explain that m6ANet can reliably detect 46% of KO-sensitive 
methylation sites. Are these 1888 sites used only novel sites predicted by m6ANet? Can you give a new 
estimate of the precision of m6ANet if these novel sites are 46% true positives? 
 
Other minor criticisms include: 
- (Supp) Figure 2c has "Precision" as the y axis label but then describes the true positive rate in the 
legend. This is done twice 
- Figure 2b has a mismatched color legend 



 
 

 

11 
 

 

 

 
Author Rebuttal to Initial comments   

 

Response to Reviewers 
 
We would like to thank all reviewers for their helpful suggestions and comments. 
Following these reviews, we have included several additional analyses, and we have 
made the related changes in the text (highlighted in red). We would like to specifically 
highlight, that we have changed the order of Figure 2 (revised manuscript: 
generalizability of m6Anet, now including the cross-species comparison) and Figure 3 
(revised manuscript: comparison of different technologies and improved estimation of 
precision which now includes the analysis of synthetic sequences). While this change 
improves the logical flow with the new analyses that were suggested, we acknowledge 
that this might possibly lead to confusion during the evaluation of this revision. To 
simplify the evaluation of this revision, we have included all the updated figures that are 
relevant to each specific comment in this response document as well (labelled as 
Figures R1.1 etc). We again would like to thank the reviewers for their constructive 
comments, which we hope have led to a substantially improved manuscript. 
Please find our detailed responses below. 
 
Reviewers' Comments: 
 
Reviewer #1: 
 
Remarks to the Author: 
In this manuscript Henra et al. introduce m6Anet, a supervised machine learning 
algorithm for predicting m6A methylation in nanopore direct RNA sequencing data. 
m6Anet uses Multiple Instance Learning (MIL) to call the methylation status of each 
site on a per-read level, and then pools the results into per-site methylation 
probabilities, which the authors show corresponds to the underlying stoichiometry. 
They train and test m6Anet on human HCT116 and HEK293T cell lines using labels 
from m6ACE-Seq data, and show that the results remain accurate when trained and 
tested using different genes from different cell lines. They compare their results against 
Tombo, EpiNano, nanom6A, and MINES, and show that m6Anet is substantially more 
accurate than all these methods. Comparing to 
m6ACE-Seq and miCLIP data, two immunoprecipitation-based methylation detection 
methods, they find that few sites are identified as methylation by all three methods, 
however m6Anet shares more sites between each method than the other methods 
share with each other. They also show that the methylation patterns across transcript 
regions are consistent with other methods, and that m6Anet can detect changes in 
methylation status caused by METTL3 knockouts. Finally, they show that m6Anet can 
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detect changes in methylation stoichiometry by mixing different concentrations on wild-
type and knockout samples and showing that the methylation probabilities correspond 
to the expected methylation fraction. 
 
Response: 
 
We thank Reviewer #1 for their very positive feedback to our manuscript. In their 
detailed comments, Reviewer #1 has pointed out several inaccuracies in our 
manuscript figures and sentences which we have corrected accordingly. Furthermore, 
Reviewer #1 raised an important issue regarding the cross-species generalisability of 
m6Anet and recommended additional validation on a Arabidopsis dataset 1 which we 
have now included in this response as well as in the revised manuscript. We thank 
Reviewer #1 for their comments, which among others, has greatly improved the section 
on generalizability. Please find our detailed response below. 
 
 
Reviewer #1 (Point 1): 
 
The results in this manuscript are very promising and substantially outperform all 
methods they compared against. The code was also very easy to install and run on my 
own computer. The main technical development in this method is the MIL framework 
used to call methylation on a per-read level. While I’m not aware of another project 
which uses this exact framework, the authors seem to have missed a recent RNA 
modification detection tool which detects modifications on the per-read level: nanoRMS 
(Begik et al., Quantitative profiling of pseudouridylation dynamics in native RNAs with 
nanopore sequencing, Nature Biotechnology 2021). NanoRMS was designed to detect 
pseudouridine, but like m6Anet, the authors state that it could be applied to any 
modification type. The methods are quite different (nanoRMS is not neural network 
based), but they do output per-read methylation calls and estimate site-level 
stoichiometry. Re-training nanoRMS for m6A modifications may not be practical, but 
some discussion of the similarities and differences between these methods should be 
included. 
 
Response: 
 
We thank Reviewer #1 for these very positive comments on our manuscripts as well as 
pointing out about the NanoRMS paper that we have missed in the original version of 
the manuscript . NanoRMS detects pseudouridine modifications, therefore we have not 
included it in the comparison to m6Anet (even though it could probably be retrained 
with substantial effort as mentioned by the reviewer). However, NanoRMS is based on 
EpiNano, which we included in many of the evaluations presented in this manuscript. 

https://paperpile.com/c/2WXBx6/FKIc
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NanoRMS is a supervised method for detection of pseudouridine from direct RNA-Seq 
data. In their manuscript, the authors of NanoRMS also present estimates for 
stoichiometry predictions. However, NanoRMS requires unmodified control samples, 
as the stoichiometry prediction is based on an unsupervised approach that is also 
implemented in NanoRMS. In contrast, m6Anet returns per molecule predictions from a 
single sample as part of its 
end-to-end model that inherently estimates the read level modification probabilities. 
 
We agree with Reviewer #1 that the NanoRMS paper is highly relevant for this 
manuscript. In the revised manuscript we now introduce NanoRMS as a supervised 
method for detection of non-m6A modifications, and we discuss its ability to infer the 
modification stoichiometry from direct RNA-Seq data (see Introduction and 
Discussion). 
 
 
Reviewer #1 (Point 2): 
 
By training and testing on different cell lines they demonstrated that m6Anet does not 
appear to be overtrained on any specific human sample, although since it was only 
trained with human data it is not clear if it would generalize to other species or even 
highly aberrant human cell lines. In particular, Fig. 1C shows the very uneven 
distribution of methylated k-mers in the data, and I wonder how much this could vary 
between species/samples. There is at least one project which examined Arabidopsis 
m6A methylation with publically nanopore sequencing data (Parker et al., Nanopore 
direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and 
m6A modification, eLife 2020), which should be used to demonstrate greater 
generalizability (or a similar dataset, if available). 
 
Response: 
 
In our original manuscript we have demonstrated that m6anet generalised across 
different human cell lines (Hek293T and Hct116). In both cell line data sets that we 
used, the distribution of modified k-mers is largely similar, with GGACT being the most 
frequently methylated motif. Reviewer #1 suggests to further evaluate the 
generalizability of m6Anet when a sample is provided where the distribution of modified 
k-mers differs from the data that was used for training (as is the case for predictions 
across different species, as suggested by Reviewer #1, as well as as Reviewers #2 
and #3). Following this suggestion we have evaluated the generalizability of m6Anet 
using the Arabidopsis direct RNA-Seq data (Parker et al. 2020) that was recommended 
by Reviewer #1 as a scenario in which the model is trained and tested on datasets 
with different frequencies of methylated 5-mers. 
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The Parker et al data set provides direct RNA-Seq data of a cell line that includes a 
mutant defective m6A writer complex (VIRILIZER, vir-1 cell line), and a VIR 
complemented cell line that restores VIR activity (vir-1c cell line). In order to obtain 
training labels for m6Anet, we identified differentially modified sites using xPore (p-
value < 0.05 after multiple testing correction) (Pratanwanich et al. 2021). We combined 
the predictions from xPore with the predictions by Parker et al (using an alternative 
approach described in their manuscript). 
Together, we obtain 5950 m6A sites, which we then split into independent training and 
test data using the same strategy as described in our manuscript (Figure R1a,b). A 
comparison of the relative frequency of methylated kmers in the human and 
arabidopsis data sets confirms that both species show substantially different m6A k-
mer preferences (Figure R1.1c). Motifs such as GGACT, GAACT, and GGACA that 
are the most prevalently methylated in the human cell lines make up a significantly 
smaller proportion of methylated motifs in the Arabidopsis vir-1c cell line. In contrast, 
the most frequently methylated kmers in Arabidopsis are AAACT, AGACT, and 
AGACA, which are less frequently in the human m6A data, suggesting a significant 
shift in the distribution of methylated motifs between the two datasets (Figure R1c). 
 
To evaluate the generalizability of m6Anet to systems or species that use distinct 
profiles of methylated k-mer frequencies we trained m6Anet on these data, and 
evaluated the performance on the human cell line data used in our original manuscript 
(Figure R1d, e). 
Despite the shift in the relative frequency of the methylated motifs, we observe a 
comparable performance between the models trained on human cell lines and the 
model trained on the Arabidopsis dataset (Figure. R1.1d-e). Furthermore, the predicted 
m6A sites display a strong 3’UTR enrichment that is typical for m6A and which is similar 
to the human trained models (Figure R1.1d,e). In contrast to the human training data 
which is based on m6ACE-Seq and miCLIP, the Arabidopsis training data used m6A 
sites identified from direct RNA-Seq data with xPore. Incorporating the predicted m6A 
sites from xPore in human cell line (METTL3 knockout sensitive positions) in the 
evaluation improves the precision of the top positions predicted by the Arabidopsis 
model, matching those of the models trained on the human cell lines (Figure R1.1f). 
These results suggest that the true precision of the Arabidopsis m6Anet models might 
be underestimated since it captures sites detected by comparative, direct RNA-Seq 
based methods that are not always captured by miCLIP or m6ACE, as reported in our 
original manuscript (Suppl. Figure 3d). Noteworthy, the performance of m6Anet trained 
on Arabidopsis and tested on human cell lines is still better than existing approaches 
such as EpiNano, even though these were trained and tested on the same species 
(human cell line data) (Fig. 1d-f and Supplementary Fig.1s-u). 
 
Next, we evaluated the prediction made by m6Anet against the m6A sites in 
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Arabidopsis, which confirm our findings on the human cell lines that m6Anet 
generalises well when other methylated k-mer frequencies are observed (Figure 
R1.2a,b,c). Using the METTL3-sensitive sites identified by xPore in human cell lines for 
training improves the performance, achieving a similar level of precision as the 
Arabidopsis trained model (Figure R1.2a,b). The predicted m6A sites of all models 
display a strong 3’UTR enrichment, suggesting that the models indeed capture 
genuine methylated sites (Figure R1.2c). A comparison of the ranking of 
k-mer frequencies predicted to have m6A from m6Anet, xPore, and Parker et al shows 
a high level of agreement, in particular for the frequently modified, high ranking kmers 
(Figure R1.2d,e,f). 
 
Together, these results demonstrate that the pre-trained models from m6Anet 
generalise well to other cell lines from the same species, but also to different species 
that use distinct frequencies of methylated kmers. One limitation of supervised 
methods such as m6Anet is the requirement for training data: a complete lack of 
training data for example due to 
species-specific k-mers will impact the ability to generalise. While training data such as 
miCLIP is often difficult to obtain, we now demonstrate that m6Anet can also be trained 
using modification labels purely derived from a comparative analysis of direct RNA-Seq 
data. While we show that the pre-trained models from m6Anet generalise well, this 
approach will enable the analysis of m6A (and other modifications) in the scenario 
when entirely distinct kmers are expected to be modified. 
 
We thank Reviewer #1 for their suggestion, which we believe has led to a greatly 
improved analysis on generalisability of m6Anet. We have included these new 
analyses in the main text p. 8 paragraph 2, p. 9 paragraph 1 and in Figure 2, Suppl. 
Figure 2, Suppl. Figure 3d. 
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Figure R1.1 Comparison of m6Anet models on human cell lines 
(a-b) Distribution of modified positions across all three cell lines on the training sets and 
the test sets (area shown to proportion) (c) Barplot comparing the relative proportion of 
methylated motifs for the HCT116, HEK293T and Arabidopsis VIR-1 complemented cell 
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lines.(d-i) ROC curve, PR Curve, and metagene plot of sites predicted by models trained 
on the HCT116, HEK293T and VIR-1 complemented cell lines on (d-f) HCT116 test 
set and (g-i) HEK293T test set. (j) The adjusted precision after including position 
sensitive to METTL3-KO of all three m6aNet models on the HEK293T cell line. 
 

 
 
 
Figure R1.2 Comparison of m6Anet models on Arabidopsis Datasets 
(a-b) ROC Curve and PR Curve of four m6Anet models trained on HCT116 cell line, 
HEK293T cell line, Arabidopsis VIR-1 complemented cell line, and HEK293T cell line 
with the inclusion of KO sensitive positions as detected by xPore on the Arabidopsis 
VIR-1 complemented cell line test set (c) Metagene plot of predicted sites by all four 
m6Anet models (d) Scatter plot comparing the frequency ranking of predicted motifs by 
m6Anet against Parker et al and (e) xPore and (f) xPore against Parker et al 
 
Reviewer #1: 
 
Minor comments: 
- When describing ONT RNA-Seq in the third paragraph of the introduction, they write 
“...when an oligonucleotide passes through the pore…”. Is this limited to 
oligonucleotides, or any kind of RNA molecule? 
 
Response: 
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We thank Reviewer #1 for pointing out this sentence. Nanopore RNA-Seq is not limited to 
oligonucleotides, we have therefore modified the sentence accordingly: 
 
Introduction, p.3: 
“The ability to sequence native RNA using Oxford Nanopore direct RNA-Seq can 
potentially overcome these limitations 2. Nanopore direct RNA-Seq infers the RNA 
sequence using the current intensity when RNA molecules pass through the pores.” 
 
Reviewer #1: 
 

- The Fig. 1b axis labels and caption should clarify that they are plotting 
normalized units. It is described as showing the “difference in average 
features distribution”, which implies subtraction was used. “Comparison” 
might be a more accurate description. 
- The Fig. 1c caption says it is plotting “the top 4 modified 5-mers”, while 
the actual figure displays 18 5-mers 

 
Response: 
 
Following the suggestion, we have revised the caption and axis labels of Figure 1b to 
explain that the boxplots show the features in their normalised units. Reviewer #1 also 
rightly pointed out that our description of the boxplots showing “[...]difference in 
average features distribution” can be misleading and have therefore followed the 
reviewer’s suggestion to revise the caption to “[...]comparing normalised features 
distribution.” Lastly, we thank Reviewer #1 for finding the error in the caption of Fig. 1c, 
which we have corrected in the revised manuscript (it should be 18 5-mers instead of 
top 4 modified 5-mers). We thank the Reviewer for this comment. 
 
 
Reviewer #1: 
 

- The Fig. 2e caption says it is plotting the “true positive rate”, while the figure 
axis is labeled “precision”. Please clarify 

 
Response: 
 
We thank Reviewer #1 for finding this error in Fig. 2e (it should be precision). We have 
corrected the figure caption in the revised manuscript. 
 
Reviewer #2: 
 

https://paperpile.com/c/2WXBx6/DmWt


 
 

 

19 
 

 

 

Remarks to the Author: 
In this paper, “Detection of m6A from direct RNA sequencing using a multiple Instance 
Learning framework,” Hendra et al. summarize their work on “m6Anet,” a neural 
network-based method that uses multiple instance learning framework to handle 
missing read-level modification labels in site-level training data. They claim that 
m6Anet outperforms existing computational methods, shows similar accuracy as 
experimental approaches, and generalizes to different cell lines. This paper is a 
welcome additional tool to the field, but a few other questions remain about the paper 
and its data: 
 
Response: 
We thank Reviewer #2 for their positive comments and constructive suggestions. In 
particular the suggestion to use synthetic data has led to a greatly improved ability to 
estimate the precision of m6Anet at the site level and for single molecule predictions. 
Please find our detailed response to this and all other comments below. 
 
Reviewer #2: 
 

1) The authors performed 5-fold cross validation with bases features 
(0-5 bases) flanking the candidate sites to evaluate the additional value of 
neighboring positions, but were any of these predictions affected by 
secondary structure? 

 
Response: 
 
The m6Anet model uses signal based features (mean, standard deviation, and length) 
that are affected by the shape of the RNA molecules that go through the nanopore and 
the time that the specific 6-mer is within the pore. The molecule has to be unstructured 
to be sequenced by a nanopore, therefore the mean signal level is not expected to be 
influenced by RNA secondary structures. However, highly structured RNAs can block 
the pores, leading to reduced throughput, shorter read length, and possibly longer 
signal length per event, which might affect predictions by m6Anet. To minimise the 
impact of secondary structure on direct RNA-Seq, the sequencing process involves an 
optional reverse transcription (RT) step, which adds a cDNA strand to the RNA 
molecules. The cDNA strand is not sequenced and does not alter the modifications on 
the RNA strand, however, this step removes intramolecular secondary structure, and 
thereby increases throughput and average read length (Garalde et al. 2018). With this 
RT step, the direct RNA-Seq reads are comparable in length to Nanopore cDNA 
sequencing, indicating that the impact of secondary structure on the sequencing 
process is largely removed 3 
 
Detection of secondary structure is also possible with direct RNA-Seq 4,5. In these 

https://paperpile.com/c/2WXBx6/1HUE
https://paperpile.com/c/2WXBx6/ryrH%2B4Ivv
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studies the authors introduce artificial modifications that specifically target secondary 
structures so that they can be detected from direct RNA sequencing. Without these 
artificial modifications, the RNA structures are not detectable, further suggesting that 
the presence of secondary structure might only minimally impact the signal intensity 
detected in the pores. 
 
 
Reviewer #2: 
 

2) Figures 2a and 3a/b show a Venn diagram, but the area shown in each 
region should be proportional to the number of sites (a proportional Venn). 

 
Response: 
 
In our manuscript we use Venn diagrams to show the different numbers of m6A sites 
for different technologies (Figure 2a) or for the number of m6A sites used for training 
and testing (Figure 3a/b). The areas in each region are actually proportional to the 
number of sites in these figures, however, as the total number of sites shown in each 
region is approximately equal to each other, this is not immediately obvious to the 
readers. To clarify this in the revised manuscript, we have modified the figure legend to 
explicitly state that the areas of the Venn diagrams are proportional to the number of 
sites (Figure R2.1,a-c corresponding to Figures 2a and 3a,b). Additionally, we have 
also corrected an error where the labels for the venn diagram for HCT116 and 
HEK293T were swapped in Fig.3a,b in the original manuscript. We thank #Reviewer 2 
for highlighting this point, which we hope is now more clearly described in the revised 
manuscript. 
 

 
Figure R2.1. Venn diagram of DRACH m6A sites detected between m6ACE, 
miCLIP, and m6Anet in HEK293T cell lines. (a) Total number of modified sites captured 
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by m6Anet, m6ACE-seq and miCLIP (area in (a) shown to proportion). Figure 

corresponds to Figure 2a. 
(b) Distribution of modified positions across both cell lines on the training sets and (c) 
the test sets (area shown to proportion). Figure corresponds to Figure 3a. 

 
Reviewer #2: 
 

3) The authors state that the “precision of m6Anet is underestimated 
when comparing it to labels obtained from miCLIP or m6ACE-Seq, most likely 
reflecting technology-specific m6A predictions,” but the best way to know this 
would be with a synthesized RNA molecule; have the authors looked at in 
vitro created RNA molecules that harbor the exact number of sites? 

 
Response: 
 
In our original manuscript, we made the claim that the precision of m6Anet might be 
underestimated due to incomplete m6a labels from both miCLIP or m6ACE-Seq. We 
validated that claim using direct RNA-Seq data from a METTL3 knockout cell line 
compared to a wild type cell lines, which indicated that a substantial fraction of sites 
detected by m6Anet which were not detected by m6ACE-Seq or miCLIP were sensitive 
to loss of METTL3 (Figure 2e). Reviewer #2 suggests that this claim can additionally 
be validated using synthetic sequences where m6A labels are complete. 
 
Following this suggestion, we downloaded synthetic sequences (“curlcake 
sequences”) provided by 6 that contain two replicates of an m6A modified library and 
two replicates of an unmodified IVT RNA library. In order to evaluate the accuracy of 
m6Anet at different levels of modified RNAs, we followed the strategy used by the 
authors to randomly sample reads from the modified and unmodified libraries to create 
validation sets containing various percentages of m6A modified reads. Similarly, we 
also excluded 5-mers with multiple modified A nucleotides since they are unlikely to 
occur in reality 6. 
 
Using these data, we applied the m6Anet model trained on the human cell line to 
predict m6A sites on these synthetic sequences. We observe a near optimal median 
ROC AUC and Precision-Recall AUC (>0.98) with at least 50% modified reads (Figure 
R2a,b). As the synthetic data set has well controlled modification rates at each 
position, it also allows us to study the sensitivity of m6anet in relation to the 
modification stoichiometry. With modification rates between 25% and 50% m6Anet still 
achieves highly accurate classification (AUC>0.93). Even at the lowest modification 
mixture (5% methylation level for all methylated positions), our model achieves a 

https://paperpile.com/c/2WXBx6/kjac
https://paperpile.com/c/2WXBx6/kjac
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competitive ROC AUC of 0.65 (Figure R2a,b). A comparison with the results presented 
by Liu et al (EpiNano) shows that m6Anet achieves higher performance and higher 
sensitivity to detect sites with low modification rates, despite being trained on a 
different dataset. 
 
These results suggest that the accuracy of m6anet is indeed significantly higher when 
all the labels in the datasets are known, confirming our original observation that the 
evaluation with miCLIP and m6ACE-Seq underestimates the precision of m6Anet. We 
thank Reviewer #2 for the suggestion to investigate synthetic sequences, which not 
only confirms our initial observations, but further illustrates the high accuracy when 
labels are known, and the ability to detect sites with low modification rate. We have 
included these results in the revised manuscript (Figure 3f,g, text p. 10 paragraph 2, p. 
11 paragraph 1) 
 

 
 
Figure R2.2 m6Anet Results on synthetic sequences with known modification 
status (Curlcake Dataset) 
Boxplots comparing the ROC AUC (a) and PR AUC (b) of m6Anet on curlcake datasets 
over different mixtures of methylated reads 
 
Reviewer #2: 
 

4) The authors used a “hyper-dimensional representation of each read 
based on its signal and sequence features” to infer a read-level modification 
probability, but their data (Figure 4) shows a lot of overlap between these 
data clouds. Are the reads that are more ambiguous defined by any features 
that could separate them in a better way? For example, GC composition, 
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secondary structure, or known motif densities? 
 
Response: 
 
We present several visualisations in our original manuscript to illustrate the read level 
representation learnt by m6Anet (shown as “data clouds”, or reference maps). As 
pointed out by Reviewer #2, there is a region of overlap between the reads from the 
wild type (modified) cell line and the METTL3 knockout (unmodified) cell line, raising 
the question how effective the features used in m6Anet are in separating modified and 
unmodified reads. 
 
Two aspects will lead to an overlap in these data clouds without affecting the ability to 
separate modified and unmodified reads in m6Anet from the read level feature space: 
(1) the visualisation shows a compressed 2 dimensional view of the original 32 
dimensional feature space. The reduced feature space is expected to be less 
informative and show less separation, however that will not impact the classification 
performance. (2) We generated reference maps using wild type (modified) and 
METTL3 knockout (unmodified) samples. Not all reads in the wild type sample are 
modified, therefore the wild type map is expected to partially overlap with the 
unmodified map. Furthermore, METTL3 independent m6A sites will still be modified in 
the knockout sample, leading to an overlap with the wild type (modified) map. 
That being said, Reviewer #2 has in their earlier comment suggested exploring 
synthesised RNA molecules that can provide per-read modification labels, and which 
we can use to quantify how well the read-level representation in m6Anet separates 
modified and unmodified reads. Using the synthetic data from Liu et al. 2019 (see 
response above) we ranked individual reads by the predicted read-level probability 
(Figure R2.3a,b). For single molecule predictions, m6Anet achieves a ROC AUC of 
0.90 and a PR ROC of 0.91, suggesting that m6Anet accurately separates individual 
modified and unmodified reads (Figure R2.3 a,b). When we generated the reference 
maps for visualisation in 2 dimensions from the synthetic data we still observed an 
overlap (Figure R2.3c), confirming that this is largely a limitation in the compressed 2-
dimensional visualisation of the original 
32-dimensional features rather than a limitation in the ability to estimate per read 
modification status. 
 
To additionally validate the accuracy of read level probabilities provided by m6Anet, 
we explored their ability to estimate the proportion of modified reads at each position 
(the modification rate, or stoichiometry). In our original manuscript, we have used the 
site-level probability to estimate the modification rate. However, the high level of 
accuracy for single molecule predictions with m6Anet suggests that the read level 
probabilities could be directly used to infer a more accurate modification rate. Using 
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the single read classification ROC (Figure R2.3a) we selected a threshold t that will 
provide the greatest difference between true positive and false positive rate. We then 
used this threshold to compute the modification rate for each position as the number of 
modified reads per site (p>t). On the synthetic sequence mixtures (see also response 
above), the estimated relative modification rate closely matches the expected 
modification rate, further confirming that m6Anet accurately discriminates between 
modified and unmodified reads (Figure R2.3,d). Next we tested this on the METTL3 
knockout - wild type mixture datasets, where we estimated the relative modification 
rate at sites that m6Anet detected to be modified in the wild type cell line and which 
are unmodified in the knockout cell line. Here we found that the median modification 
rates also match what we expect from each mixture (Fig R.2.3e). Compared to the 
original estimate of the modification stoichiometry we observe less variation and a 
closer match to the expected methylation rates, suggesting that the read level 
predictions improve the stoichiometry estimate over what we originally presented. 
 
Reviewer #2 suggests exploring additional, sequence-based features to improve the 
separation of reads in the feature space representation. In principle, the addition of 
more features might help, however, the overlap between data points in the 2-
dimensional representation is also observed for reads aligned to the same position 
when the sequence is identical (e.g. Figure 4c). Since m6Anet aims to separate 
modified and unmodified reads for the same position rather than across different 
positions, additional sequence-specific features such as secondary structure, GC 
composition and motif density that will be identical for the same position are unlikely to 
increase the ability to separate reads beyond the high accuracy that we already 
observe on the synthetic data. 
 
We thank Reviewer #2 for this comment and the suggestion to use the synthetic data, 
which has allowed us to quantify the accuracy to separate modified and unmodified 
reads and which has led to an improved estimation of the modification stoichiometry. In 
our revised manuscript we now include these additional analyses that complement the 
visualisation of single molecule predictions in the main text p. 11 paragraph 2, p.12 
paragraph 1-3, p.13 paragraph 1 and in Figures 4a-c, g,h. 
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Figure R2.3 m6Anet Results on Individual Read Methylation Prediction 
 
(a) ROC Curve and PR Curve of m6Anet single molecule prediction on IVT and 
synthesised RNA reads from curlcake datasets (c) Density plot of PCA projected read 
features for both modified and unmodified (IVT) RNA reads from the curlcake dataset. 
Box plots comparing the ratio of the predicted modification stoichiometry between the (d) 
curlcake reads (e) HEK293T cell line with different levels of KO mixture 
 
 
Reviewer #2: 
 

5) The m6A stoichiometry data on the METTL3 knockout and wild type 
samples is among the most compelling data, but it is not clear if the 
proportionality was equally effective across all genes or transcript types. An 
analysis of this by gene and transcript type (e.g. nuclear-enriched vs. 
cytosolic, or ribosome-associated vs. not) would be interesting and may 
explain some of the observed variance. 

 
Response: 
 
We thank Reviewer #2 for this positive comment regarding the ability to estimate the 



 
 

 

26 
 

 

 

stoichiometry of m6A. Following the suggestion form Reviewer #2 to explore synthetic 
sequences we have updated the RNA modification stoichiometry estimate in m6anet, 
which now achieves even better accuracy with less variation (see response above, 
Figure R2.3d,e). While the estimates are highly accurate for synthetic sequences, we 
still observe higher variation in human cell line data (as referred to by Reviewer #2 in 
this comment). This variation is partially attributed to the data generation procedure: 
the mixtures were obtained by combining RNA extract from wild type HEK293T cells 
with METTL3 knockout HEK293T cells. While the average relative modification rate is 
expected to match the mixture ratio, this is not the case for each individual 
position/transcript which can’t be controlled by mixing total RNA. 
 
In addition, factors such as the gene biotype can also contribute to the observed 
variation in biological samples. Following the suggestion from Reviewer #2, we have 
split genes into Nucleus, Cytosol, and Ribosome-associated using the RNALocate 
database 7. In order to compare more transcripts, we lower the threshold for both 
modified sites and unmodified sites and consider sites with m6Anet predicted 
probability greater than 0.7 in the WT samples as modified, and lower than 0.3 in the 
100% KO samples as unmodified. 
Afterwards, we compared the stoichiometry estimates across the mixtures and found 
that the estimates are highly comparable (Figure R2.4b-e). While some biological 
factors possibly influence these results, we believe that the observed variation is likely 
explained by limitations in the RNA mixing procedure. 

https://paperpile.com/c/2WXBx6/R4eT
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Figure R2.4 m6Anet Stoichiometry Prediction on curlcake and HEK293T Mixture 
Datasets 
Box plots comparing the ratio of the predicted modification stoichiometry between the (a) 
curlcake reads (b) HEK293T cell line with different levels of KO mixtures (c-e) HEK293T 
KO mixtures on transcripts localised to (c) Nucleus (d) Ribosome (e) Cytosol. The x-axis 
indicates the percentage of WT reads in the mixture while the vertical lines indicate the 
expected stoichiometric ratio for each mixture with the matching colour. 
 
Reviewer #2: 
 

6) Have the authors observed similar success with yeast or other 
direct RNA data? Their model might be overly-trained on the human data 
here, and it would be good to see validation on another model. 

 
 
Response: 
 
In our original manuscript we have validated the generalisability of m6Anet by training 
and testing on two different human cell lines. One possible limitation with our validation 
method is the fact that both of these human cell lines contain similar frequencies of 
methylated 5-mer motifs. Reviewer #2 (as well as Reviewer #1 and Reviewer #3), have 
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therefore suggested to evaluate the generalisability of m6Anet using data from different 
species, that harbour different frequencies of methylated kmers. 
 
Following a suggestion from Reviewer #1, we have downloaded a data set form 
Arabidopsis (Parker et al. 2020) which contains a different distribution of methylated 
motifs (Fig. 
R2.5a,b,c). Motifs such as GGACT, GAACT, and GGACA that dominate the 
methylated positions in the human cell lines are less prominent in the Arabidopsis 
dataset. On the other hand, motifs such as AAACT, AGACT, and AGACA, which are 
less frequently found in the human m6A data, are more prevalent in the Arabidopsis 
dataset, suggesting a significant shift in the distribution of methylated motifs between 
the two datasets, which makes this an ideal data set to test the generalizability of 
m6Anet beyond the application on human cell lines. 
 
Using these data, we performed two new analysis to test the generalizability of m6anet: 
 

(1) Cross-species prediction (Training: Arabidopsis - Testing:Human) 
 
Here we observe a comparable performance between models trained on human cell 
lines against the model trained on Arabidopsis dataset (Fig. R2.5d,e). We also note 
that the model trained on the Arabidopsis cell line also outperforms existing 
approaches such as EpiNano on both the HCT116 cell line and the HEK293T cell line 
(Fig. 1d,f and Supplementary Fig.1s,u). All predicted sites display strong enrichment 
towards the 3’UTR, indicating that these are genuine m6A sites (Figure R2.5f,i, Figure 
R2.6c). Including the positions sensitive to knockout in the HEK293T cell line shows 
an improvement in the precision of the Arabidopsis trained model, matching those of 
the models trained on the human cell lines (Fig. R1.1j) suggesting a comparable 
performance and high level of generalisability of m6Anet. 
 

(2) Cross-species prediction (Training: Human - Testing: Arabidopsis) 
 
Similarly, we also compared the performance of m6Anet trained on human cell lines 
against the arabidopsis model and found comparable performance despite the 
difference in the distribution of the methylated motifs (Figure. R2.6a,b). Furthermore, 
incorporating 
METTL3-sensitive sites detected by xPore in the HEK293T cell line improves the 
training performance of the model (Fig. R2.6a,b)l. We have also observed an 
enrichment around the 3’UTR area for all models (Fig. R2.6c), suggesting that the sites 
captured by our models are indeed true methylated sites. Lastly, the rankings of the 
most methylated 5-mer frequencies by m6Anet, xPore, and the results presented by 
Parker et al show a strong agreement to each other, in particular for the most 
frequently modified motifs (Figure. R2.6,f,g) 
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Together these results demonstrate that m6Anet generalises to new species or other 
samples that have different kmer profiles compared to the training data. We have 
included these results in the revised manuscript p. 8 paragraph 2, p. 9 paragraph 1 and 
in Figure 2, Suppl. Figure 2, Suppl. Figure 3d 
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Figure R2.5 Comparison of m6Anet models on human cell lines 
 
(a-b) Distribution of modified positions across all three cell lines on the training sets and 
the test sets (area shown to proportion) (c) Barplot comparing the relative proportion of 
methylated motifs for the HCT116, HEK293T and Arabidopsis VIR-1 complemented cell 
lines.(d-i) ROC curve, PR Curve, and metagene plot of sites predicted by models trained 
on the HCT116, HEK293T and VIR-1 complemented cell lines on (d-f) HCT116 test 
set and (g-i) HEK293T test set. (j) The adjusted precision after including position 
sensitive to METTL3-KO of all three m6aNet models on the HEK293T cell line. 
 
 
 
 
 
 
 
 

Figure R2.6 Comparison of m6Anet models on Arabidopsis Datasets 
 
(a-b) ROC Curve and PR Curve of four m6Anet models trained on HCT116 cell line, 
HEK293T cell line, Arabidopsis VIR-1 complemented cell line, and HEK293T cell line 
with the inclusion of KO sensitive positions as detected by xPore on the Arabidopsis 
VIR-1 complemented cell line test set (c) Metagene plot of predicted sites by all four 
m6Anet models (d) Scatter plot comparing the frequency ranking of predicted motifs by 
m6Anet against Parker et al and (e) xPore and (f) xPore against Parker et al 
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Reviewer #2: 
 

7) Oxford Nanopore has recently released Q20 chemistry on their 
platform, and it would be good to address this as well in the paper, if possible. 
Some of this is referenced in the discussion, but we have seen dramatic 
differences in motif calling and base quality as a function of the version of the 
base caller, and this will likely be an issue for m6Anet; an estimate of this 
impact would be helpful for users of the software. 

 
Response: 
 
Detection of m6A with m6anet uses the Nanopore current signal, which can potentially 
be impacted with a new technology release by Oxford Nanopore. We do not have any 
datasets that are sequenced using the Q20 chemistry (which was released for DNA 
sequencing, for RNA the old chemistry is still recommended). However, in our original 
manuscript, we have performed experiments using datasets that are sequenced using 
different RNA chemistry kits. The HEK293T and HCT116 datasets are sequenced 
using SQK-RNA001 (HEK293T) and SQK-RNA002 (HCT116) kits and are also 
basecalled using Guppy version 2.1.3 and 
3.2.10. In our manuscript we have demonstrated that m6anet generalises across these 
two datasets, despite them being sequenced using different RNA kits. Furthermore, 
we have also included an additional validation result on the Arabidopsis dataset from 
Parker et al sequenced using the SQK-RNA001 kit and basecalled using Guppy 
version 2.3.1 1 and showed that our approach generalises to this dataset as well. The 
generalizability is achieved as we do not observe dramatic differences in the raw 
squiggle/signal data, which translates to comparable current features across all these 
datasets. Additionally, the comparable raw squiggle values also ensure consistent 
segmentation results of the target m6A region by nanopolish eventalign in the 
squiggle. 
 
Even though m6Anet robustly works across all current RNA chemistry kits from Oxford 
Nanopore, it is possible that a new pore version or chemistry kit might be released 
which alters the signal. In that case, the segmentation and signal features are likely to 
be impacted, requiring re-training of m6anet. m6Anet now includes the option to re-train 
the model for this scenario. We have now highlighted this fact in paragraph 4 of the 
discussion section in the manuscript and we further highlighted this in the online 
documentation of m6anet (https://m6anet.readthedocs.io/en/latest/) 
 
Reviewer #3: 
 

https://paperpile.com/c/2WXBx6/FKIc
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Remarks to the Author: 
This manuscript describes m6Anet, a framework for detecting RNA modifications from 
nanopore direct RNA sequencing data using multiple instance learning. The authors 
have demonstrated the framework by training with m6ACE-seq data to detect 
N(6)methyladenosine. There are now many methods for detecting m6A in nanopore 
data, including another by the authors themselves (xPore). The main advantage of the 
m6Anet framework over these previous methods is that it does not require a low 
modification control. This constitutes a significant advance. However, the manuscript is 
heavily focused on human data and more work is needed to demonstrate that their 
models can generalise to datasets from other organisms. 
 
Response: 
We thank Reviewer #3 for their positive evaluation of our manuscript. In our revised 
manuscript we now demonstrate that m6Anet can accurately predict m6A in a cross-
species scenario (Human - Arabidopsis) when the relative frequency of modified k-
mers differs substantially. We thank Reviewer #3 for their constructive suggestions, 
which we believe has led to an improved manuscript that better demonstrated the 
robustness and generalizability of m6Anet to predict m6A beyond human samples. 
Please find our detailed responses below. 
 
Reviewer #3 (point1): 
 

• The data used to train the model seems likely to be partially 
confounded by sequence context because the authors use all DRACH motifs 
as negative examples. In reality, some DRACH motifs are much more 
commonly methylated than others (for example, there are ~1500 times more 
GGACU motifs than UAACC motifs in the authors positive training examples) 
whereas the distribution of motifs for negative samples is much more uniform 
(e.g. only 1.7 times more negative GGACU examples than UAACC). This 
means that the model can achieve a good accuracy on the training data by 
learning the motif bias of m6A, rather than by identifying methylation from 
signal data. When applied to a dataset where the m6A motif preference 
deviates from this expectation, i.e. in other organisms besides humans, 
m6Anet may perform sub optimally. Using the authors’ training data (file: 
data/cv_results/1_neighbour/test_results_pr_auc.csv.gz) I find that an 
extremely random forest classifier trained on one hot encoding of the central 
5mer sequence (with random oversampling of positive examples) can achieve 
a 5-fold cross-val AUC of 0.80. The authors should therefore undersample 
their negative training examples to make the kmer distribution more similar to 
the positive examples. Alternatively, they could try training a model using 
signals from their METTL3 KO data at positions matched with positive 
examples from untreated data, so that sequence contexts are identical 
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between positive and negative examples. 
 
Response: 
 
Reviewer #3 raises an important point regarding the generalizability of m6Anet to 
dataset with different methylated motifs distribution due to the imbalance in the 
methylated DRACH motifs in our dataset (with GGACU motif being much more 
commonly methylated than the other motifs). Following the suggestion from Reviewer 
#2, we now present the following additional analysis: 
 

(1) We now train and test m6Anet on an additional data set from 
Arabidopsis to demonstrate cross-species generalisability 
when k-mer profiles differ between training and test data 

(2) We compare the original strategy to train m6Anet (randomly 
oversampling of methylated positions) with k-mer-specific 
oversampling of positive labels and 

k-mer-specific undersampling of negative labels (as suggested by Reviewer #2) to demonstrated 
the robustness of the m6Anet pre-trained models 
 
In order to obtain a independent data set to evaluate the generalizability of m6anet in a 
scenario where different methylated kmer frequencies are expected, we have followed 
the suggestion from Reviewer#3 (see below) to use a Arabidopsis data set (Parker et 
al) (which was also suggested by Reviewers #1 and #2, see response above for 
additional details). 
The Parker et al dataset contains direct RNA-Seq data from a cell line that lacks m6A 
modifications (vir-1 knockout cell line/ vir-1 cell line) and a matching cell line that 
contains m6a sites (vir-1 complement,/ vir-1c cell line). To obtain the labels for this 
dataset, we ran xPore (Pratanwanich et al. 2021) to compare all replicates from the 
vir-1c dataset against the all four replicates from the vir-1 data set and considered 
DRACH sites with adjusted 

p- value less than 0.05 as m6A modified sites. Additionally, we use the sites 
provided by the authors as m6A sites for training and testing (see methods). 
The number of methylated sites (positive labels) in both training and test sets 
is comparable between the Arabidopsis and the Human data set 
(Figure.R3.3a,b). However, the relative methylation frequencies between the 
5-mers are substantially different (Figure. R3.3,c). In particular, the GGACU 
motif that is most frequently methylated in the human cell lines is not as 
prominent in the Arabidopsis dataset. On the other hand, methylated sites that 
have stronger preference for A at -1 and -2 positions are more frequently 
modified in Arabidopsis compared to humans (Figure. R3.3c). These data 
suggest that the Arabidopsis data set provides a good model system to 
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evaluate the impact of the methylated k-mer frequencies on the 
generalizability of m6anet (please see our response below to Reviewer #3 
point 4 with additional details about these results and data). 

 
Following the suggestion from Reviewer #3 we compared four different strategies to 
over- and undersampling training data: 
 

1. The original m6Anet model (“original”) 
a. In the original implementation, we oversample methylated 

positions to match the number of negative labels. This 
strategy maximises the amount of data used in m6Anet while 
maintaining the original relative k-mer frequency. 

2. Undersampling of negative labels by kmer (suggested 
by Reviewer #3) (“undersampling”) 

a. This strategy ensures that the relative k-mer frequency is 
comparable between the positive and negative labels, at the 
cost of using less data (in particular for rarely modified k-mers 
many training data points will not be used) 

3. Oversampling of positive labels by k-mers (“oversampling”) 
a. This strategy ensures a comparable relative k-mer 

frequency between the positive and negative training 
labels. In contrast to the undersampling strategy, more 
data points are used. 

4. Training on matched wild type and knockout data (using positive label 
positions only) (suggested by Reviewer #3) (“matched knockout”) 

a. In this strategy we train using only positions identified as 
modified, with positive labels using wild type cell line data, 
and negative labels from METTL3 knockout cell line data. 
This strategy ensures identical sequence context between 
positive and negative training labels, however it uses a 
minimum sequence context as none of the unmodified 
positions is used during training that make the majority of 
data points) 

 
We applied these strategies to training models from the 2 human cell lines and the 
additional arabidopsis cell line, and we tested all models on all three data sets (Table 
R3.1). Firstly, we observe that the models trained by the various sampling strategies 
do not outperform the model trained on the same cell line using our original strategy, 
which shows the highest accuracy (Table R.3.1). While the “oversampling” and 
“undersampling” strategies perform generally well, the “matched knockout” model 
performs poorly compared to the other models, most likely due to the limited sequence 
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context the model is trained on compared to all other models. The original strategy as 
well as the “oversampling” strategy generalise well across species and data sets with 
very different k-mer profiles (Table R3.1). Overall these results suggest that the 
original strategy is robust against a possible bias due to the methylated kmer 
frequency in the training data (Table R3.1). We have included these results in the 
revised manuscript as supplementary text. For simplicity, we only present the models 
trained using the original strategy in the manuscript main figures. For more details 
regarding the cross-species comparison, please see our response below. 
 

HEK293T Test Set 

 
Training Cell 
Line 

 
ROC AUC 
(original) 

ROC AUC 
(Oversampli 

ng) 

ROC AUC 
(Undersamp 

ling) 

ROC AUC 
(matched 
knockout) 

 
PR AUC 
(original) 

PR AUC 
(Oversampli 

ng) 

PR AUC 
(Undersamp 

ling) 

PR AUC 
(matched 
knockout) 

HEK293T 0.828 0.774 0.664 0.547 0.343 0.271 0.151 0.084 

HCT116 0.836 0.793 0.697 NA 0.349 0.280 0.174 NA 

Arabidopsi s 
VIRC 

0.792 0.793 0.776 NA 0.311 0.314 0.281 NA 

HCT116 Test Set 
 
Training Cell 
Line 

 
ROC AUC 
(original) 

ROC AUC 
(Oversampli 

ng) 

ROC AUC 
(Undersamp 

ling) 

ROC AUC 
(matched 
knockout) 

 
PR AUC 
(original) 

PR AUC 
(Oversampli 

ng) 

PR AUC 
(Undersamp 

ling) 

PR AUC 
(matched 
knockout) 

HEK293T 0.903 0.859 0.775 0.582 0.466 0.327 0.213 0.079 

HCT116 0.926 0.898 0.815 NA 0.498 0.380 0.278 NA 

Arabidopsi s 
VIRC 

0.875 0.874 0.879 NA 0.383 0.389 0.387 NA 

Arabidopsis VIRC Test Set 
 
Training Cell 
Line 

 
ROC AUC 
(original) 

ROC AUC 
(Oversampli 

ng) 

ROC AUC 
(Undersamp 

ling) 

ROC AUC 
(matched 
knockout) 

 
PR AUC 
(original) 

PR AUC 
(Oversampli 

ng) 

PR AUC 
(Undersamp 

ling) 

PR AUC 
(matched 
knockout) 

HEK293T 0.881 0.877 0.896 0.674 0.267 0.249 0.284 0.049 

HCT116 0.886 0.898 0.897 NA 0.237 0.238 0.227 NA 

Arabidopsi s 
VIRC 

0.940 0.937 0.933 NA 0.389 0.346 0.284 NA 

 

Table R3.1 Comparison of mAnet-based models trained on different cell lines 
with different sampling strategy on the HEK293T Test Set 
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Reviewer #3 (point 2): 
 

• The authors train their model on modified and unmodified DRACH 
kmers from HCT116 cells, and then test on modified and unmodified DRACH 
kmers from HEK293T cells. Given that many positions between these cells will 
have identical contexts (presumably the authors used the same reference 
genome/transcriptome) this could be considered at risk of data leakage, since 
overfitting to the training data could provide a better score on the test set. The 
authors should alleviate this concern by benchmarking on a held-out set from 
HCT116 cells or using cross-validation scores to benchmark their model 
against others. 

 
Response: 
 
In order to address the Reviewer’s concern about data leakage, we have validated the 
model on the HCT116 test set that was not used in training (Fig. R3.2a,b,c). 
Furthermore, we have now restricted the model comparison between m6Anet and 
existing approaches to the test set of the HEK293T cell line. The test sets of both 
HCT116 and HEK293T cell lines do not contain genes that are present in the training 
dataset and therefore contain different sequence contexts (Figure 1d,e,f). We still 
observe the same results in which m6Anet outperforms existing approaches (Fig. 
R3.1a,b,c, Fig. R3.2a,b,c). We thank Reviewer #3 for their suggestions and we have 
updated the original manuscript (Figure. 1d,e,f, Supplementary Figure. 2j-n) 



 
 

 

37 
 

 

 

 
 
 
Figure R3.1 Comparison of m6Anet against EpiNano, nanom6A, MINES, and 
Tombo on HEK293T test set 
(a) ROC Curve and PR Curve of m6anet against all 5 EpiNano models and Tombo. (b) 

ROC Curve and PR Curve of m6anet against nanom6A and Tombo (c) ROC Curve and 

PR Curve of m6anet against MINES and Tombo on the HEK293T test set 
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Figure R3.2 Comparison of m6Anet against EpiNano, nanom6A, MINES, and 
Tombo on HCT116 test set 
(a) ROC Curve and PR Curve of m6anet against all 5 EpiNano models and Tombo. (b) 

ROC Curve and PR Curve of m6anet against nanom6A and Tombo (c) ROC Curve and 

PR Curve of m6anet against MINES and Tombo on the HCT116 test set 

 
Reviewer #3 (point 3): 
 

• It is interesting that m6Anet performs much better on HCT116 cells 
than HEK293T cells, even when the model is trained on HEK cells. The 
difference in ROC AUC score for example is quite large (~0.84 for HEK cells 
vs ~0.93 for HCT cells). Can the authors shed any light on why this might be 
occurring? 

 
Response: 
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The models that are trained on the HEK293T and the HCT116 cell lines perform 
equally on all three data sets used for evaluation in out manuscript (Figure 3c,d), 
suggesting that the data used in training is of comparable quality in both cell lines 
(positive labels + direct 
RNA-Seq data). In contrast, all m6Anet models as well as all other methods 
(nanom6A, MINES, EpiNano and Tombo) show lower precision when evaluated on the 
HEK293T data set compared to the HCT116 data set. We believe that this points to a 
higher number of missing m6A labels in the HEK293T cell line, as these have a much 
larger impact on evaluation than on model training. When we additionally use the 
labels obtained from the comparison of the wild type and METTL3 knockout HEK293T 
cell lines, we can see a significant increase in performance, confirming that a large 
fraction of m6A positions are likely missing from the the labels in the HEK293 data set 
(Figure R3.3j). The enrichment of the m6A predictions in the 3’UTR is similar between 
both cell lines (Figure R3.3f,i), further suggesting that the difference in performance 
between both data sets is more likely to reflect the quality of the labels used during 
evaluation rather than the quality of the predictions that are made. 
 
Reviewer #3 (point 4): 
 

• The authors suggest that their model is able to generalise by 
demonstrating its use on datasets from other human cell lines. However, 
given that the sequence composition and m6A motif preference of these cell 
lines will be very similar to the HCT116 data used in training, I do not think 
that this demonstrates the level of generalisation that users of m6Anet would 
likely desire. The authors should therefore demonstrate that m6Anet 
generalises to other species with known differences in their m6A profile. For 
example, there is publicly available nanopore data for Plasmodium 
falciparum(Lee et al., 2021), Arabidopsis thaliana(Parker et al., 2020), and 
Toxoplasma gondii(Farhat et al., 2021; Lee et al., 2021), which have a 
stronger preference for A at -1 and -2 positions from m6A compared to 
humans(Baumgarten et al., 2019; Parker et al., 2020). These are also direct 
RNA datasets available for Mus musculus(Sessegolo et al., 2019) and C. 
elegans(Roach et al., 2020), the latter of which has mRNA m6A but not in 
DRACH contexts (only METTL16 is conserved; Mendel et al., 2021). 

 
Response: 
 
In our original manuscript we attempted to validate the generalisability of m6Anet by 
training and testing on two different human cell lines. Reviewer #3 (as well as 
Reviewer #1 and Reviewer #2) have pointed out the limitation in our approach due to 
the similarity in methylated 5-mer composition between the two cell lines. Following the 
suggestion from the reviewers, we have included an additional validation dataset from 
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Arabidopsis (Parker et al. 2020) to evaluate the generalizability of m6Anet across 
different species when different profiles of methylated k-mers are expected (see 
Reviewer #3 point 1 with a detailed description of the data set). 
 
 
First we evaluated the m6anet models trained on human cell lines (Hct116, Hek293T) 
and Arabidopsis cell lines (vir-1) when tested on human data used in our original 
manuscript. We observe a comparable performance of the m6anet model trained on 
Arabidopsis data against the other m6Anet models trained on human cell lines when 
evaluated on the Hek293T cell line (Revision Table R.3.1, Figure R.3.3d,e), and the 
HCT116 cell line (Revision Table R.3.1, Figure R.3.3.g,h) suggesting that our model 
can generalise to datasets with different frequency of methylated motifs. Additionally, 
the metagene plots of all the models on both of these cell lines show strong enrichment 
towards the 3’UTR indicating that these models capture genuine methylated sites. 
Incorporating the METTL3-KO sensitive positions obtained from xPore on the 
HEK293T cell line also improves the precision of the Arabidopsis model, matching that 
of the models trained on the HEK293T cell line and HCT116 cell line (Figure R3.3j). 
 
Next, we compared the performance of m6Anet models on the Arabidopsis VIRC cell 
line, where we also observe a comparable performance between the models trained on 
the human cell lines and the model trained on the Arabidopsis VIRC cell line (Figure 
R3.4a,b). As an additional comparison, we further include an additional model trained 
on the HEK293T cell line with labels from miCLIP, m6ACE, and also xPore to match 
the training data type used in Arabidopsis. Using this model we observe an overall 
improvement in terms of the ROC AUC and PR AUC on the VIRC dataset (Fig 
R3.4a,b). Similar to the human data, predictions from all models show a strong 
enrichment towards the 3’UTR, further supporting that the predicted sites are indeed 
methylated m6A sites (Figure R3.4c). Lastly, the ranking of k-mer frequencies 
predicted by m6Anet shows an agreement with the frequencies identified by the 
original authors (Parker et al) and by xPore, especially among the top ranked motifs 
(Figure R3.4d,e,f). Most notably, the GGACU motif that is dominant in the original 
training data is ranked much lower in this dataset, while assigning an accurate ranking 
towards other more frequently methylated motifs such as AAACU, AGACU, and 
AGACA that are not as frequently methylated in the original dataset used for training. 
 
Together, these results demonstrate that m6Anet can generalise to datasets with 
different 5-mer methylated profiles such as direct RNA-Seq from other species.. We 
thank Reviewer #3 for their suggestions which we believe indeed provides a much 
better picture on the ability of m6anet to generalise to new data sets. We have 
included these results in the revised manuscript p. 8 paragraph 2, p. 9 paragraph 1 
and in Figure 2, Suppl. Figure 2, Suppl. Figure 3d 
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Figure R3.3 Comparison of various m6Anet-based models on the HEK293T Test Set 
(a) ROC AUC (b) PR AUC of several m6Anet models on the HEK293T Test Set. m6Anet 
is the original m6Anet model trained on the HCT116 cell line while Oversampled 
(Undersampled) refers to m6Anet models trained by oversampling (undersampling) each 
modified (unmodified) kmer to match the number of unmodified (modified) kmer. 0-
neighbor and 1-neighbor kmer are RandomForest model trained on just the one-hot kmer 
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features surrounding the candidate site. 

 
 
 
 

Figure R3.4 Comparison of m6Anet models on Arabidopsis Datasets 
 
(a-b) ROC Curve and PR Curve of four m6Anet models trained on HCT116 cell line, 
HEK293T cell line, Arabidopsis VIR-1 complemented cell line, and HEK293T cell line 
with the inclusion of KO sensitive positions as detected by xPore on the Arabidopsis 
VIR-1 complemented cell line test set (c) Metagene plot of predicted sites by all four 
m6Anet models (d) Scatter plot comparing the frequency ranking of predicted motifs by 
m6Anet against Parker et al and (e) xPore and (f) xPore against Parker et al 
 
 
Reviewer #3 (point 5): 
 

• m6Anet relies heavily on nanopolish to provide event level data 
(mean, std and dwell) for each transcriptomic position. This should be 
mentioned and cited in the results section “Training data for m6Anet 
model parameter estimation”. 

 
Response: 
 
We have followed the suggestion from Reviewer #3 by mentioning Nanopolish and 
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citing Nanopolish in the results section “Training data for m6Anet model parameter 
estimation”. Here we present the updated section from the manuscript 

Training data for m6Anet model parameter estimation, p.6: 
 
“To learn the model parameters, m6Anet requires training data consisting of labels 
(modified/unmodified) and direct RNA-Seq reads. In order to train a model for m6A we 
used labels obtained from m6ACE-Seq that identifies m6A at single nucleotide resolution 
8. m6Anet uses positions which are identified to have m6A as labels for the modified 
class, and any other position with the same 5-mer sequences that are included in the 
modified class will be used as the unmodified class. In order to extract features for model 
training and predictions, we used nanopolish 9 eventalign to segment nanopore raw 
signals into their respective positions in the transcriptome. Since m6A modifications 
occur at the DRACH motifs, we removed any non DRACH motifs from these data for 
m6Anet, however, this step is not required for training data without prior knowledge about 
the motifs.[...]” 
 
 
Reviewer #3: 
 

• Font size on figures is very small throughout, and should be increased. 
 
Response: 
 
Following the suggestion from Reviewer #3, we have updated the font size on figures 
throughout the manuscript. 
 
Reviewer #3: 
 

• Figure 1c, error bars are hard to read (some are also missing or 
misaligned) and are not described in the figure legend. I think they have been 
generated with seaborn barplot so are probably bootstrapped 95% confidence 
intervals (of per gene kmer mod rate?). Legend also states it is only top 4 
kmers but all are shown. 

 
Response: 
 
We have updated Figure 1c so that the error bars are a bit thicker and easier to read. 
Furthermore, we have also included additional details to the figure legend regarding the 
confidence intervals of the error bars and also changed top 4 kmers to 18 kmers. 
 
 

https://paperpile.com/c/2WXBx6/nwpQ1
https://paperpile.com/c/2WXBx6/pJgdL
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Reviewer #3: 
 

• Fig 2d, m6ACE-seq is labelled in legend as orange but there is no 
orange line. Supp fig 2b, background is labelled in legend as grey but there is 
no grey line. 

 
Response: 
 
We thank Reviewer #3 for spotting our errors which we have corrected in the main text. 
Due to the changes in the manuscript, Fig. 2d is now Fig. 3d in the main text and 
Suppl. Figure 2b is now Suppl. Figure 3b 
 
Reviewer #3: 
 

• Figure 3e histogram bins are not aligned. 
 
Response: 
 
We have fixed the histogram in Figure 3e and 3f so that the bins are aligned by 
choosing a fixed bin width of 0.1. Due to the changes in the manuscript, Fig. 3e is now 
Fig. 2f in the main text. 
 
Reviewer #3: 
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Reviewer #4: 
 
Remarks to the Author: 
Oxford Nanopore Technologies Nanopore sequencing platform remains the only 
commercially available sequencing platform that directly measures single RNA and 
DNA molecules. Hence, it can provide information on the base sequence of DNA and 
RNA molecules and measure distinct chemical modifications of individual bases of said 
nucleotide sequences. 
While the raw nanopore signal is rich in information, reliably extracting specific 
parameters such as modification status of RNA bases remains a yet not fully resolved 
challenge in the field of machine learning. More conventional machine learning 
methods such as Hidden Markov Models for base and base modification calls have 
now been replaced by applying deep neural network models. This methodological 
approach critically relies on extensive training datasets with a known "ground truth". 
Unfortunately, such datasets currently cannot be generated for all base modifications of 
interest with the precision required for most deep learning methods, neither with 
biological nor molecular protocols. 
 
Hendra, Göke, and colleagues address this relevant challenge in their manuscript 
"Detection of m6A from direct RNA sequencing using a Multiple Instance Learning 
(MIL) framework by implementing MIL for calling 6mA-modification in nanopore direct 
RNA sequencing datasets. The authors provide several rationally designed 
experiments and analyses corroborating the assumption that the performance of their 
novel approach surpasses those of existing tools and may be a first-in-class tool 
enabling RNA 6mA modification calling on the 
single-molecule level using the MIL approach. 
 
Overall, we find m6ANet to be a promising tool for detecting RNAs methylated at 6A 
using native nanopore sequencing and will recommend it for publication. The use of 
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the Multiple Instance Learning model is novel and scientifically sound, and it is exciting 
to see more use of a more comprehensive array of neural network methods in 
computational biology. 
Additionally, the manuscript includes several convincing analyses that their results are 
concordant with orthogonal (experimental) approaches. Finally, we were easily able to 
reproduce the results from the paper on CodeOcean as well as easily install the tool on 
our own servers and run it on the sample data provided in the documentation. 
 
Response: 
 
We thank Reviewer #4 for the positive comments about our manuscript and we are 
glad that m6Anet can be easily installed and run. We particularly would like to thank 
Reviewer #4 for their comment on providing a useful estimate of m6Anet precision that 
directly applies to end users. In our original manuscript we have not provided any such 
estimate which could easily lead to users performing analysis with sub-optimal 
parameter settings. We have since then addressed this point by providing precision 
estimates for specific thresholds for the site level modification probability. Furthermore, 
we now recommend a default threshold of 0.9 to select m6A sites in the online 
documentation and we updated our manuscript by explicitly stating the expected 
precision level that users can expect for a given threshold. We hope that these 
changes will make the results more accessible and applicable to possible users of 
m6anet. Please find our detailed response below. 
 
Reviewer #4: 
 
Our criticisms focus mainly on the section entitled Novel m6Anet predictions are 
sensitive to METTL3 knockout. In the first paragraph, the authors argue that the novel 
methylation sites predicted by m6ANet are often separately supported by other 
methylation detection methods and are therefore likely truly methylated. This is not 
convincing logic as a tool with a very high false-positive rate will, of course, have 
overlaps with false positives of other methods. 
 
It should also be further clarified that xPore calls differentially methylated sites and is 
not a "comparative" method to m6ANet. Overall, the take-home message of this 
paragraph is unclear and ambiguous. A user of your tool would like to know what 
percentage of the calls made by m6Anet are true positives. However, the authors only 
explain that m6ANet can reliably detect 46% of KO-sensitive methylation sites. Are 
these 1888 sites used only novel sites predicted by m6ANet? Can you give a new 
estimate of the precision of m6ANet if these novel sites are 46% true positives? 
 
Response: 
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In our original manuscript, we benchmark the performance of m6Anet against other 
models by comparing their ROC AUC and PR AUC values. We claim that, even though 
our model outperforms existing methods, the performance of m6Anet is 
underestimated when we only look at the AUC values derived from miCLIP or m6ACE-
seq labels. Reviewer #4 suggests that these results, which are summarised in the 
paragraph “Novel m6Anet predictions are sensitive to METTL3 knockout”, could be 
presented more clearly. Specifically, Reviewer #4 has the following comments: 
 
 

1) First paragraph/ Figure 2a: An overlap of predictions from different 
technologies does not indicate a high precision 

 
This paragraph aims to summarise how the different m6A detection technologies 
(m6Anet, miCLIP, m6ACe-Seq) overlap in their m6A site predictions. We agree with 
Reviewer #4 that a high overlap does not indicate if these positions are truly 
methylated. We have now rephrased this paragraph and combined it with the following 
paragraph that uses an independent validation set to estimate the fraction of truly 
methylated sites among the three different protocols. 
 

2) Clarification about xPore in relation to m6Anet 
 
We thank Reviewer #4 for highlighting that the description of xPore could be 
misunderstood. In the revised manuscript we now describe xPore a method that 
compares different samples (not as a method that is comparative to m6Anet) 
 

3) The overall take home message was unclear and ambiguous 
 
In our original manuscript we aimed to demonstrate two points in this paragraph: firstly, 
we show that technology-specific m6A site predictions are frequently observed and that 
they can still be true methylated sites, secondly we show that the precision of m6Anet 
is likely underestimated due to these technology-specific sites. In order to more clearly 
present these results, we have now split this section into 2 sections (“Technology-
specific m6A site predictions are sensitive to METTL3 knockout”, and “m6Anet 
achieves high precision among top predicted sites”). 
 

4) Obtain specific estimates for precision of m6Anet 
 
In our original manuscript we relied on the AUC of the ROC and PR curves to estimate 
the accuracy of m6Anet predictions in comparison to other methods. These metrics 
consider the full spectrum of predictions independently from a specific threshold as 
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they evaluate the ability to rank true positives higher than false positives. m6Anet does 
not use a default threshold, instead we recommend in our online documentation 
(https://m6anet.readthedocs.io/en/latest/) to use the predicted site probability for 
ranking candidate sites, therefore we have not provided a point estimate for precision 
of m6Anet site predictions in our original manuscript. However, we fully agree with 
Reviewer #4 that such an estimate will be very helpful to make these results 
interpretable to the reader and to help guide the selection of a meaningful threshold by 
users. Following this comment, we have therefore estimated the precision of m6Anet 
site level predictions for different thresholds (Figure R4.1a). At a threshold of 0.9 
m6Anet achieved a precision of 70.5%, which we now explicitly mention in the 
manuscript. 
 
Due to the limitations in the evaluation procedure described above, the precision might 
be underestimated, even when the additional positions from xPore are considered. In 
order to obtain accurate estimates of precision we now include an additional analysis 
on synthetic sequences (“curlcake sequences”) where the labels are known (Liu et al. 
2021) (see response to Reviewer #2 for additional details). These data consist of two 
replicates of a m6A modified library and two replicates of an unmodified IVT RNA 
library. To obtain precision estimates for different modification rates, we followed the 
strategy from the authors to randomly sample reads from the modified and unmodified 
libraries at specific ratios and to exclude 5-mers with multiple modified A nucleotides 
(Liu et al. 2021). Using the synthetic data, we find that m6Anet achieves very high 
precision (Figure R4.1b,c). Applying a threshold of 0.9 achieves perfect classification 
results even with modification rates below 25% (Figure R.4.1d), with lower thresholds 
showing reduced precision in particular for the lowly modified scenario (Figure R4.1d). 
 
We thank Reviewer #4 for their suggestion. We hope that the additional validation on 
the synthetic dataset, and the detailed analysis of precision for different thresholds in 
m6Anet will provide a more comprehensive and clearer guide on how to interpret the 
results from m6Anet. 
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Figure R4.1 Comparison of m6Anet models on Arabidopsis Datasets 
 
(a) The adjusted precision true positive rate after including position sensitive to METTL3-

KO of m6Anet and EpiNano. Red dots indicate the precision point at different m6anet 

output thresholds (b-c) Boxplots comparing the ROC AUC (b) and PR AUC (c) of m6Anet 

on curlcake datasets over different mixtures of methylated reads. (d) Precision of m6Anet 

on the curlcake datasets for varying methylation level at different predictive thresholds. 

 
 
Reviewer #4: 
 
Other minor criticisms include: 

- (Supp) Figure 2c has "Precision" as the y axis label but then 
describes the true positive rate in the legend. This is done twice 
- Figure 2b has a 

mismatched color legend 

Response: 
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We thank Reviewer #4 for finding this error in Figure 2b, Figure 2c, and Supp Figure 
2c. We have corrected the figure legends to match the colours of the plotted lines and 
corrected the y axis label and figure legends to describe precision instead of true 
positive rate in the revised manuscript. 
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Decision Letter, first revision: 

 
 Subject: AIP Decision on Manuscript NMETH-A47051B 
Message: Our ref: NMETH-A47051B 
 
7th Jul 2022 
 
Dear Jonathan, 
 
Thank you for submitting your revised manuscript "Detection of m6A from direct RNA sequencing using 
a Multiple Instance Learning framework" (NMETH-A47051B). It has now been seen by the original 
referees and their comments are below. The reviewers find that the paper has improved in revision, and 
therefore we'll be happy in principle to publish it in Nature Methods, pending minor revisions to satisfy 
the referees' final requests and to comply with our editorial and formatting guidelines. 
 
We are now performing detailed checks on your paper and will send you a checklist detailing our 
editorial and formatting requirements in about a week. Please do not upload the final materials and 
make any revisions until you receive this additional information from us. 
 
TRANSPARENT PEER REVIEW 
Nature Methods offers a transparent peer review option for new original research manuscripts 
submitted from 17th February 2021. We encourage increased transparency in peer review by publishing 
the reviewer comments, author rebuttal letters and editorial decision letters if the authors agree. Such 
peer review material is made available as a supplementary peer review file. Please state in the cover 
letter ‘I wish to participate in transparent peer review’ if you want to opt in, or ‘I do not wish to 
participate in transparent peer review’ if you don’t. Failure to state your preference will result in delays 
in accepting your manuscript for publication. 
Please note: we allow redactions to authors’ rebuttal and reviewer comments in the interest of 
confidentiality. If you are concerned about the release of confidential data, please let us know 
specifically what information you would like to have removed. Please note that we cannot incorporate 
redactions for any other reasons. Reviewer names will be published in the peer review files if the 
reviewer signed the comments to authors, or if reviewers explicitly agree to release their name. For 
more information, please refer to our <a href="https://www.nature.com/documents/nr-transparent-
peer-review.pdf" target="new">FAQ page</a>. 
 

http://paperpile.com/b/2WXBx6/pJgdL
http://paperpile.com/b/2WXBx6/pJgdL
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Thank you again for your interest in Nature Methods Please do not hesitate to contact me if you have 
any questions. 
 
Best regards, 
Lei 
 
Lei Tang, Ph.D. 
Senior Editor 
Nature Methods 
 
ORCID 
IMPORTANT: Non-corresponding authors do not have to link their ORCIDs but are encouraged to do so. 
Please note that it will not be possible to add/modify ORCIDs at proof. Thus, please let your co-authors 
know that if they wish to have their ORCID added to the paper they must follow the procedure 
described in the following link prior to acceptance: 
https://www.springernature.com/gp/researchers/orcid/orcid-for-nature-research 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have satisfied all of my concerns, especially with the detailed analysis of the Arabidopsis 
data from Parker et al. 
 
 
Reviewer #2 (Remarks to the Author): 
 
The authors have updated the density plots, the Venn diagrams, the code base, and the online 
documentation well, and the cross-species validation data (especially the titration data) look good. They 
have satisfactorily addressed all my concerns. 
 
 
Reviewer #3 (Remarks to the Author): 
 
Overall, I would like to commend the authors for their extremely thorough and impressive response to 
the reviewers comments, which were meant constructively! I recommend that the paper should be 
accepted for publication, with a few further clarifications to the text. 
 
The authors have performed a very thorough benchmarking of different over- and under-sampling 
strategies to evaluate their dataset. I am not sure that I agree with their interpretation of the data, 
however. It is clear that over- or under-sampling of kmers, so that positive and negative training sets 
have similar distributions, has a negative impact on performance when evaluated on the species that 
the training data is derived from (e.g. models trained on HEK293T evaluated on HEK293T or HCT116, or 
models trained on Arabidopsis evaluated on Arabidopsis). This is to be expected as it prevents m6Anet 
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from learning/overfitting to the kmer distribution of the organism used for training. In multiple cases 
however, over or under- sampling does improve generalisation when applied to different organisms: e.g. 
models trained on HEK data were more predictive on Arabidopsis when undersampling was used, and 
models trained on HCT data were more predictive on Arabidopsis when either over- or under-sampling 
was used. Some of these changes in AUC are small and are probably within margins of error, which are 
not estimated. However, I think the clearest indicator of species-specific differences is that models 
trained on human cell lines perform more poorly on Arabidopsis (AUCs around 0.88) than models 
trained on Arabidopsis data (AUCs around 0.94), and vice-versa. 
 
I think the authors can address this issue by changing the text. It is not reasonable to state, as the 
authors do on line 230 of the revised manuscript, that “m6Anet generalises robustly to other cell lines 
and species without a loss in accuracy due to cell type-specific training data”. The AUCs show clearly 
that there is a loss in accuracy due to species-specific training data. Rather than claiming that a single 
model trained on human data provides a “one-size-fits-all” solution that can be applied to any dataset or 
organism, they should recognise that different model weights should be used for different 
circumstances. Where a model or training dataset exists for a specific organism, users could use or train 
a species-specific model that has learned the kmer biases of that organism. When analysing a species for 
which it is not currently possible to train a model, then models which have been trained on closely 
related organisms, or more distantly related organisms but with balanced training data to remove kmer 
bias, might be preferable. Similar solutions have been recommended for nanopore basecalling models, 
where species-specific differences in kmer and/or modification content affect the performance of 
basecalling when models trained in one species are applied to other species (Wick et al., 2019). 
 
My only other comment is that the Arabidopsis datasets are not generated from cell lines, but from 
whole organisms. The authors should replace references in the text to “Arabidopsis cell line” with 
“Arabidopsis accession” when referring to the genetic background (Colombia-0, Col-0), and “Arabidopsis 
mutant” or “Arabidopsis line” when referring to mutants (vir-1) or transgenics (VIRc) respectively. 
 
 
Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore 
sequencing. Genome Biol 20:129. 
 
 
Reviewer #4 (Remarks to the Author): 
 
We have reviewed the revised manuscript “Detection of m6A from direct RNA sequencing using a 
Multiple Instance Learning framework” by Hendra, Göke and colleagues. 
 
Our previous concerns centered around the section entitled "Novel m6Anet predictions are sensitive to 
METTL3 knockout". The authors have answered our specific request for a clearer estimate of the 
resulting precision by leveraging the results of experiments requested by other reviewers. ie. analysis of 
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other species genomes and synthetic RNA molecules in the new section entitled "m6Anet achieves high 
precision among top predicted sites". 
 
Furthermore, the authors also demonstrated in their revision that the neural network is extendable to 
other species and appears not to be overfit on human data. The use of synthetic RNA with known 
modification sites as well as known stoichiometry provides convincing evidence for the benefit of this 
tool. 
 
We note that the authors have added further work with existing tools (eg nanoRMS) despite none of the 
existing tools being based on neural networks. The comparative performance to m6Anet further 
emphasizes our previous impression that m6Anet is a promising application of deep learning in 
genomics and should help pave the way for further method development and optimization. 
 
Given that already the initial manuscript described an novel, interesting and potentially impactful 
application of machine learning methods on nanopore sequencing data and the authors have addressed 
our concerns as well as - from our perspective - those of the other referees satisfactorily, we 
recommend the manuscript for publication. 
 

Author Rebuttal, first revision: 
 

We would like to thank all Reviewers for their positive and helpful comments during the 
revision process. We have made the remaining minor changes as suggested (see below for a 
point-by-point response). In addition, we have made several minor edits to shorten the 
manuscript in response to the editorial request. We also corrected one sentence in the 
Methods, which was accidentally changed during formatting of the last submission. 

 
Reviewer #1 (Remarks to the Author): 

 
The authors have satisfied all of my concerns, especially with the detailed analysis of the 
Arabidopsis data from Parker et al. 

 
 
Reviewer #2 (Remarks to the Author): 

 
The authors have updated the density plots, the Venn diagrams, the code base, and the 
online documentation well, and the cross-species validation data (especially the titration 
data) look good. They have satisfactorily addressed all my concerns. 

 
 
Reviewer #3 (Remarks to the Author): 
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Overall, I would like to commend the authors for their extremely thorough and impressive 
response to the reviewers comments, which were meant constructively! I recommend that the 
paper should be accepted for publication, with a few further clarifications to the text. 

 
The authors have performed a very thorough benchmarking of different over- and under-
sampling strategies to evaluate their dataset. I am not sure that I agree with their 
interpretation of the data, however. It is clear that over- or under-sampling of kmers, so that 
positive and negative training sets have similar distributions, has a negative impact on 
performance when evaluated on the species that the training data is derived from (e.g. 
models trained on HEK293T evaluated on HEK293T or HCT116, or models trained on 
Arabidopsis evaluated on Arabidopsis). This is to be expected as it prevents m6Anet from 
learning/overfitting to the kmer distribution of the organism used for training. In multiple cases 
however, over or under- sampling does improve generalisation when applied to different 
organisms: e.g. models trained on HEK data were more predictive on Arabidopsis when 
undersampling was used, and models trained on HCT data were more predictive on 
Arabidopsis when either over- or 
under-sampling was used. Some of these changes in AUC are small and are probably within 
margins of error, which are not estimated. However, I think the clearest indicator of 
species-specific differences is that models trained on human cell lines perform more poorly 
on Arabidopsis (AUCs around 0.88) than models trained on Arabidopsis data (AUCs around 
0.94), and vice-versa. 

 
I think the authors can address this issue by changing the text. It is not reasonable to state, as 
the authors do on line 230 of the revised manuscript, that “m6Anet generalises robustly to 
other cell lines and species without a loss in accuracy due to cell type-specific training data”. 
The AUCs show clearly that there is a loss in accuracy due to species-specific training data. 
Rather than claiming that a single model trained on human data provides a “one-size-fits-all” 
solution that can be applied to any dataset or organism, they should recognise that different 
model weights should be used for different circumstances. Where a model or training dataset 
exists for a specific organism, users could use or train a species-specific model that has 
learned the kmer biases of that organism. When analysing a species for which it is not 
currently possible to train a model, then models which have been trained on closely related 
organisms, or more distantly related organisms but with 
balanced training data to remove kmer bias, might be preferable. Similar solutions have been 
recommended for nanopore basecalling models, where species-specific differences in kmer 
and/or modification content affect the performance of basecalling when models trained in one 
species are applied to other species (Wick et al., 2019). 

 
Response: 
We thank Reviewer #3 for highlighting this point. We have now changed the sentence and 
claim accordingly. 
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“These data demonstrate that m6Anet generalises robustly to other cell lines without a loss in 

accuracy due to cell type-specific data. While a species-specific model will provide best results, 

in the absence of a species-specific training data, m6Anet still provides accurate predictions 

even when the default human-trained model is used.” 

 
Reviewer #3: 

 
My only other comment is that the Arabidopsis datasets are not generated from cell lines, but 
from whole organisms. The authors should replace references in the text to “Arabidopsis cell 
line” with “Arabidopsis accession” when referring to the genetic background 
(Colombia-0, Col-0), and “Arabidopsis mutant” or “Arabidopsis line” when referring to 
mutants (vir-1) or transgenics (VIRc) respectively. 

 
Response: 
We have now changed the text accordingly as suggested. 

 
Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for 
Oxford Nanopore sequencing. Genome Biol 20:129. 

 
 
Reviewer #4 (Remarks to the Author): 

 
We have reviewed the revised manuscript “Detection of m6A from direct RNA sequencing 
using a Multiple Instance Learning framework” by Hendra, Göke and colleagues. 

 
Our previous concerns centered around the section entitled "Novel m6Anet predictions are 
sensitive to METTL3 knockout". The authors have answered our specific request for a clearer 
estimate of the resulting precision by leveraging the results of experiments requested by other 
reviewers. ie. analysis of other species genomes and synthetic RNA molecules in the new 
section entitled "m6Anet achieves high precision among top predicted sites". 
 
Furthermore, the authors also demonstrated in their revision that the neural network is 
extendable to other species and appears not to be overfit on human data. The use of 
synthetic RNA with known modification sites as well as known stoichiometry provides 
convincing evidence for the benefit of this tool. 

 
We note that the authors have added further work with existing tools (eg nanoRMS) despite 
none of the existing tools being based on neural networks. The comparative performance to 
m6Anet further emphasizes our previous impression that m6Anet is a promising application of 
deep learning in genomics and should help pave the way for further method development and 
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optimization. 
 
Given that already the initial manuscript described an novel, interesting and potentially 
impactful application of machine learning methods on nanopore sequencing data and the 
authors have addressed our concerns as well as - from our perspective - those of the other 
referees satisfactorily, we recommend the manuscript for publication. 

 
Final Decision Letter: 

 
27th Sep 2022  
 
 
Dear Dr Goeke,  
 
I am pleased to inform you that your Article, "Detection of m6A from direct RNA sequencing using a 
Multiple Instance Learning framework", has now been accepted for publication in Nature Methods. Your 
paper is tentatively scheduled for publication in our December print issue, and will be published online 
prior to that. The received and accepted dates will be 7th Sep 2021 and 27th Sep 2022. This note is 
intended to let you know what to expect from us over the next month or so, and to let you know where 
to address any further questions. 
 
Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Methods 
style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 
publishing options for your paper and our Author Services team will be in touch regarding any additional 
information that may be required.  
 
After the grant of rights is completed, you will receive a link to your electronic proof via email with a 
request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet this 
deadline, please inform us at rjsproduction@springernature.com immediately.  
 
You will not receive your proofs until the publishing agreement has been received through our system.  
 
Your paper will now be copyedited to ensure that it conforms to Nature Methods style. Once proofs are 
generated, they will be sent to you electronically and you will be asked to send a corrected version 
within 24 hours. It is extremely important that you let us know now whether you will be difficult to 
contact over the next month. If this is the case, we ask that you send us the contact information (email, 
phone and fax) of someone who will be able to check the proofs and deal with any last-minute 
problems. 
 
If, when you receive your proof, you cannot meet the deadline, please inform us at 
rjsproduction@springernature.com immediately.  
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If you have any questions about our publishing options, costs, Open Access requirements, or our legal 
forms, please contact ASJournals@springernature.com 
 
Once your manuscript is typeset and you have completed the appropriate grant of rights, you will 
receive a link to your electronic proof via email with a request to make any corrections within 48 hours. 
If, when you receive your proof, you cannot meet this deadline, please inform us at 
rjsproduction@springernature.com immediately. 
 
Once your paper has been scheduled for online publication, the Nature press office will be in touch to 
confirm the details.  
 
Content is published online weekly on Mondays and Thursdays, and the embargo is set at 16:00 London 
time (GMT)/11:00 am US Eastern time (EST) on the day of publication. If you need to know the exact 
publication date or when the news embargo will be lifted, please contact our press office after you have 
submitted your proof corrections. Now is the time to inform your Public Relations or Press Office about 
your paper, as they might be interested in promoting its publication. This will allow them time to 
prepare an accurate and satisfactory press release. Include your manuscript tracking number NMETH-
A47051C and the name of the journal, which they will need when they contact our office.  
 
About one week before your paper is published online, we shall be distributing a press release to news 
organizations worldwide, which may include details of your work. We are happy for your institution or 
funding agency to prepare its own press release, but it must mention the embargo date and Nature 
Methods. Our Press Office will contact you closer to the time of publication, but if you or your Press 
Office have any inquiries in the meantime, please contact press@nature.com.  
 
 
Please note that Nature Methods is a Transformative Journal (TJ). Authors may publish their research 
with us through the traditional subscription access route or make their paper immediately open access 
through payment of an article-processing charge (APC). Authors will not be required to make a final 
decision about access to their article until it has been accepted. Find out more about Transformative 
Journals 
 
Authors may need to take specific actions to achieve compliance with funder and institutional open 
access mandates. If your research is supported by a funder that requires immediate open access (e.g. 
according to Plan S principles) then you should select the gold OA route, and we will direct you to the 
compliant route where possible. For authors selecting the subscription publication route, the journal’s 
standard licensing terms will need to be accepted, including self-archiving policies. Those licensing terms 
will supersede any other terms that the author or any third party may assert apply to any version of the 
manuscript. 
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If you have posted a preprint on any preprint server, please ensure that the preprint details are updated 
with a publication reference, including the DOI and a URL to the published version of the article on the 
journal website. 
 
To assist our authors in disseminating their research to the broader community, our SharedIt initiative 
provides you with a unique shareable link that will allow anyone (with or without a subscription) to read 
the published article. Recipients of the link with a subscription will also be able to download and print 
the PDF. As soon as your article is published, you will receive an automated email with your shareable 
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