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Supplementary Figure 1



Supplementary Figure 1. A detailed schematic of STACI.

A graph is constructed for each tissue sample where each node is a cell and the node feature is the gene
expression profile of the cell. Cell adjacencies are represented by an adjacency matrix. The graph
convolutional layer performs a local smoothing operation before passing through a linear layer and leaky
ReLU activation (see Methods). Hidden layers of the graph autoencoder are over-parameterized with
dimensions larger than the input dimension to correct for batch effects. Cell adjacencies are decoded by
the inner product decoder for the adjacency matrix. Gene expression decoder estimates the mean,
dispersion, and dropout rate in a zero-inflated negative binomial distribution that maximizes the
likelihood of the input data. Images are encoded to the latent space through a CNN autoencoder. The
latent space of the CNN autoencoder is matched with the latent space of the graph autoencoder by 𝑙2

loss.
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Supplementary Figure 2. Validation of STACI on four held-out mouse samples shows consistent tissue
segmentation and plaque size distribution in the cortex.

a) The full STACI model with 6000 latent dimensions was applied to the four samples held-out in the

original analysis. All eight samples were clustered using Leiden with a resolution of 0.82.

b) Histograms of plaque size, measured in number of pixels, are plotted for the cortex regions of the two

AD samples. Frequency is normalized by the area of each cortex region. Consistent with the findings in

the original four mice samples, larger plaque sizes are observed in cluster 3 as compared to cluster 1 in

the 8-month held-out AD mouse (p-values: 1.5e-30 for cluster 3 vs cluster 1) and are observed in both

cluster 2 and cluster 3 as compared to cluster 1 in the held-out 13-month AD mouse (p-values: 5.5e-9 for

cluster 3 vs cluster 1 and 6.4e-15 for cluster 2 vs cluster 1). Two-sided T-tests were used to obtain the raw

p-values.
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Supplementary Figure 3. Training and validation loss curves.

Unless otherwise noted, all gene expression profiles are normalized within each cell by min-max scaling
after log2 transformation, and the input adjacency matrix is defined using the 20 nearest neighbors
measured in Euclidean distance. a) Graph convolutional autoencoder, trained with all four samples. b)
Graph convolutional autoencoder without feature decoder, trained with all four samples. c) Graph
convolutional autoencoder without adjacency decoder, trained with all four samples. d)-e) Graph
convolutional autoencoder, trained with all four samples. f) Graph convolutional autoencoder with
additional adversarial loss in the latent space for batch correction, trained with all four samples. g)
Autoencoder with fully connected layers and no adjacency reconstruction loss, trained with all four
samples. h) Graph convolutional autoencoder, trained with all four samples. Adjacency matrix is defined
by 10 nearest neighbors measured in Euclidean distance. i) Graph convolutional autoencoder, trained
with all four samples. j) Graph convolutional autoencoder, trained on 13-months control sample. k)
Graph convolutional autoencoder with additional adversarial loss in the latent space for batch
correction, trained with all four samples. l) Autoencoder with fully connected layers and with adjacency
reconstruction loss, trained with all four samples. m) Graph convolutional autoencoder with negative
binomial loss for the feature decoder, i.e. without dropout term, trained with all four samples. n) Graph
convolutional autoencoder, trained on 13-months control sample. Feature decoder reconstructs the
input gene expression matrix directly. Mean squared error loss for the feature decoder is used. o) Graph
convolutional autoencoder with physical distance threshold for the adjacency matrix, trained with all
four samples. The maximum distance between two neighboring cells in each sample is 8 times the
minimum cell to cell distance in the sample (approximately 36.4 µm in the 13-montsh control sample). p)
Graph convolutional autoencoder, trained with all four samples. Gene expression is normalized by
z-score normalization of each gene. q) Autoencoder with fully connected layers and no adjacency
reconstruction loss, trained with all four samples. r) Autoencoder with fully connected layers and no
adjacency reconstruction loss, trained with all four samples. Gene expression is normalized by z-score
normalization of each gene and batch corrected as in Zeng et al.1 s) Graph convolutional autoencoder,
trained with the 13-months control sample. Instead of a shared linear layer between the latent
representation and the decoder layers for each parameter, separate linear layers are used for each
parameter. t) Graph convolutional autoencoder, trained with the 13-months control sample. A single
dropout rate is inferred for each gene in each sample, instead of the cell by gene matrix of dropout rate
as in the previous models. u) Graph convolutional autoencoder, trained with the 13-months control
sample. A single dropout rate is inferred for each sample. v) Graph convolutional autoencoder, trained
with the 13-months control sample. A single dispersion value for the ZINB model is inferred for each
gene in each sample, instead of a dispersion matrix over all genes as in the previous models.

https://www.zotero.org/google-docs/?XUaNxW
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Supplementary Figure 4. Comparisons of the clustering results of our full model to different variants of
our model.

a) Graph convolutional autoencoder, trained with all four samples (full model). Adjacency matrix is
defined using the 10 nearest neighbors measured in Euclidean distance. Latent size is 3072. Cells are
colored and numbered by cluster identity.

b) Subclustering of the DG cluster in the full model. Graph convolutional autoencoder, trained with all
four samples. Adjacency matrix is defined using the 20 nearest neighbors measured in Euclidean
distance. Latent size is 6000. UMAP: cells are colored by tissue samples. Plots with cells in physical
coordinates are colored by cluster identity.

c) Graph convolutional autoencoder without adjacency decoder, trained with all four samples.
Adjacency matrix is defined using the 20 nearest neighbors measured in Euclidean distance. Latent
size is 6000. Cells are colored by cluster identity.

d) Two local smoothing operations (i.e. convolutions) of the graph without training of the autoencoder.
In each smoothing operation, each node is updated by the weighted average of its neighbors and
itself, with weights defined by the adjacency matrix.

e) Fully connected encoder with both the adjacency decoder and the feature decoder, trained with all
four samples. Adjacency matrix is defined using the 20 nearest neighbors measured in Euclidean
distance. Latent space size is 1024.

f) Graph convolutional autoencoder with the feature decoder modeling a negative binomial
distribution without zero inflation. Adjacency matrix is defined using the 20 nearest neighbors
measured in Euclidean distance. Latent space size is 1024.
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Supplementary Figure 5. Cell type composition and UMAPs of clusters of latent representations.
Cell type composition of clusters of latent representations in (a) autoencoder model with fully connected
encoder and without using the adjacency matrix; (b) full graph convolutional autoencoder model. Each
row is normalized to sum to 1. Input gene expression was normalized by min-max scaling of log2
transformed counts. Both models are over-parameterized with latent sizes of 5000 (a) and 6000 (b).
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Supplementary Figure 6. Over-parameterization corrects for batch effects by stretching the data along
the direction of the top principal components.

Left: autoencoder schematic with the latent dimension size. UMAPs: latent representations colored by
tissue samples. Cluster composition: number of cells in each cluster and each tissue sample normalized
by rows (left) or columns (right) to sum up to 1 in the rows or columns. Darker color indicates higher
fraction. Right: (top) Variance of the latent representations explained by the top 60 principal
components; (bottom) The first principal components that lead to separation of cells by cell types (left)
and tissue samples (right).

a)-d) Graph convolutional autoencoders with both gene expression and cell location as the input and the
output (full model). e) Fully connected encoder with only gene expression as the input and the output.
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Supplementary Figure 7. Over-parameterization consistently removes batch effects with different
clustering methods and parameters.

a) Quantification of mixing of cells from different STARmap samples in the under-parameterized latent

space and the over-parameterized latent space for each cluster. Each dot represents the score of one

cluster. The numbers (0.1 or 0.2) indicate the clustering resolutions while all other clustering parameters

are kept the same. Left: average silhouette width. Right: entropy of mixing. For both metrics, higher

score means better mixing and less batch effects. Cells were from four mice with at least 7257 cells each.

Bounds of boxes in the boxplots indicate quartiles. Whiskers extend from the bounds of boxes by 1.5

times the interquartile range. Outlier dots are those that pass the end of the whiskers.

b) Leiden clustering of the latent space of our over-parameterized model with a latent dimension of 6000

and clustering resolution of 0.05. Each dot is a cell plotted with its physical coordinates in the tissue and

colored by the cluster identity. 20 nearest neighbor graph is used as the adjacency.

c) Leiden clustering of the same model as in b) with a clustering resolution of 0.18.

d) Cells from the same cluster (blue) using our model without over-parameterization correspond to

different regions in 13-month control (left) and 13-month AD (right). The latent dimension of this model

is 1024. The results of two different clustering resolutions are shown.

e) k-means clustering of the over-parameterized model in b) also results in consistent separation of all

samples into different cortex regions, CA, and DG.

f) k-means clustering of the under-parameterized model in d) results in some cells from the cortex, CA,

and DG being grouped into the same cluster.
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Supplementary Figure 8. Over-parameterization consistently removes batch effects using hierarchical
clustering with different linkages.

a) Hierarchical clustering of the latent space of our over-parameterized model with a latent dimension of

6000 and ward linkage. Each dot is a cell plotted with its physical coordinates in the tissue and colored by

the cluster identity. 20 nearest neighbor graph is used as the adjacency.

b) Hierarchical clustering of the latent space of our under-parameterized model with a latent dimension

of 1024 and ward linkage. Each dot is a cell plotted with its physical coordinates in the tissue and colored

by the cluster identity. 20 nearest neighbor graph is used as the adjacency. The under-parameterized

model is less consistent with the known anatomical regions and results in some cells of the cortex and

DG in the same cluster.

c) Hierarchical clustering of the same model as in a) with complete linkage.

d) Hierarchical clustering of the same model as in a) with average linkage.



Discriminator of samples

8-months control
8-months AD
13-months control
13-months AD

Autoencoder 
update

Discriminator 
update

Decision boundary

Sample 
separation in 
latent space

Discriminator output

Discriminator 
learns sample 

differences

Autoencoder 
update

Autoencoder penalized for 
separating samples by the 

discriminator’s decision boundary

UMAP of 4 slices

8-month control 8-month AD 13-month control 13-month AD

6 668

(a) (b)

(c) (d)

(e)

Supplementary Figure 9



Supplementary Figure 9. Batch correction with adversarial loss in the latent space.

a) A discriminator is trained to distinguish which tissue sample the input latent representation belongs
to. b) Number of cells in each cluster and each tissue sample normalized by rows (left) and columns
(right). Darker color indicates higher fraction. Latent dimension is 1024. c) Schematic of the training
procedure which alternates between autoencoder update and discriminator update at each epoch. The
discriminator was trained to correctly classify cells by their tissue samples. Autoencoder was trained to
confuse the discriminator by assigning equal probability to each tissue sample. d) UMAP of the latent
representation of the same model as in b). e) Cells plotted by physical coordinates in tissue and colored
by Leiden clusters.
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Supplementary Figure 10. Validation of STACI on 10x Visium dataset of 12 mouse brain coronal
sections2.

a) Clustering of gene expression provided on the 10x website2.

b) Leiden clustering of STACI latent space without using cell adjacency as input and with a latent

dimension of 30000. The clustering resolution is 0.4.

c) Leiden clustering of the full STACI model with a latent dimension of 30000. The clustering resolution is

0.4. This clustering result shows consistent tissue segmentation across all samples and is consistent with

known anatomical regions of mouse brains. In contrast, other existing methods for the analysis of spatial

transcriptomics data result in having spots from different anatomical regions in the same clusters. For

example, the tutorial of stLearn3 also shows an application to 10x Visium data of mouse brain coronal

sections (https://stlearn.readthedocs.io/en/latest/tutorials/stSME_clustering.html), but one cluster

contains cells from the hippocampus region, isocortex, olfactory areas, and cortical subplate (cluster 18)

and another cluster contains spots from both hypothalamus and cerebral nuclei (cluster 4). The Giotto

package’s implementation of HMRF4 also demonstrates the results on 10x Visium data of mouse brain

coronal sections (https://rubd.github.io/Giotto_site/articles/mouse_visium_brain_201226.html). While

the accuracy and resolution of the spatial domains identified by HMRF and STACI are mostly comparable,

some HMRF domains contain spots from different known anatomical regions of the brain in the same

domains; for example, domain 16 contains cells from both inside and outside of the hypothalamus.

Similarly, MUSE5, another existing method for the analysis of spatial transcriptomics data, shows mixing

of cells from different brain regions into the same cluster (see Figure 6e5); for example, clusters 1, 4, and

15 show mixing of cells from the isocortex (CTX), hypothalamus (HY), and olfactory area (OLF), and

cluster 0 contains a mixture of cells from the hippocampus and various other regions.

https://www.zotero.org/google-docs/?GuVuWh
https://www.zotero.org/google-docs/?1BloON
https://www.zotero.org/google-docs/?RufgVK
https://www.zotero.org/google-docs/?n4OFHz
https://www.zotero.org/google-docs/?HMTgoP
https://www.zotero.org/google-docs/?T1srP1
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Supplementary Figure 11. Segmentation of the hippocampus regions according to the clustering of

gene expression provided on the 10x website2.

Cells in cluster 5 or cluster 14 are colored blue in the respective plots.

https://www.zotero.org/google-docs/?pFkDNK
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Supplementary Figure 12. Segmentation of the hippocampus regions according to the clustering in the
latent space of the full STACI model with a latent dimension of 30000.

Cells in cluster 11 or cluster 3 are colored blue in the respective plots.



a. Underparameterized model with standard preprocessing and batch correction

2.5 month WT rep1 2.5 month WT rep2 5.7 month WT rep1 13.4 month WT rep25.7 month WT rep2 13.4 month WT rep1

2.5 month WT rep1 2.5 month WT rep2 5.7 month WT rep1 13.4 month WT rep25.7 month WT rep2 13.4 month WT rep1

2.5 month AD rep1 2.5 month AD rep2 5.7 month AD rep1 17.9 month AD rep25.7 month AD rep2 17.9 month AD rep1

b. Cells in cluster 0 (blue) of the underparameterized model with standard processing
2.5 month AD rep1 2.5 month AD rep2 5.7 month AD rep1 17.9 month AD rep25.7 month AD rep2 17.9 month AD rep1

(c)

Supplementary Figure 13



Supplementary Figure 13. Application of under-parameterized STACI model on 10x Visium dataset of

12 mouse brain coronal sections1, where the gene expression data was pre-processed by mutual

nearest neighbors (MNN)2 for batch effect removal.

a) Leiden clustering (with a resolution of 0.8) of the resulting latent space when training an
under-parameterized STACI model with a latent dimension size of 32 and 17,186 input genes. Before
using the pre-processed data in the autoencoder model, we applied library-size normalization, log
transformation, and selected highly variable genes as the input to the MNN batch correction method as
described in the MNN paper2.
b) Cells in cluster 0 of the clustering result described in a) are highlighted in blue, all other cells are
colored in orange, showing that the tissue regions included in cluster 0 are not consistent across the
different samples and that cluster 0 does not correspond to a well-defined anatomical region in any of
the samples.
c) A reference slice from the Allen Mouse Brain Atlas and Allen Reference Atlas - Mouse Brain7 showing
approximately the same anatomical region as in the 10x Visium data.

https://www.zotero.org/google-docs/?H0LjzV
https://www.zotero.org/google-docs/?bQwnYd
https://www.zotero.org/google-docs/?KFkTyu
https://www.zotero.org/google-docs/?pncz1Q
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Supplementary Figure 14. The CPU and GPU usage of training STACI for 6 epochs based on the 12 10x

Visium samples of mouse brain coronal sections.

Two different usage samples at different epoch numbers are provided. The table lists the top ten
functions by the total CUDA time (“self_cuda_time_total”).
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Supplementary Figure 15. Examples of input chromatin images to the CNN autoencoder and the
corresponding reconstructed images. This is the result of the STACI model with over-parameterization
and latent space matching of gene expression, cell adjacencies, and chromatin images (latent size =
5000). Only the 13-month samples were used in training of both, the graph autoencoder for gene
expression and cell adjacencies as well as the CNN autoencoder for chromatin images. Each panel
contains one representative example of an input chromatin image and the corresponding reconstruction
from one of the four mice samples as listed below. Each mouse sample contains at least 7257 cells.
a) 8-months control cluster 1; b) 8-months control cluster 3; c) 8-months AD cluster 1; d) 8-months AD
cluster 3; e) 13-months control cluster 1; f) 13-months control cluster 3; g) 13-months AD cluster 1; h)
13-months AD cluster 3.
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Supplementary Figure 16. Examples of input chromatin images to the CNN autoencoder and the

corresponding reconstructed images. There is no latent space matching with the graph autoencoder. All

samples were used in training the CNN autoencoder. Each panel contains one representative example of

an input chromatin image and the corresponding reconstruction from one of the four mice samples as

listed below. Each mouse sample contains at least 7257 cells.

a) 8-months control cluster 1; b) 8-months control cluster 3; c) 8-months AD cluster 1; d) 8-months AD
cluster 3; e) 13-months control cluster 1; f) 13-months control cluster 3; g) 13-months AD cluster 1; h)
13-months AD cluster 3.
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Supplementary Figure 17. Joint latent space allows for the translation of chromatin images of a new
sample to gene expression.

a) Cell type composition in each cluster of the predicted gene expression in the 8-months control
sample as annotated by Zeng et al.1 (middle). The clusters of predicted gene expression profiles were
plotted by the cell locations in the 8-months control sample (right). Excitatory neurons (excluding
CA1, CA2, CA3), DG, and oligodendrocytes in the corpus callosum are included in the clustering to
represent major neuronal and glial cell types. All tissue samples were used in the clustering.

b) Cell type composition in each cluster of the predicted gene expression profiles in the 8-months
control sample as annotated by Zeng et al.1. All cells in all tissue samples were used in the clustering.

c) Cell type composition in each cluster of the predicted gene expression profiles as annotated by Zeng
et al.1. Excitatory neurons (excluding CA1, CA2, CA3), dentate gyrus (DG), and oligodendrocytes
(Oligo) in the corpus callosum are included in the clustering to represent major neuronal and glial
cell types. This is the same clustering as a).

d) Top: Predicted expression of known cell type markers in each cluster of predicted gene expression
profiles. This is the same clustering as a). All samples are included in the plot. *: differentially
expressed cluster markers for each cell type; p-val < 0.05 and fold change > 1.1. Bottom: True gene
expression of known cell type markers in each cluster of predicted gene expression profiles. All
samples are included in the plot.

https://www.zotero.org/google-docs/?jTrstk
https://www.zotero.org/google-docs/?MV7MSy
https://www.zotero.org/google-docs/?TOFqso
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Supplementary Figure 18. Regression analysis of the joint latent representation predicts plaque size
near cells and identifies disease progression across the cortex.

a) The joint latent representation of gene expression, cell adjacencies, and chromatin images are used
as the input to a regression model to predict the presence and size of nearby plaque. Plaque images
are preprocessed with a size threshold of 1111 pixels. The gradient of the regression output was
calculated with respect to the input chromatin images.

b) Training and validation accuracies of the regression model trained with cluster 3 in the 13-months
control and AD samples (see Supplementary Table, model #18).

c) Training and test classification errors in the cortex regions of 13-months samples. The regression
model trained on cluster 3 can be generalized to cluster 1 but cannot be overfitted to distinguish
positive and negative samples in cluster 3 (see Supplementary Table, model #18).

d) Positive (blue circle) and negative (green triangle) cells plotted at their locations in tissue samples.
Black means wrong classification. White means correct classification.
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Supplementary Figure 19. Differential expression analysis of cells close to and far from plaques.
Positive cells (pos) close to plaques and negative cells (neg) far from plaques are defined as in the
regression model. A cell is positive if there is plaque within the 75.68 µm x 75.68 µm image patch
centered at the cell. All cells in the control samples are used as negative cells at the two time points. All
cells: cells from all three cortex clusters (1, 2, 3) are combined for DE analysis. Statistical significance was
defined as p-value < 0.05 after correction by Benjamini-Hochberg procedure8 and fold change of at least
10% in either direction. At most 25 up-regulated and 25 down-regulated genes with smallest p-values
are shown. Ex: excitatory neuron; Micro: microglia; Oligo: oligodendrocyte.

https://www.zotero.org/google-docs/?iToGsK
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Supplementary Figure 20. Example of 3D segmentation of some z positions at the same x-y location.
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Supplementary Figure 21. Average regression gradient of each cell type in different cortex clusters.

Each plot contains cells from two mice with at least 7257 cells each. Bounds of boxes in the boxplots
indicate quartiles. Whiskers indicate minima and maxima. Cell types are labeled as Ex: excitatory neuron;
Micro: microglia; Inhi: inhibitory neuron; Endo: endothelial cell; Astro: astrocytes; OPC: oligodendrocyte
precursor cell; SMC: smooth muscle cell.
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Supplementary Figure 22. Heterochromatin ratio of each cell type in different cortex clusters.

Each plot contains cells from two mice with at least 7257 cells each. Bounds of boxes in the boxplots
indicate quartiles. Whiskers indicate minima and maxima. Cell types are labeled as Ex: excitatory neuron;
Micro: microglia; Inhi: inhibitory neuron; Endo: endothelial cell; Astro: astrocytes; OPC: oligodendrocyte
precursor cell; SMC: smooth muscle cell.
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Supplementary Figure 23. Linear regression of heterochromatin ratio with respect to log2 average
gradient.

a) Heatmaps colored by the slope of linear regression of heterochromatin ratio vs log2 average gradient
of each cell type in each cortex cluster. Numbers are p-values of the regression analysis.

b) Heterochromatin ratio vs log2 average gradient of cells in the cortex clusters of the 8-months AD
sample. Red line fitted with linear regression analysis. P-values are calculated by two-sided Wald Test and
the null hypothesis that the slope is 0.

c) Heterochromatin ratio vs log2 average gradient of cells in the cortex clusters of the 13-months AD
sample. Red line fitted with linear regression analysis. P-values are calculated by two-sided Wald Test and
the null hypothesis that the slope is 0.
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Supplementary Figure 24. Chromatin condensation is indicative of the impacts of amyloid plaque on
cells.

All plots are for oligodendrocytes in the different clusters at the two different time points.

Row 1 and 3: histograms of pixel intensities in all oligodendrocytes of the specific cortex cluster at each
time point, normalized to sum to 1. Red line: lower threshold of heterochromatin pixels (see Methods).
Pie charts: cells grouped into four quadrants by heterochromatin ratio (threshold at 0.8) and log average
gradient (threshold at 6.7). The sizes of the pie charts are proportional to the fraction of cells in each
quadrant with respect to all four quadrants in the same clusters. The angles in the pie charts are
proportional to the fraction of each subtype in each quadrant.
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Supplementary Figure 25. Chromatin condensation is indicative of the impacts of amyloid plaque on
cells.

All plots are for excitatory neurons in the different clusters at the two different time points.

Row 1 and 3: histograms of pixel intensities in all excitatory neurons of the specific cortex cluster at each
time point, normalized to sum to 1. Red line: lower threshold of heterochromatin pixels (see Methods).
Pie charts: cells grouped into four quadrants by heterochromatin ratio (threshold at 0.5) and log average
gradient (threshold at 6.5). The sizes of the pie charts are proportional to the fraction of cells in each
quadrant with respect to all four quadrants in the same clusters. The angles in the pie charts are
proportional to the fraction of each subtype in each quadrant.
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Supplementary Figure 26. Histograms of chromatin pixel intensities in all cells of each cell type in the
specific cortex cluster at each time point, normalized to sum to 1.
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Supplementary Figure 27. Cells are grouped into four quadrants by heterochromatin ratio (threshold at
0.5 for excitatory neurons and 0.8 for others) and log average gradient (threshold at 6.5 for excitatory
neurons and 6.7 for others). The sizes of the pie charts are proportional to the fraction of cells in each
quadrant with respect to all four quadrants in the same clusters. The angles in the pie charts are
proportional to the fraction of each subtype in each quadrant.
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Supplementary Figure 28. Fractions of microglia (Micro), oligodendrocytes (Oligo), and excitatory
neurons (Ex) among all cell types in each cluster.
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Supplementary Figure 29. Differential expression analysis of the three cortex regions identified by 
STACI.

Statistical significance was defined as p-value < 0.05 after correction by Benjamini-Hochberg procedure8 

and fold change of at least 10% in either direction. Raw p-values were calculated using the Wilcoxon 

rank-sum test. At most 15 differentially expressed genes with smallest p-values are shown. The exact p-

values of all differentially expressed genes are provided in Supplementary Dataset 2.

https://www.zotero.org/google-docs/?ShAk5t
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