Supporting Information

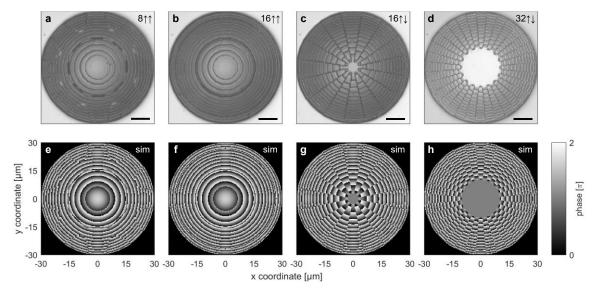
Fiber-based 3D nano-printed holography with individually phase-engineered remote points

Malte Plidschun¹, Matthias Zeisberger¹, Jisoo Kim^{1,2}, Torsten Wieduwilt¹, and Markus A. Schmidt^{1,2,3,*}

¹Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany

²Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany

³Otto Schott Institute of Materials Research (OSIM), Friedrich-Schiller-University Jena, Fraunhoferstr. 6, 07743 Jena, Germany


*markus.schmidt@leibniz-ipht.de

Overview of implemented holograms

Table S1. Considered scenarios of discrete 3D multi-focus holograms with different inter-focal distances Λ and in- and opposite-phase configurations.

name of scenario	number of foci	inter-focal distance $[d_{\min}]$	phase symmetry	shown in Figure
linear dual-focus	2	2 (0.5 NA)	↑ ↑	2a,i, 3a,e,i
			↑↓	2e,m
		4/3 (0.5 NA)	↑ ↑	2b,j
			↑↓	2f,n
		2/3 (0.5 NA)	↑ ↑	2c,k, 3b,f,j
			↑↓	2g,o, 3c,g,k
circular multi-focus	8	2 (0.5 NA)	↑ ↑	4a,e,i
	16	4/3 (0.5 NA)	↑ ↑	4b,f,j
			↑↓	4c,g,k
	32	2/3 (0.5 NA)	¢↓	4d,h,l

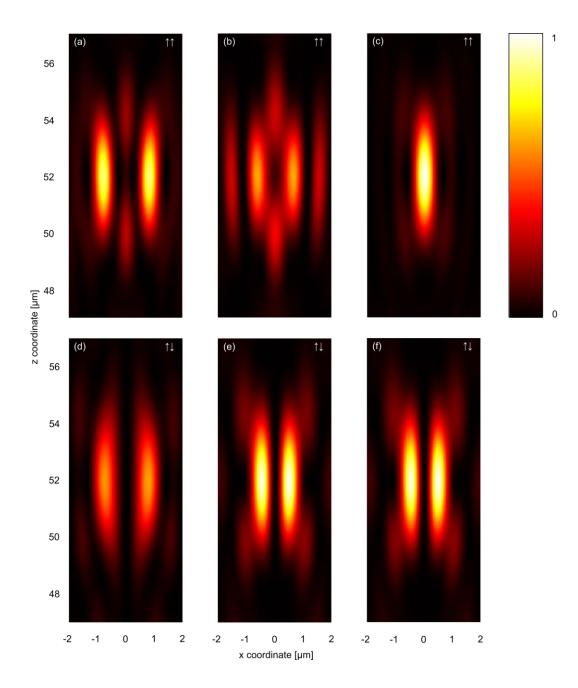
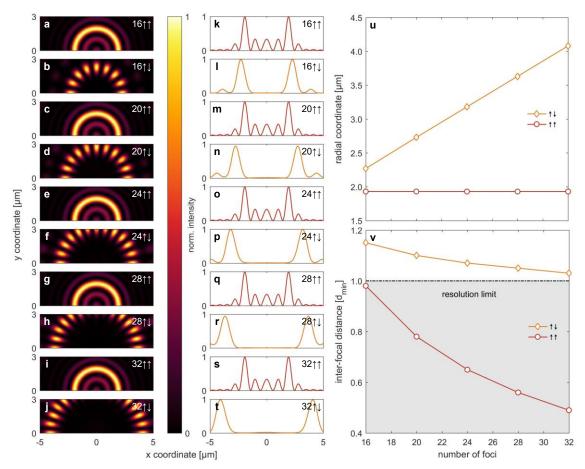

3D fiber multi-focus	192	2.5 (mixed NA)	↑ ↑	5
	142	(0.6 NA)	↑ ↑	5c,d
	50	(0.4 NA)	↑ ↑	5e,f

Figure S1. (a)–(d) Selected examples of implemented holograms and (e)–(h) simulated phase distributions in the aperture plane for the situation where a discrete number of foci are located on an annulus of circumference $C = 16 d_{\min}$. Each column refers to a different configuration (from left to right): (a), (e) N = 8, $\Lambda = 2 d_{\min}$, $\uparrow\uparrow$; (b), (f) N = 16, $\Lambda = 4/3 d_{\min}$, $\uparrow\uparrow$; (c), (g) N = 16, $\Lambda = 4/3 d_{\min}$, $\uparrow\downarrow$; (d), (h) N = 32, $\Lambda = 2/3 d_{\min}$, $\uparrow\downarrow$. The scale bars in the top row refer to 10 µm.

Focus fields in the xz-plane

As a complement to the intensity distributions of the dual focus arrangements in the *xy*-plane which are shown in Fig. 2 (i-k, m-o) the related distributions in the *xz*-plane are shown in Fig. S2.


Figure S2. Comparison of simulated intensity distributions in the xz-plane near the axial focal distance ($f=52 \ \mu m$) for the situation of two foci (N=2). The designed lateral distances between the two foci are $\Lambda = 2 \ d_{min}$ (a,d), $\Lambda = 4/3 \ d_{min}$ (b,e), and $\Lambda = 2/3 \ d_{min}$ (c, f). The upper row (a-c) shows the result for the foci being in phase ($\uparrow\uparrow$), the lower row for the out off phase ($\uparrow\downarrow$) case. Intensities are normalized in the same way as in Fig. 2 of the main text.

Focal shift to larger radii

All configurations presented in Fig. 4 of the main text were designed using Eq. (1) to have the foci located on a circle of radius $r = 2 \mu m$ in the focal plane. The simulation and the measurements of the associated intensity distributions correspond well to this design parameter for N = 8 and N = 16 foci. For N = 32 foci with alternating phases, however, the foci are shifted to much larger radii of $r = 4 \mu m$. To understand this effect in more detail, we performed simulations for several numbers of foci between N = 16 and N = 32 in the in- and opposite-phase configuration. All other parameters are identical to those previously used. The results are presented in Fig. 7.

For the in-phase scenario, the data clearly shows that the foci are merging but are still located approximately at the designed radius of $r = 2 \mu m$. In the opposite-phase configuration, however, the foci are gradually shifted to larger radii with increasing N. Figure 7u shows the radial positions for the different cases, and Figure 7v shows the inter-focal distance of adjacent foci in units of the resolution limit $d_{\min} = 777 \text{ nm}$.

It is remarkable to note that for the opposite-phase configurations, the inter-focal distance always corresponds to approximately d_{\min} . Our interpretation of this effect is as follows: For N > 16, the inter-focal distance d of adjacent foci at radius $r = 2 \ \mu m$ is $d < d_{\min}$. In the in-phase configuration, this leads to a merging of the foci into one circular focus. However, in the opposite-phase scenario, such a small distance of foci with opposite phases results in destructive interference. This leads to a shift of the foci to larger radii where they are still well separated $(d \cong d_{\min})$.

Figure S3. (a)–(j) Simulated intensity distribution within a cut-out of the *xy*-plane at focal distance (z = f) for several numbers N = 20...32 of foci in the in- and opposite-phase configuration and (k)–(t) intensity along a line at y = 0. (u) Radial positions of the foci and (v) inter-focal distances of adjacent foci in units of the resolution limit $d_{\min} = 777$ nm for the different scenarios.