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1.	LAF-1	amino	acid	sequence	and	RGG	sequence	properties	

The	 LAF-1	 gene	was	 codon	 optimized	 for	 E.	 coli,	 synthesized	 by	 GenScript,	 and	 inserted	 in	 a	 pET28a	
backbone	 with	 a	 N-terminal	 6×-His	 tag.	 The	 amino	 acid	 sequence	 of	 LAF-1	 is	 listed	 below.	 The	
theoretical	pI	is	6.60.	The	intrinsically	disordered	RGG	region	lies	between	residues	Met1	to	Gly168,	and	
is	bolded	and	underline	in	the	sequence	below.	For	a	full	linear	sequence	analysis	see	Fig.	S13.	Sequence	
analysis	was	performed	using	 localCIDER1.	Here,	polar	residues	are	shown	 in	green;	positively	charged	
are	 shown	 in	 blue;	 negatively	 charged	 are	 shown	 in	 red;	 hydrophobic	 are	 shown	 in	 black;	 aromatic	
residues	are	shown	in	orange.		
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1   MESNQSNNGG SGNAALNRGG RYVPPHLRGG DGGAAAAASA GGDDRRGGAG 
51  GGGYRRGGGN SGGGGGGGYD RGYNDNRDDR DNRGGSGGYG RDRNYEDRGY 
101 NGGGGGGGNR GYNNNRGGGG GGYNRQDRGD GGSSNFSRGG YNNRDEGSDN  
151 RGSGRSYNND RRDNGGDGQN TRWNNLDAPP SRGTSKWENR GARDERIEQE  
201 LFSGQLSGIN FDKYEEIPVE ATGDDVPQPI SLFSDLSLHE WIEENIKTAG  
251 YDRPTPVQKY SIPALQGGRD LMSCAQTGSG KTAAFLVPLV NAILQDGPDA  
301 VHRSVTSSGG RKKQYPSALV LSPTRELSLQ IFNESRKFAY RTPITSALLY  
351 GGRENYKDQI HKLRLGCHIL IATPGRLIDV MDQGLIGMEG CRYLVLDEAD  
401 RMLDMGFEPQ IRQIVECNRM PSKEERITAM FSATFPKEIQ LLAQDFLKEN  
451 YVFLAVGRVG STSENIMQKI VWVEEDEKRS YLMDLLDATG DSSLTLVFVE  
501 TKRGASDLAY YLNRQNYEVV TIHGDLKQFE REKHLDLFRT GTAPILVATA  
551 VAARGLDIPN VKHVINYDLP SDVDEYVHRI GRTGRVGNVG LATSFFNDKN  
601 RNIARELMDL IVEANQELPD WLEGMSGDMR SGGGYRGRGG RGNGQRFGGR  
651 DHRYQGGSGN GGGGNGGGGG FGGGGQRSGG GGGFQSGGGG GRQQQQQQRA  
701 QPQQDWWS 
 

2.	Numerical	construction	of	binodals	based	on	Muthukumar’s	theory	for	polymers	 in	semi-
dilute	solutions	

	 We	 identified	 a	 theoretical	 framework	 that	 is	 able	 to	 reproduce	 the	 unusual	 features	 of	
measured	 binodals2.	 This	 allowed	 us	 to	 uncover	 the	 physical	 underpinnings	 which	 give	 rise	 to	 the	
measured	 binodals	 for	 the	 RGG	 domain	 and	 for	 LAF-1	 in	 the	 presence	 and	 absence	 of	 RNA.	 Our	
numerical	 approach	 rests	 on	 fitting	 binodals	 computed	 using	 Muthukumar’s	 theory	 for	 semi-dilute	
polymer	solutions2	 to	the	measured	binodals.	This	numerical	analysis	 takes	the	measured	B2	values	as	

inputs,	 converts	 these	 to	 Flory	 χ-values,	 and	 extracts	 free	 parameters	 in	 Muthukumar’s	 theory	 that	

include	 the	 values	 for	w	 and	 the	 χ-dependent	 values	 of	 ξ,	 such	 that	 the	 parameter	 estimates	 yield	
theoretical	 binodals	 that	match	 the	 experimentally	measured	 ones.	Our	 use	 of	Muthukumar’s	 theory	
was	 mandated	 by	 our	 failure	 to	 reproduce	 even	 qualitative	 trends	 of	 measured	 binodals	 when	 we	
calculated	 binodals	 using	 the	 simple	 mean-field	 Flory-Huggins	 expression	 for	 describing	 the	
thermodynamics	of	polymer	solutions3	(see	Fig.	S6).	The	inclusion	of	a	three-body	interaction	term	with	
the	 conventional	 Flory-Huggins	 free	 energy	 of	mixing4	 yields	 theoretical	 binodals	with	 narrower	 two-
phase	regimes	when	compared	to	the	form	of	the	theory	that	ignores	three-body	interactions.	Although	
this	 behavior	 trends	 in	 the	 right	 direction,	 there	 are	 several	 features	 of	 the	measured	 binodals	 that	
cannot	 be	 accounted	 for	 without	 further	 generalizations.	 These	 include,	 the	 surprisingly	 low	 volume	
fractions	associated	with	high	 concentration	arms	of	measured	binodals,	 the	 invariance	of	 the	 critical	
point	 of	 LAF-1	 to	 the	 addition	 of	 RNA,	 near	 coincidence	 of	 the	 low	 and	 high	 concentration	 arms	 of	
binodals	for	LAF-1	and	RGG	in	the	absence	of	RNA	with	a	lowering	of	the	critical	point	for	RGG,	and	the	
independent	movement	of	the	high	concentration	arms	of	LAF-1	binodals	that	were	measured	upon	the	
addition	 of	 RNA.	 These	 features	 cannot	 be	 reproduced	 in	 simple	 mean	 field	 theories	 that	 ignore	
conformational	 and	 chain	 density	 fluctuations,	 which	 are	 the	 characteristic	 hallmarks	 of	 polymers	 in	
semi-dilute	 solutions.	 The	 full	 expression	 for	 the	 free	energy	of	mixing	 in	Muthukumar’s	 theory2	 is	 as	
follows:	
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	 Here,	φ	is	the	volume	fraction	(concentration)	of	the	polymer	in	question,	r	is	the	chain	length,	χ	
(which	 is	 proportional	 to	 the	 second	 virial	 coefficient	 B2),	 is	 the	 dimensionless	 Flory	 interaction	
parameter	 that	 quantifies	 the	 effective	 strengths	 of	 two-body	 interactions,	 w	 is	 a	 dimensionless	
coefficient	that	quantifies	the	effective	strengths	of	 three-body	 interactions	and	 is	proportional	 to	the	

third	 virial	 coefficient,	gξ	 is	 proportional	 to	ξ , 	 and	 it	 quantifies	 the	effective	number	of	 residues	 that	

contribute	to	correlation	length,	and	the	swelling	ratio	α	quantifies	the	ratio	of	the	chain	dimensions	in	
the	 dense	 droplet	 phase	 to	 the	 corresponding	 dimensions	 in	 the	 coexisting	 dispersed	 phase.	 We	
calculated	 binodals	 from	Muthukumar’s	 definition	 of	 the	 free	 energy	 of	 mixing,	 in	 conjunction	 with	
appropriate	 system-specific	 parameters,	 to	 construct	 binodals	 that	 best	 fit	 the	 experimental	 binodals	
that	are	associated	with	each	of	the	five	systems	(LAF-1,	LAF-1	+	3k	poly-rA,	LAF-1	+	30	poly-rA,	LAF-1	+	

15	poly-rA,	 and	RGG).	 The	 fitting	procedure	 involved	using	 experimentally	 derived	parameters	 (i.e.,	φ	
and	χ),	setting	α	to	1.0	and	calculating	the	χ-dependent	values	of	gξ.	Our	approach	allows	us	to	perform	
a	single	parameter	fit	to	obtain	the	value	of	w	for	each	of	the	five	systems.	Since	the	theory	is	laid	out	in	
terms	 of	 volume	 fractions,	 we	 first	 converted	 protein	 mass	 concentrations	 (mg/ml)	 into	 volume	

fractions	(φ)	using	a	density	conversion	factor	ρ0.		
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Here,	c	is	the	mass	concentration	of	protein,	Mm	is	the	average	mass	of	an	amino	acid	(110	g/mol),	vm	is	

the	average	 volume	occupied	by	an	amino	acid	 (140	Å3),	NA	 is	Avogadro’s	number,	 and	ρ0	 is	 1310.16	
mg/mL.	Using	a	 single	density	 factor	 is	erroneous	because	 it	 implies	 that	 the	densities	 in	 the	 low	and	
high	 concentration	 regimes	 are	 the	 same.	 This	 error	 is	 corrected	 by	 applying	 two	 separate	 constant	
offsets	to	the	calculated	low	and	high	concentration	arms	of	the	binodals,	which	is	also	useful	in	that	our	
analysis	 yields	 predictions	 regarding	 densities	 within	 the	 dispersed	 versus	 droplet	 phases	 for	 each	
construct.		

	 We	converted	the	measured	B2	values	into	χ	using	the	following	expression4		
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Here,	M2	is	the	mass	of	polymer	(in	kg/mol),	r	is	the	degree	of	polymerization	(which	we	set	to	
be	the	number	of	residues),	and	!!	is	the	partial	molar	volume	of	a	monomer	unit,	which	we	define	as	

0.018	L/mol.	Note	that	the	exact	value	of	the	partial	molar	volume	is	inconsequential	since	we	assume	
the	 same	 number	 for	 all	 constructs.	 This	 facilitates	 a	 direct	 conversion	 between	 the	 experimentally	

measured	B2	values	and	the	values	for	χ	at	each	salt	concentration.	We	use	these	salt-dependent	values	

of	χ	to	construct	binodals	in	a	(φ,	χ)	space.	

	 Having	 reconstructed	 the	 experimentally	 derived	 binodals	 in	 (φ ,χ) space	 (solid	 symbols	 in	 Fig.	
3b),	 we	 numerically	 fit	 the	 theoretical	 binodals	 from	 Muthukumar’s	 theory	 that	 best	 match	 the	
experimental	 data	 for	 each	 system.	 This	was	 achieved	 by	 using	 the	 free	 energy	 of	mixing	 expression	
defined	above	to	construct	a	free	energy	of	mixing	curve	across	all	volume	fractions	for	a	given	value	of	
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χ	 and	 extracting	 the	 common	 tangent	 positions,	 which	 give	 rise	 to	 the	 low	 and	 high	 values	 of	 the	

coexisting	volume	fractions	for	the	specific	χ.	This	process	 is	repeated	for	the	full	range	of	χ-values	to	
generate	the	complete	system-specific	theoretical	phase	diagram.	The	process	we	use	is	similar	to	that	
described	by	Rubinstein	and	Colby5	for	the	construction	of	binodals	from	the	Flory-Huggins	free	energy	
of	mixing	expression.	The	 fitting	procedure	outlined	above	was	performed	 to	 search	 for	 the	optimum	
value	of	the	w	parameter.	To	search	for	optimal,	construct-specific,	values	of	w	we	combined	a	swarm-
based	 local	non-linear	optimization	approach	with	 random	searching	based	on	Monte	Carlo	 sampling.	
We	find	that	the	functional	 form	for	w	vs.	goodness-of-fit	parameter	 is	convex	with	a	globally	optimal	
value	obtained	for	all	five	constructs,	thus	giving	us	confidence	in	the	estimated	values	of	w.		

	 Setting	α	to	1.0	assumes	that	the	monomeric	chain	dimensions	of	LAF-1	and	the	RGG	domain	in	
the	 dilute	 phase	 are	 comparable	 to	 the	 chain	 dimensions	 in	 the	 dense	 phase.	 This	 is	 consistent	with	
previous	 measurements	 on	 similar	 disordered	 proteins	 that	 undergo	 phase	 separation6.	 Importantly,	
however,	 we	 performed	 a	 parameter	 sensitivity	 analysis	 and	 found	 that	 the	 measured	 binodals	 are	

reproduced	equally	well	when	α  lies	in	the	interval	of	0.7	to	1.2.	This	implies	that	it	is	highly	unlikely	that	

either	 LAF-1	 or	 RGG	 undergo	 significant	 collapse	 (α	 considerably	 smaller	 than	 unity)	 or	 expansion	 (α	
considerably	 larger	 than	unity)	 in	droplets	 versus	dispersed	phases.	Accordingly,	 it	 appears	 that	 small	
changes	to	chain	dimensions	are	consistent	with	the	measured	phase	behavior.	

	 Three-body	interactions	refer	to	the	impact	of	excluded	volume	due	to	the	milieu	or	other	chain	
molecules	 on	 the	 strengths	 of	 effective	 pairwise	 interactions	 between	 chains.	 If	 this	 coefficient	 is	
positive,	 then	 three-body	 interactions	 will	 have	 a	 diluting	 effect	 because	 they	 reduce	 the	 effective	
strengths	 of	 two	 body	 interactions.	 Accordingly,	 as	w	 becomes	more	 positive,	 the	width	 of	 the	 two-
phase	regime	narrows.	Typically,	the	narrowing	of	the	two-phase	regime	comes	from	more	pronounced	
movement	of	 the	high	concentration	arm	of	 the	binodal.	This	 is	 reasonable	since	the	effects	of	 three-
body	 interactions	 should	 be	 more	 pronounced	 in	 environments	 of	 higher	 chain	 density.	 In	 contrast,	

changing	 the	 two-body	 interaction	 (as	measured	by	χ)	has	a	more	 symmetrical	effect	on	 the	 low	and	

high	concentration	arms	of	 the	binodal.	Changes	 to	either	w	 or	χ  will	 alter	 the	position	of	 the	critical	
point.	

	 The	 parameter	 gξ	 describes	 the	 correlation	 length	 in	 units	 of	 the	 number	 of	 residues.	 It	 is	

important	to	note	that	gξ	is	not	the	same	as	the	number	of	residues	from	a	single	continuous	polymer-
chain.	It	is	instead	the	effective	number	of	residues	that	contribute	to	a	correlation	length.	This	leads	to	

a	simple	proportionality	between	gξ and	ξ	where	conversion	of	gξ	to	ξ	is	defined	as	follows:	

! = !!
!!
!	

	 Here,	 gb	 defines	 the	 number	 of	 residues	 in	 a	 thermal	 blob	 –	 the	 length-scale	 over	 which	 an	
individual	protein	behaves	as	a	Gaussian	chain7.	Previous	work	showed	that	a	thermal	blob	spans	ca.	~	
6-7	residues	in	sequences	that	are	deficient	in	proline	residues8.	The	parameter	R	refers	to	the	size	of	a	
thermal	 blob.	 The	 radius	 of	 gyration,	 ⟨Rg⟩ and	 the	 end-to-end	 distance,	 ⟨Ree⟩	 of	 a	 thermal	 blob	 will	
bracket	the	value	of	R.	The	⟨Rg⟩ of	the	thermal	blob	was	previously	determined	to	be	0.6	nm8.	A	thermal	
blob	behaves	as	a	Gaussian	chain,	and	accordingly	that	the	end-to-end	distance	can	be	written	as:	

6 0 6 6 1 47= = =. . 	nmee gR R 	
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	 In	Fig.	3c,	we	calculate	!	by	setting	R	=	⟨Rg⟩.	
	

3.	Justifications	for	co-opting	the	theory	of	binary	mixtures	

In	fitting	the	experimentally	measured	binodals	to	Muthukumar’s	theory	of	polymer	solutions,	
we	assume	that	 the	system	can	be	modeled	as	an	effective	binary	mixture.	For	RGG	and	LAF-1	 in	 the	
absence	of	RNA,	this	needs	 little	 justification,	but	when	RNA	 is	present	we	are	effectively	treating	the	
RNA	as	a	modulator	of	the	two-	and	three-body	interactions	in	solvent	without	taking	it	into	account	as	
an	explicit	macromolecule.	This	assumption	is	motivated	by	practical	considerations	(both	experimental	
and	theoretical)	and	because	we	obtain	predictions	for	the	parameters	from	the	theory	that	have	clear	
physical	interpretations.	

In	order	to	obtain	experimental	data	to	explore	the	3D	titration	of	protein,	RNA,	and	NaCl	we	
would	need	to	perform	two-color	coincidence	experiment	using	the	usFCS	approach	such	that	we	label	
LAF-1	and	the	RNA	to	track	the	coincidence	of	these	molecules.	This	would	be	essential	to	deconvolve	
the	contributions	of	RNA-RNA	and	RNA-protein	interactions	and	their	salt	dependencies	vis-à-vis	the	salt	
dependence	 of	 the	 interactions	 between	 LAF-1	 molecules.	 These	 types	 of	 experiments	 would	 be	
essential	 if	 the	phase	separation	of	LAF-1	required	the	presence	of	RNA.	However,	we	 find	 that	LAF-1	
drives	 phase	 separation	 without	 the	 requirement	 of	 RNA.	 Even	 the	 salt	 dependence	 of	 the	 low	
concentration	arm	of	the	LAF-1	binodal	and	the	inferred	critical	point	are	not	affected	by	the	presence	
of	RNA.		

Second,	standard	Flory-Huggins	theory	or	Flory-Huggins	with	a	three-body	correction	term	(w)	
cannot	explain	the	phase	behavior	of	LAF-1	and	RGG	in	the	absence	of	RNA.	However,	these	data	can	be	
fit	 using	 Muthukumar’s	 theory	 of	 polymer	 solutions,	 suggesting	 this	 might	 be	 the	 “simplest”	 two-
component	theory	that	can	fit	the	data.	Importantly,	the	data	obtained	in	the	presence	of	RNA	are	also	
well-fit	using	Muthukumar’s	theory.	This	fitting	exercise	indicates	that	the	RNA	molecules	modulate	the	

LAF-1	phase	behavior	mainly	by	 increasing	the	magnitude	of	w	and	altering	the	correlation	 length	(ξ).	
These	findings	are	consistent	with	the	observed	lack	of	significant	changes	to	the	salt	dependence	of	the	
low	concentration	arm	of	the	binodal	of	LAF-1	or	the	inferred	critical	point.	Instead,	it	appears	that	the	
RNA	molecules	may	crowd	out	the	LAF-1	molecules	within	the	droplet,	thus	shrinking	the	width	of	the	
two-phase	regime	for	all	salt	concentrations.		

Third,	measurements	of	the	mesh	sizes	in	vitro,	in	the	absence	of	RNA,	agree	with	the	predicted	
mesh	 size	 from	 theory.	Upon	 the	addition	of	RNA,	our	 theoretical	 description	 suggests	 the	mesh	 size	
should	 increase	by	~2	nm.	 	RNA	 is	present	 in	vivo,	and	based	on	dextran	partitioning	experiments	the	
mesh	 size	 in	 vivo	 is	 ~2	 nm	 larger	 than	 in	 the	 absence	 of	 RNA	 in	 vitro.	 Taken	 together,	 these	 results	
suggest	that	despite	making	a	simplifying	binary-mixture	assumption,	quantitative	predictions	from	the	
resulting	 theory	are	confirmed	when	tested	experimentally.	Furthermore,	 for	our	 in	vitro	experiments	
we	 used	 homopolymeric	 (poly-rA)	monodisperse	 RNA	 at	 various	 lengths	 to	 interrogate	 the	 impact	 of	
RNA	on	the	droplet’s	phase	behavior.	In	reality,	the	collections	of	cellular	RNAs	span	a	diverse	range	of	
lengths,	 secondary	 and	 tertiary	 structure,	 and	 sequence	 motifs.	 The	 fact	 that	 our	 in	 vitro	 derived	
predictions	hold	true	in	vivo	suggests	that,	despite	the	importance	of	RNA	in	modulating	phase	behavior,	
in	the	case	of	P-granules	the	mesh-size	appears	to	be	dictated	by	LAF-1.	Conversely,	our	data	do	suggest	
that	droplet	dynamics	are	strongly	impacted	by	longer	RNA	molecules.	
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Finally,	Muthukumar’s	 theory	has	not	 been	 generalized	 to	 ternary	 and	higher	order	mixtures.	
This	generalization	is	challenging	since	each	of	the	polymer-specific	parameters	(three	body	interactions,	
swelling	 ratio,	 correlation	 length,	 etc.)	will	 have	a	protein	 and	RNA	 specific	 contribution.	 Importantly,	
even	 if	such	a	theory	were	available,	this	would	 increase	the	number	of	experiments	to	be	performed	
and	 a	 range	 of	 confounding	 difficulties	 would	 have	 to	 be	 addressed.	 Therefore,	 our	 use	 of	 the	 two-
component	 theory	 represents	 a	 minimalist	 approach	 that	 yields	 good	 fits	 and	 physical	 insights.	 The	
ternary	phase	diagram	would	be	a	necessary	future	direction	to	explore	in	depth	(see	discussion	section	
as	well).	Indeed	understanding	the	impact	of	RNA	sequence	and	structure	on	phase	behavior	represents	
a	critical	next	step	in	relating	phase	behavior	to	biological	function.	

	

4.	Determining	the	second	virial	coefficient	from	the	concentration	dependence	of	diffusion	

For	 each	 construct,	we	estimated	 the	 second	 virial	 coefficient	 (B2)	 by	measuring	 the	diffusion	
coefficients	as	a	function	of	concentration	in	the	dilute	regime	at	several	defined	NaCl	concentrations.	
For	 all	 salt	 concentrations,	 the	 measurements	 are	 made	 under	 conditions	 where	 the	 protein	
concentrations	are	always	below	the	low	concentration	arm	of	the	measured	binodals,	by	up	to	an	order	
of	magnitude.		

To	 determine	 B2	 from	 these	 data	 we	 use	 a	 formalism	 proposed	 by	 Harding	 and	 Johnson9.	
Plotting	protein	concentration	(c)	vs.	diffusion	constant	(D)	according	to	the	following	equation	gives	a	
straight	line	in	the	dilute	regime;	

! = !! 1 + 2!"! − ! − !! ! 	

In	addition	to	the	parameters	introduced	above,	M	is	the	molar	mass	of	the	diffusing	species,	!	
is	 the	 partial	 molar	 volume	 of	 the	 solvent	 and	 ks	 is	 an	 empirical	 constant	 that	 accounts	 for	 the	
adjustments	to	the	volume	fraction	that	derive	from	the	entrainment	of	the	solvent	along	the	polymer.	
When	plotting	D	versus	c,	the	slope	of	the	line	is	equal	to	 2!! − ! − !! .	For	simplicity,	we	can	define	
this	term	as;	

!! = 2!"! − ! − !!	
	We	make	two	key	assumptions	in	using	the	equation	of	Harding	and	Johnson.	First,	we	assume	

that	the	salt	dependence	of	the	observed	diffusion	coefficients	derives	mainly	from	the	salt	dependence	
of	the	solvent-mediated	interactions	between	LAF-1	molecules.	Accordingly,	our	definition	of	kD	must	be	
altered	to;	

!!
[NaCl] = 2!!!

[NaCl] − ! − !!	

As	noted	above,	the	partial	molar	volume	of	the	solvent	and	the	empirical	constant	ks	(in	units	
of	mL	/mg)	quantify	the	degree	of	solvent	entrainment.	By	assuming	the	form	for	kD	that	is	shown	in	the	
equation	above	we	are	stipulating	that	!	and	!!	do	not	strongly	vary	with	increasing	salt	concentration.	
This	 assumption	 is	 justified	 by	 the	 recognition	 that	 all	 our	 FCS	 measurements	 are	 quite	 unlike	 the	
sedimentation	 velocity	measurements	 in	 that	 they	 are	made	under	 dilute	protein	 concentrations	 and	
away	 from	 the	 sedimentation	 regime,	 where	 the	 backflow	 of	 solvent	 upon	 sedimentation	 creates	 a	
problem	 with	 interpreting	 the	 impact	 on	 measured	 velocities	 in	 sedimentation	 velocity	 analytical	
ultracentrifugation	 experiments.	 Additionally,	 experiments	 show	 that	 the	 self-diffusion	 coefficient	 of	
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water	decreases	only	by	roughly	4%	in	the	absence	of	NaCl	when	compared	to	the	corresponding	value	
in	1	M	NaCl10,	11.	This	provides	a	proxy	for	estimating	the	extent	of	change	to	the	solvent	entrainment	
and	 suggests	 that	 the	magnitude	of	 the	 change	we	 expect	 to	 the	 term	will	 be	 at	 least	 two	orders	 of	
magnitude	 smaller	 than	 the	measured	 changes	 to	 the	 diffusion	 coefficient	D	 as	 a	 function	 of	 protein	
concentration	c	(see	Fig.	2b).							

Our	data	show	that	the	slope	of	the	plot	of	D	vs.	c	decreases	as	the	salt	concentration	increases.	
We	interpret	this	to	imply	a	weakening	of	the	homotypic	associations	between	LAF-1/	RGG	molecules.	In	
the	 presence	 of	 high	 salt	 (1	 M	 NaCl),	 we	 note	 that	 the	 diffusion	 coefficient	D	 varies	 negligibly	 with	
protein	concentration	c.	An	example	of	the	insensitivity	of	D	to	changes	in	protein	concentration	at	high	
salt	is	shown	in	Fig.	2b.	Based	on	these	data	we	make	the	second	assumption,	which	is	that:	

! − !!  ≈ 0	
This	assumption	allows	us	to	re-write	the	original	expression	as:	

! = !! 1 + 2!!!,app
[NaCl] ! 	

Our	assumptions	are	justified	by	our	data	and	the	magnitudes	of	the	changes	we	observe	to	the	
measured	diffusion	coefficients	as	a	function	of	protein	concentration	 in	different	amounts	of	NaCl.	 In	
the	equation	above,	our	assumption	involves	the	replacement	of	the	actual	second	virial	coefficient	with	

a	salt	dependent	apparent	second	virial	coefficient,	!!,app
[NaCl]

.		

To	 assess	 the	 impact	 of	 such	 an	 assumption	 being	 incorrect,	 we	 re-examined	 the	 fitting	
procedure	to	assess	how	changes	to	B2	might	influence	our	results.	While	the	absolute	value	associated	
with	 the	 inferred	 three-body	 coefficient	w	 appears	 to	 change,	 the	 values	 of	 the	 inferred	 correlation	
lengths	vary	minimally	with	the	absolute	numerical	value	of	B2	(which	is	converted	to	χ	in	our	analysis),	
but	 they	 instead	 depend	 mainly	 on	 the	 width	 of	 the	 measured	 two-phase	 regime	 (i.e.,	 the	 actual	
measured	 binodals).	 Consequently,	 if	 there	 is	 a	 contribution	 from	!	and	 ks,	 it	 does	 not	 change	 the	
derived	correlation	length.		

The	central	determinant	of	our	ability	 to	 fit	our	data	 to	Muthukumar’s	 theory	originates	 from	
the	shapes	and	numerical	values	for	the	concentrations	along	the	binodal	curves	and	the	independent	
movements	 of	 the	 low	 and	 high	 concentration	 arms.	 These	 features	 are	 largely	 insensitive	 to	 the	
absolute	value	of	B2.	Therefore,	our	assumptions	are	valid	in	the	case	of	LAF-1,	in	part	because	we	know	
a	priori	 that	 it	 is	 strongly	self-associative	even	at	very	 low	concentrations.	For	highly	 soluble	proteins,	
where	B2	 is	unlikely	 to	be	 the	only	 factor	 in	 the	concentration	dependence	of	protein	diffusion,	 these	
assumptions	would	not	be	expected	to	hold.		

However,	in	order	to	test	the	veracity	of	the	assumptions	made	to	extract	B2	values	from	usFCS	
measurements,	 we	 compared	 the	 values	 obtained	 from	 right-angle	 laser	 light	 scattering.	 In	 this	
approach,	one	measures	the	concentration	dependence	of	 the	scattered	 light	of	 the	solution	with	the	
protein	as	a	function	of	protein	concentration	and	subtracts	the	contribution	from	the	buffer	alone	to	
uncover	the	second	virial	coefficient	using	a	so-called	Zimm	plot	(see	Fig.	S4).	Here,	the	light	source	was	

a	laser	with	wavelength,	λ,	of	488	nm	with	vertical	polarization.	Since	the	molecular	size	of	each	of	the	

samples	 used	 was	 smaller	 than	 λ/20,	 no	 angular	 dependence	 for	 the	 excess	 scattered	 intensity	 was	
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expected	 and	 all	 light	 scattering	 data	 were	 recorded	 at	 an	 angle	 of	 90°.	 The	 Rayleigh	 expression	
describing	the	intensity	of	light	scattered	from	a	particle	in	solution	is	given	in		

!"
! = 1

! + 2!!!	

where	K	 is	 an	 optical	 constant,	 c	 is	 the	 particle	 concentration,	R	 is	 the	 Rayleigh	 ratio	 of	 scattered	 to	
incident	light	intensity,	M	is	the	molecular	weight,	B2	is	the	second	virial	coefficient.	The	optical	constant	
is	defined	by		

! = 4!!! !" !" !

!!!!
	

where	NA	is	Avogadro’s	number,	n	is	the	solvent	refractive	index,	and	dn/dc	is	refractive	index	increment	
for	 the	protein/solvent	 (~	0.185	mL/g).	The	expression	used	 to	calculate	 the	 sample	Rayleigh	 ratio,	R,	
from	a	toluene	standard	is	given	as	

! = !!!!!!!
!!!!!

	

where	IA	is	the	residual	scattering	intensity	of	the	analyte	(sample	intensity	–	solvent	intensity),	IT	is	the	
toluene	scattering	intensity,	n	is	the	solvent	refractive	index,	nT	is	the	toluene	refractive	index	(1.503	at	
488nm12),	and	RT	is	the	Rayleigh	ratio	of	toluene	(39.6x10

-6	cm-1	at	488nm13).		

We	 compared	 the	 measured	 B2	 values	 using	 right	 angle	 laser	 light	 scattering	 for	 LAF-1	 at	
different	 salt	 concentrations	 to	 the	 values	 of	 B2	that	 were	 obtained	 using	 usFCS	measurements.	 The	
values	were	found	to	be	equivalent	across	all	salt	concentrations.	Therefore,	for	our	analysis	in	the	main	
text,	we	used	data	from	usFCS	measurements	because	these	afford	higher	reliability	at	the	low	protein	
concentrations	 at	 which	 these	 measurements	 have	 to	 be	 made.	 Additionally,	 in	 contrast	 to	 light	
scattering,	 the	 impact	 of	 RNA	molecules	 on	 B2	 can	 be	 readily	 quantified	 using	 usFCS	 measurements	
because	the	only	signals	in	these	measurements	come	from	labeled	molecules.				

	

5.	Concepts	of	overlap	concentrations	and	correlation	lengths	

Polymer	 solutions	 can	exist	 in	 one	of	 four	different	 concentration	 regimes:	 the	dilute	 regime,	
the	semidilute	regime,	the	concentrated	regime,	and	the	polymer	melt.	In	the	dilute	regime,	individual	
polymer	molecules	exist	as	monomers	 in	solution	and	experience	minimal	 intermolecular	 interactions.	
In	 the	 semidilute	 regime,	 individual	polymer	molecules	make	 fluctuating	patterns	of	 interactions	with	
other	 chains.	 In	 the	 concentrated	 regime,	polymers	experience	 intermolecular	entanglement,	 and	 the	
solution	begins	to	experience	viscoelastic	bulk	properties.	Finally,	in	the	polymer	melt	regime,	the	chains	
effectively	solvate	one	another.	A	graphical	representation	of	the	dilute,	semi-dilute	and	concentrated	
regimes	is	shown	in	Fig.	S8.		

	 The	 overlap	 volume	 fraction	 (φ*)	 or	 overlap	 concentration	 (c*)	 defines	 the	 concentration	 at	
which	 inter-chain	 contacts	 become	 more	 likely	 than	 intra-chain	 contacts5.	 Practically,	 the	 overlap	
concentration	 defines	 the	 concentration	 threshold	 that	 separates	 the	 dilute	 and	 semi-dilute	
concentration	regimes.	
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Formally,	the	overlap	concentration	is	defined	as	

34
3

φ =
π

* m

ee

rv

R
	

Here	 r	 is	 the	 degree	 of	 polymerization	 (i.e.,	 the	 number	 of	 amino	 acids),	 vm	 is	 the	 average	
volume	occupied	by	a	single	amino	acid,	and	the	denominator	represents	the	volume	of	the	pervaded	
volume	calculated	using	the	end-to-end	distance,	Ree.	The	overlap	volume	fraction	can	be	thought	of	as	
the	instantaneous	fraction	of	the	pervaded	volume	occupied	by	the	polymer	at	any	given	moment.	The	
overlap	concentration	is	defined	as	

!∗ = !∗!!	
Here,	ρ0	is	a	density	conversion	factor	that	defines	the	mass	concentration	if	the	solution	were	

100%	polymer;	ρ0	=1310.16	mg/mL.	

The	 overlap	 concentration	 can	 be	 determined	 experimentally,	 approximated	 using	 analytical	
models,	or	calculated	using	physical	models	that	provide	direct	access	to	the	end-to-end	distance	(Ree).	
We	used	all-atom	simulations	to	calculate	the	distribution	of	Ree	values	for	LAF-1	RGG	domain	(see	Fig.	
S7)	 and	 use	 this	 value	 to	 predict	 the	 overlap	 concentration.	 The	 LAF-1	 RGG	 domain	 populates	 a	
heterogeneous	 ensemble	 of	 conformations	 characterized	 by	 large	 amplitudes	 of	 fluctuations.	 We	
generated	an	ensemble	 for	100,000	different	conformations	and	 for	each	conformation	we	calculated	
the	overlap	volume	fraction.	The	resultant	cumulative	distribution	function	(CDF)	allows	us	to	quantify	
the	probability	of	achieving	a	specific	overlap	concentration	due	to	conformational	fluctuations.	These	
results	are	shown	 in	Fig.	S7b.	The	range	of	overlap	volume	fractions	shown	here	 is	 the	same	order	of	
magnitude	as	the	 low	concentration	arms	of	the	various	binodals.	The	overlap	volume	fraction	for	the	
RGG	domain	is	on	the	order	of	10-3	to	10-2,	which	corresponds	to	an	approximate	overlap	concentration	
of	1-10	mg/mL.		

There	is	a	well	established	relationship	between	the	correlation	length	(ξ),	the	chain	dimensions	

(Rg),	and	the	polymer	volume	fraction	(φ).	This	was	defined	by	de	Gennes14	as:		

!~!!
!
!∗

!
	

Here	Rg	is	the	radius	of	gyration	of	an	individual	polymer	in	dilute	solutions,	φ	is	the	volume	fraction	of	

polymer,	φ*	is	the	overlap	concentration,	and	x	is	a	function	of	the	polymer	scaling	exponent.		

	 We	can	rewrite	the	above	expression	as:	

!
!∗

!
~  !

!!
	

For	 the	 RGG	 domain,	 based	 on	 the	 calculated	 overlap	 concentration	 and	 the	 measured	 low	
concentration	binodal,	it	follows	that:	

!
!∗ ≈ 1;	
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Therefore;	

!
!∗

!
≈ 1	

And	finally,	

!
!!

≈ 1;	

As	 a	 result,	when	 the	 low	binodal	 and	 overlap	 concentration	 are	 approximately	 equal	 to	 one	
another	 then	 the	 correlation	 length	 should	 be	 on	 the	 same	 order	 of	 magnitude	 as	 each	 individual	
molecule.	

6.	Additional	details	regarding	atomistic	simulations		

	 All-atom	 Monte	 Carlo	 simulations	 were	 performed	 using	 the	 CAMPARI	 software	 package	
(http://campari.sourceforge.net/)	 and	 the	 ABSINTH	 implicit	 solvent	 model15.	 In	 the	 ABSINTH	 model,	
protein	atoms	and	solution	 ions	are	modeled	explicitly,	while	the	solvent	 is	modeled	using	an	 implicit,	
mean-field	representation	with	a	dielectric	constant	set	to	78.2.	Conformation-specific	atomic	solvation	
states	 are	 calculated	 using	 solvent	 accessible	 volume	 fractions	 and	 references	 against	 experimentally	
determined	 solvation	 free	 energies	 for	 model	 compounds	 that	 make	 up	 polypeptides.	 Interaction	
potentials	for	van	der	Waals	and	electrostatic	 interactions	amongst	neutral	groups	are	subject	to	10	Å	
and	 14	 Å	 cutoffs,	 respectively.	 No	 cutoffs	 were	 imposed	 in	 calculations	 of	 electrostatic	 interactions	
between	groups	with	a	net	charge	as	well	as	 solution	 ions.	Simulations	were	performed	at	298	K	 in	a	
spherical	simulation	droplet	with	a	diameter	of	43.2	nm	to	avoid	the	artifacts	due	to	confinement.		

	 Simulations	were	performed	on	the	RGG	domain	of	LAF-1	(residues	1-168)	at	two	different	salt	
concentrations	 at	which	 phase	 separation	would	 be	 expected	 to	 occur	 (neutralizing	NaCl	 and	 20	mM	
NaCl).	 Two	 hundred	 independent	 simulations	were	 performed	 from	unique	 starting	 conformations	 at	

each	salt	concentration,	providing	a	total	of	4	×	109	steps	of	simulation	data.	In	addition	to	these	main	
productions	 simulations,	 sets	 of	 simulations	 were	 run	 for	 4	 and	 15	 times	 longer	 than	 the	 main	
production	simulations	to	assess	overall	convergence	of	statistics.	In	all	cases,	all	parameters	of	interest	
showed	nearly	identical	values	irrespective	of	the	total	number	of	steps	in	any	individual	simulation	run,	
suggesting	 that	 after	 an	 appropriate	 equilibration	 period	 the	 conformational	 ensemble	 generated	
represents	a	true	equilibrium	distribution.	Simulation	analysis	was	performed	using	analysis	routines	in	
CAMPARI,	MDtraj16,	and	CTraj,	which	is	an	in-house	analysis	package.	Visualization	was	performed	using	
VMD17.	

	 Simulations	of	atomistic	self-avoiding	random	walk	distributions	of	the	RGG-domain,	results	of	
which	are	shown	in	Fig.	S7a,	were	performed	using	CAMPARI,	but	setting	the	strength	of	all	interaction	
terms	to	0,	with	the	exception	of	the	repulsive	component	of	the	Lennard-Jones	potential.	This	causes	
the	 self-avoiding	 RGG	 chain	 to	 have	 conformational	 statistics	 that	 are	 congruent	 with	 the	 excluded	
volume	 (EV)	 limit18.	 Simulations	 for	 the	polyQ-160	 system	were	performed	 in	a	 similar	manner	 to	 the	
LAF-1	RGG	domain	simulations.	
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Fig.S1	 (a)	 Fluorescence	 autocorrelation	 of	 14	 nm	 hydrodynamics	 radius	 polystyrene	 particles	 while	
scanning	at	frequency	70	kHz.	The	fit	to	Equation	1	(red	line)	is	shown.	The	magnitude	of	autocorrelation	

function	oscillations	with	14	µS	period	at	short	time	scale,	GOSC.,	depends	on	the	ratio	between	axially	

scanned	distance	(Z)	and	depth	of	focus	(ωz).	The	inset	shows	fluorescence	autocorrelation	as	a	function	

of	 delay	 time	 (τ)	 between	2	ms	 and	2.2	ms.	 The	period	 (T)	 of	 autocorrelation	 curve	 is	 ~14	µS,	which	
indicates	the	TAG	lens	scanning	frequency	(T-1	~70	kHz).	When	compared	with	standard	FCS,	ultra-fast-
scanning	 FCS	 (usFCS)	 has	 several	 strengths.	 It	 increases	 the	 statistical	 accuracy	 for	 slowly	 moving	
molecules,	by	effectively	sampling	a	larger	volume.	Improving	this	statistical	accuracy	allows	for	shorter	
measurement	 times	 than	 standard	 FCS,	 which	 helps	 to	 ensure	 accurate	 correlation	 curves.	 This	
approach	 also	 facilitates	 low	 excitation	 intensity,	 reducing	 the	 effect	 of	 photo-bleaching	 and	 optical	
saturation.	 Here,	 we	 show	 both	 (b)	 molecular	 concentration	 and	 (c)	 diffusivity	 from	 usFCS	
measurements	as	a	function	of	Dylight	488	concentration.	

	

	

Fig.S2	Phase	diagram	of	LAF-1/NaCl	concentrations,	expressed	in	molar	units	of	protein	concentration.	
The	 left	 arms	 of	 the	 dashed	 coexistence	 curve	 indicate	 the	 phase	 boundary	 of	 dilute	 phase	 (protein	
concentrations	 outside	 droplets)	 and	 the	 right	 arms	 indicate	 the	 phase	 boundary	 of	 the	 condensed	
phase	(protein	concentrations	inside	droplets).		
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Fig.S3	To	assess	the	quantitative	accuracy	of	our	usFCS	results,	we	used	(a)	three	different	fluorescent	
dyes	 to	 label	 LAF-1	 and	 (b)	 determined	 the	 protein	 concentration	 using	 three-dimensional	 confocal	
microscopy.	The	consistent	results	obtained	using	different	dyes	imply	that	the	fluorescent	dyes	do	not	

have	any	effect	on	the	phase	behavior	of	LAF-1.	We	then	measured	the	volume	fraction	(φdrop)	of	LAF-1	
droplets	 using	 three-dimensional	 confocal	 microscopy	 to	 determine	 the	 protein	 concentration.	 To	
calculate	 the	 volume	 fraction,	 we	 first	 determined	 the	 both	 bulk	 (CB)	 and	 saturation	 (CS)	 protein	
concentrations	using	280	UV	absorption	(Thermo	nanodrop).	Then,	we	calculated	protein	concentration	

in	the	droplet	phase	using	CD	=	CS	+((CB	–	CS)/	φdrop)	and	compared	the	concentrations	determined	with	
the	 values	 obtained	 from	 usFCS,	 as	 shown	 in	 the	 right	 hand	 side	 panel	 above.	 The	 concentrations	
obtained	using	the	methods	are	similar	within	error,	confirming	our	results	from	the	usFCS	method.	

	

	

Fig.	S4	To	test	the	quantitative	accuracy	of	our	estimates	of	second	virial	coefficients	(B2)	obtained	using	
usFCS	based	diffusion	measurements	that	rely	on	two	simplifying	assumptions,	we	used	right-angle	laser	
light	scattering	to	measure	protein	concentration	dependence	of	the	scattered	light	of	the	solution	with	
the	protein	as	a	function	of	protein	concentration	to	determine	second	virial	coefficient.	(a)	Right-angle	
laser	 light	scattering	data	for	LAF-1	 in	400	mM	NaCl	buffer	solution.	 (b)	Comparison	of	 light	scattering	
determined	data	with	the	values	obtained	from	usFCS.	The	estimates	of	B2	obtained	using	both	methods	
are	 similar	 within	 error	 for	 three	 different	 salt	 concentrations,	 thus	 establishing	 the	 accuracy	 of	 our	
usFCS	measurements	and	the	validity	of	the	assumptions	used	in	our	analysis	of	usFCS	data.	
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Fig.S5	 Increasing	 NaCl	 concentration	 increases	 the	 diffusion	 coefficients	 of	 LAF-1	 in	 droplets.	 Adding	
short	 RNA	 (poly-rA30	 and	poly-rA15)	 also	 increases	 diffusion	 coefficient	 of	 LAF-1	 in	 droplets	whereas	
adding	long	RNA	(poly-rA3k)	decreases	the	diffusion	coefficients	of	LAF-1	in	droplets.		

	

	

Fig.S6	 (a)	 The	measured	 binodals	 are	 recast	 in	 terms	 of	 volume	 fractions.	 Here,	 we	 calculated	 Flory	

interaction	 parameters,	 χ,	 converted	 from	 B2	 values	 and	 calculated	 protein	 volume	 fraction	 using	
average	amino	acid	density	~1310.16	mg/mL.	(b)	The	theoretical	phase	diagrams	for	LAF-1	and	RGG	that	
show	the	best	 reproduction	obtainable	with	a	simple	Flory-Huggins	style	mean-field	 theory.	Note	that	
the	 resultant	 volume	 fractions	 for	 high	 concentration	 arms	 of	 binodals	 are	 almost	 three	 orders	 of	
magnitude	greater	than	the	measured	counterparts.		
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Fig.S7	 (a)	 The	 end-to-end	 distance,	 Ree,	 distribution	 is	 shown	 for	 the	 RGG	 domain	 (RGG),	 a	 length-
matched	 polyQ	 stretch	 (PolyQ-160),	 and	 an	 atomistic	 self-avoiding	 random	 walk	 version	 of	 the	 RGG	
domain	 that	 behaves	 as	 a	 non-overlapping	 random	 coil	 (Non-inter.).	 The	 polyQ	 chain	 forms	 dense,	
compact	 globules,	 giving	 rise	 to	 a	 substantially	 lower	 end-to-end	 distance	 distribution.	 The	 non-
interacting	 chain	 is	 highly	 expanded	 due	 to	 the	 absence	 of	 any	 interactions	 that	 promote	 intra-chain	
interactions.	 The	 RGG	 ensemble	 samples	 conformations	 consistent	with	 a	 highly	 collapsed	 globule	 as	
well	as	conformations	consistent	with	a	highly	expanded	chain.	This	chimeric	conformational	behavior	is	
consistent	 with	 a	 chain	 that	 can	 form	 favorable	 inter-	 and	 intra-chain	 interactions	 while	 populating	
highly	expanded	ensembles.	This	result	represents	a	biological	manifestation	of	the	'stickers	on	a	chain'	
heteropolymer	that	is	congruent	with	the	model	of	Semenov	and	Rubinstein19.	(b)	The	overlap	volume	

fraction	 (φ*),	 calculated	 for	 each	 conformation	 taken	 from	 the	 ensemble,	 allows	 us	 to	 compute	 the	
likelihood	 of	 crossing	 the	 overlap	 concentration.	 This	 is	 achieved	 by	 calculating	 the	 cumulative	
distribution	function	(CDF).	The	overlap	volume	fraction	of	the	RGG	domain,	calculated	from	atomistic	
simulations,	 is	 in	 the	 same	 concentration	 regime	 as	 the	 experimentally	 measured	 and	 theoretically	
derived	volume	 fractions	 for	 the	 low	concentration	arm.	 (c)	The	2D	histogram	 for	 the	asphericity	and	
end-to-end	distance	for	the	RGG	ensemble	were	also	calculated.	The	distribution	shows	a	wide	range	of	
conformations	explored,	 consistent	with	 the	 conclusions	drawn	 in	panel	 (a).	 (d)	 Schematic	 illustration	
showing	how	the	overlap	concentration	is	impacted	by	the	size	of	RGG	domain.	The	calculated	overlap	
concentration	 for	 the	 RGG	 domain	 is	 of	 the	 same	magnitude	 as	 cD,	 which	 corresponds	 to	 a	 number	
density	of	2x10-4	molecules/nm3	(i.e.,	1	molecule	every	17	nm	shown	in	black	dashed	lines).	The	average	
size	Ree	 of	 RGG	 is	 ~8.5	 nm	 (Rg	 ~	 3.5	 nm	 shown	 in	 red	 dashed	 lines).	 RGG	 samples	 a	 broad	 range	 of	
conformations	 (~6	 –	 11	 nm,	 envelope	 for	 which	 is	 shown	 as	 solid	 green	 contour).	 The	 RGG	 domain	
explores	highly	compact	and	highly	expanded	conformations,	suggesting	a	low	overlap	volume	fraction	

(φ*),	which	when	combined	with	the	large	negative	values	of	B2,	leads	to	a	strong	driving	force	for	phase	
separation.	
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Fig.S8	Graphical	representation	of	the	dilute,	semi-dilute	and	concentrated	regimes.	Here,	φ	represents	
the	polymer	concentration	in	the	solution	and	φ*	represents	the	overlap	volume	fraction.	LAF-1	droplets	
are	consistent	with	a	semi-dilute	solution.	

	

	

Fig.	S9	Graphical	depiction	of	three	categories	of	three-body	interactions	with	(a)	and	without	(b)	RNA.	
The	“elbows”	show	contacts	between	a	pair	of	points,	the	dashed	line	in	each	elbow	depicts	a	repulsive	
interaction,	and	the	length	of	the	dashed	line	quantifies	the	effective	strength	of	a	contact.	Importantly,	
a	three-body	interaction	represents	the	cumulative	effect	of	the	three	elbows.	Three-way	contacts	can	
be	made	within	 a	 single	 chain	 (left	most	 sub-panel);	 they	 could	 involve	 a	 pair	 of	 chains	 (central	 sub-
panel)	where	two	of	the	contact	points	come	from	a	single	chain;	or	three	chains	could	come	together	
to	make	the	three-body	interactions	(right	most	sub-panel	on	the	top	row).	Not	shown	here	are	the	two-
body	interactions,	which	for	all	cases	in	this	work	are	attractive.	The	three-body	interaction	dilutes	the	
effect	 of	 the	 attractive	 two-body	 interaction,	 but	 does	 not	 out-compete	 it	 i.e.,	 the	 net	 inter-chain	
interaction	is	attractive.	Upon	the	addition	of	RNA	the	three-body	interaction	becomes	stronger	leading	
to	 a	 further	 dilution	 of	 the	 two-body	 interaction	 strength.	 This	manifests	 itself	 as	 a	 reduction	 in	 the	
concentration	 of	 the	 high	 concentration	 arm	 of	 the	 binodal.	 (c)	 Quantification	 of	 the	 effects	 of	 the	
three-body	 term	 on	 the	 effective	 strengths	 of	 two-body	 interactions	 at	 the	 equilibrium	 protein	
concentration	outside	the	droplet,	cs.	The	strengths	of	three-body	interactions,	w,	were	converted	into	
third	 virial	 coefficients,	 B3	 using	 the	 following	 expression:	 ( )3 2

3 2 cB w r M v= .	 Here,	M	 is	 the	 mass	 of	

protein,	 r	 is	 the	 degree	 of	 polymerization	 (i.e.,	 the	 number	 of	 residues),	 and	 vc	 is	 the	 partial	 molar	
volume	 of	 a	 monomer	 unit	 (defined	 as	 0.018	 l/mol).	 Comparison	 of	 B2	 with	 B2+B3cS	 shows	 that	 the	
strengths	of	three-body	interactions	with	positive	values	of	w	lead	to	a	weakening	pairwise	interactions.	
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Fig.	 S10	 Viscosity	 of	 condensed	 droplets	 as	 a	 function	 of	 (a)	 intra-molecular	 interaction,	 B2	 and	 (b)	
protein	concentration	within	droplets,	cD.	

	

	

Fig.	 S11	 Using	 polymeric	 probes	 in	 the	 form	 of	 dextran	 molecules	 of	 differing	 molecular	 weights	 to	
determine	the	effective	mesh	size.	(a)	Unlike	spherical	probes,	dextran	molecules	are	flexible	polymers.	
For	molecular	weights	below	a	 threshold	value,	dextran	molecules	 should	behave	 like	 small	 solutes20.	

Conversely,	above	a	threshold	molecular	weight,	denoted	as	Mw,ξ,	the	diffusivities	of	dextran	molecules	
should	 decrease	 as	 the	 reciprocal	 of	 increasing	molecular	 weight20.	We	measured	 the	 diffusivities	 of	
dextran	 molecules	 of	 four	 different	 molecular	 weights	 in	 droplets	 (DD)	 and	 in	 bulk	 solution	 (DS).	
Following	 the	 theoretical	 analysis	 of	 Cai	 et	 al.20,	 we	 plotted	 the	 ratios	 of	 DD	 to	 DS	 as	 a	 function	 of	
molecular	 weight.	 This	 analysis	 shows	 that	 the	 ratio	 of	 diffusion	 coefficients	 for	 the	 10	 kDa	 dextran	
molecule	 is	 within	 an	 order	 of	 magnitude	 of	 the	 values	 for	 small	 fluorescent	 dyes	 even	 though	 the	
molecular	weights	are	different	by	two	orders	of	magnitude.	In	contrast,	beyond	a	threshold	molecular	
weight	 of	 40	 kDa,	 the	 ratio	 of	 diffusivities	 for	 dextran	molecules	 decrease	 by	 at	 least	 two	 orders	 of	
magnitude	 and	 show	 a	 decrease	 with	 increased	 molecular	 weight	 dependence	 that	 is	 expected	 of	
polymeric	probes.	Based	on	these	results,	the	dextran	molecular	weight	that	corresponds	to	the	lower	
bound	 of	 the	 mesh	 size	 lies	 between	 10	 kDa	 and	 40	 kDa.	 The	 results	 are	 in	 line	 with	 theoretical	
predictions,	and	point	to	the	existence	of	a	threshold	lower	bound	of	the	mesh-size,	delineated	by	ξL.	(b)	
Published	data	 in	 the	 literature	 show	 that	dextran	behaves	as	 an	 ideal	 chain	 in	 aqueous	buffers21.	 To	
verify	this,	we	analyzed	published	data	22	for	hydrodynamic	radii	as	a	function	of	molecular	weight.	The	
measurements	 were	 based	 on	 viscosity	 analysis	 and	 light	 scattering.	 Here,	 we	 plot	 data	 from	 the	
literature	as	a	log-log	plot,	with	the	log	of	the	hydrodynamic	radius	(Rh)	along	the	ordinate	and	the	log	of	
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the	degree	of	polymerization	(N)	along	the	abscissa.		This	analysis	yields	a	straight	line	with	a	slope	that	
corresponds	to	the	scaling	exponent	ν	and	an	intercept	that	corresponds	to	log(b),	where	b	is	the	Kuhn	
length.	We	find	ν	=	0.49,	which	is	similar,	within	finite	size	considerations,	to	the	theoretical	exponent	of	
0.5	 expected	 for	 an	 ideal	 chain.	 The	 intercept	 yields	 a	 value	 of	b	 =	 0.303	 nm.	 For	molecular	weights	
below	 a	 threshold	 value,	 dextran	 molecules	 should	 behave	 like	 small	 solutes20.	 Conversely,	 above	 a	

threshold	molecular	weight,	denoted	as	Mw,ξ,	the	diffusivities	of	Dextran	molecules	should	decrease	as	
the	reciprocal	of	increasing	molecular	weight	20.	We	measured	the	diffusivities	of	dextran	molecules	of	
four	 different	 molecular	 weights	 in	 droplets	 (DD)	 and	 in	 bulk	 solution	 (DS).	 Following	 the	 theoretical	
analysis	of	Cai	et	al.20	for	non-sticky	probes,	we	plotted	the	ratios	of	DD	to	DS	as	a	function	of	molecular	
weight.	 This	 analysis	 shows	 that	 the	 ratio	of	diffusion	 coefficients	 for	 the	10	kDa	Dextran	molecule	 is	
within	 an	 order	 of	 magnitude	 of	 the	 values	 for	 small	 fluorescent	 dyes	 even	 though	 the	 molecular	
weights	are	different	by	two	orders	of	magnitude.	In	contrast,	beyond	a	threshold	molecular	weight	of	
40	kDa,	the	ratio	of	diffusivities	for	dextran	molecules	decrease	by	at	least	two	orders	of	magnitude	and	
show	 a	 decrease	with	 increased	molecular	weight	 dependence	 that	 is	 expected	 of	 polymeric	 probes.	

Setting,	Mw,ξ	to	be	40	kDa	yields	a	value	of	Nξ	≈	245	for	the	degree	of	polymerization	of	dextran	probes	
that	 match	 the	 effective	 degree	 of	 polymerization	 of	 the	 mesh	 corresponding	 to	 the	 intra-droplet	

polymer	network.	Using	Nξ	we	estimate	ξ	to	be	b(Nξ)
0.5	≈	4.7	nm.	Here,	we	use	b	=	0.303	nm,	which	is	

the	 measured	 Kuhn	 length	 of	 dextran	 molecules.	 To	 probe	 the	 robustness	 of	 these	 estimates,	 we	
performed	partitioning	experiments	using	the	dextran	molecules.	(c)	In	the	main	text,	we	used	Rh	values	
to	plot	apparent	viscosities	as	a	function	of	probes	size.	To	put	this	analysis	on	a	quantitative	footing,	we	
used	 the	 scaling	 analysis	 extracted	 from	 published	 data	 to	 back-calculate	 the	 hydrodynamic	 radii	
predicted	by	this	scaling	behavior	 for	the	dextran	molecular	weights	used	 in	our	study,	and	compared	
those	 values	 to	 the	 hydrodynamic	 radii	 determined	 by	 FCS.	 These	 two	methods	 yielded	 results	 that	
agree	with	one	another.		
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Fig.	 S12	 Dextran	 (1	 mg/mL,	 red)	 was	 directly	 injected	 into	 nuclei	 of	 X.	 laevis	 oocytes	 expressing	
NPM1::CFP	 (blue)	 and	 FIB1::GFP	 (green),	 scale	 bar	 =	 10	µm.	Nuclei	were	 dissected	 in	mineral	 oil	 1-2	
hours	after	microinjection	and	imaged	using	laser	scanning	confocal	microscopy	under	in	vivo	conditions.		
Partition	 coefficients	 (K)	 were	 calculated	 from	 background	 corrected	 fluorescent	 intensities	
inside/outside	 either	 the	 granular	 component	 (GC)	 marked	 by	 NPM1::CFP	 or	 the	 dense	 fibrillar	
component	(DFC)	marked	by	FIB1::GFP.		

	

	

Fig.S13	Linear	sequence	analysis	of	LAF-1.	Each	track	describes	a	difference	type	of	sequence	feature	to	
provide	 a	 general	 summary	 of	 the	 linear	 amino	 acid	 sequence.	WFC	 represents	 Wootton-Federhen	
sequence	 complexity23;	 the	 RGG	 and	 CTD	 domains	 show	 a	 significantly	 reduced	 complexity	 when	
compared	to	the	remainder	of	the	sequence.	IUPred	represents	the	predicted	disorder	score	based	on	
the	 IUPred	algorithm24;	N-terminal	and	C-terminal	 intrinsically	disordered	regions	(IDRs)	are	 identified.	
NCPR	 represents	the	 linear	net	charge	per	residue25;	the	N-terminal	domain	shows	both	net	positively	
charged	local	regions	and	net	negatively	charged	regions,	suggesting	electrostatic	interactions	may	play	
a	role	in	driving	RGG-RGG	interaction.	FCR	represents	the	fraction	of	charged	residues;	several	regions	in	
the	RGG	contain	a	high	FCR	despite	minimal	net	charge,	indicating	these	regions	have	the	characteristics	
of	a	strong	polyampholyte.	KD	 represents	the	Kyte-Doolite	hydrophobicity	scale26;	 the	folded	domains	
are	significantly	more	hydrophobic	than	the	IDRs.	
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