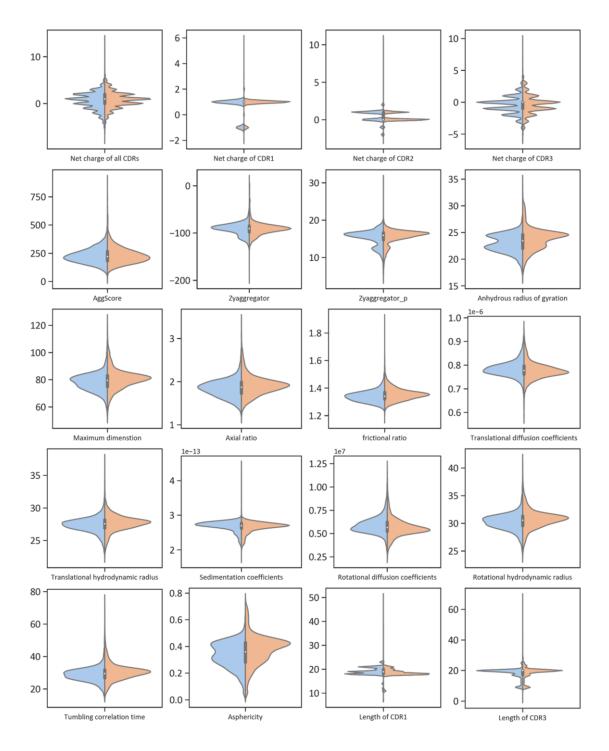
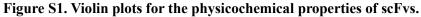
Supporting Information for

Prediction of polyreactive and nonspecific single-chain fragment variables through structural biochemical features and protein language-based descriptors.

Hocheol Lim^{a,b} and Kyoung Tai No^{a,b,c,*}

^a The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea


^b Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea


^c Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea

* Corresponding author: Kyoung Tai No (ktno@yonsei.ac.kr)

Supporting information for 'Prediction of polyreactive and nonspecific single-chain fragment variables through structural biochemical features and protein language-based descriptors' includes Figures S1 - S2 for the violin plots of the statistically significant factors in scFvs and Figure S3 for correlation plots of the experimental IEPs and predicted IEPs in peptides and antibodies. It also includes Tables S1 - S2 for hyperparameter tuning and Tables S3 - S4 for the classifying performance of biochemical features in scFvs against polyreactivity.

In this study, there are many abbreviations as follows. AUC, Area under the receiver operating characteristics curve; AVG, Average-based ensemble learning; CDR, Complementary-determining regions; ELISA, Enzyme-linked immunosorbent assay; ESM, Evolutionary scale modeling; FACS, Fluorescence-activated cell sorting; GBM, Gradient boosting; IEP, Isoelectric points; LGBM, Light gradient boosting; LR, Linear regression-based ensemble learning; mAbs, Monoclonal antibodies; ML, Machine learning; NLP, Natural language processing; RF, Random forest; ROC, Receiver operating characteristics; SAP, Spatial aggregation propensity; SASA, Solvent-accessible surface area; scFvs, Single-chain fragment variables; SVM, Support vector machine; TAPE, Tasks assessing protein embeddings; trRosetta, Transform-restrained Rosetta; XGB, Extreme gradient boosting.

Polyreactive mAbs are colored in red, while nonpolyreactive mAbs are colored in blue. Only statistically significant features (p-value < 0.001) are shown. The units of the features are summarized in Table S2.

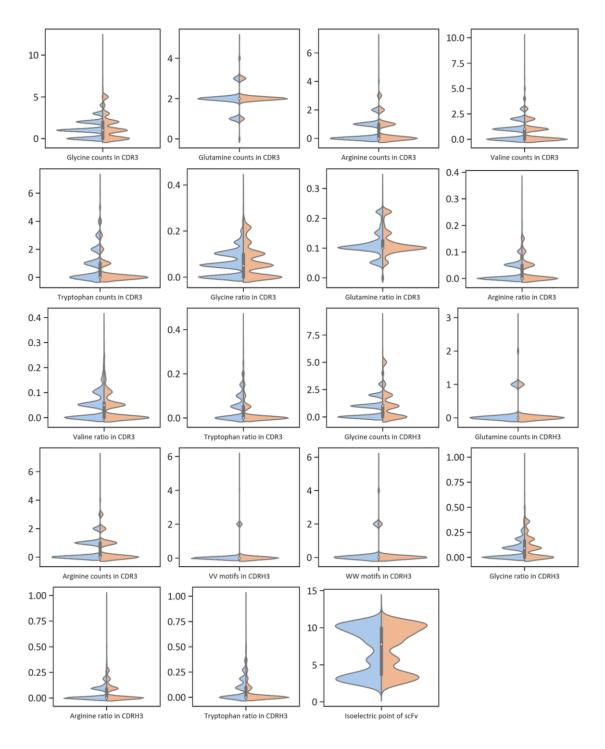
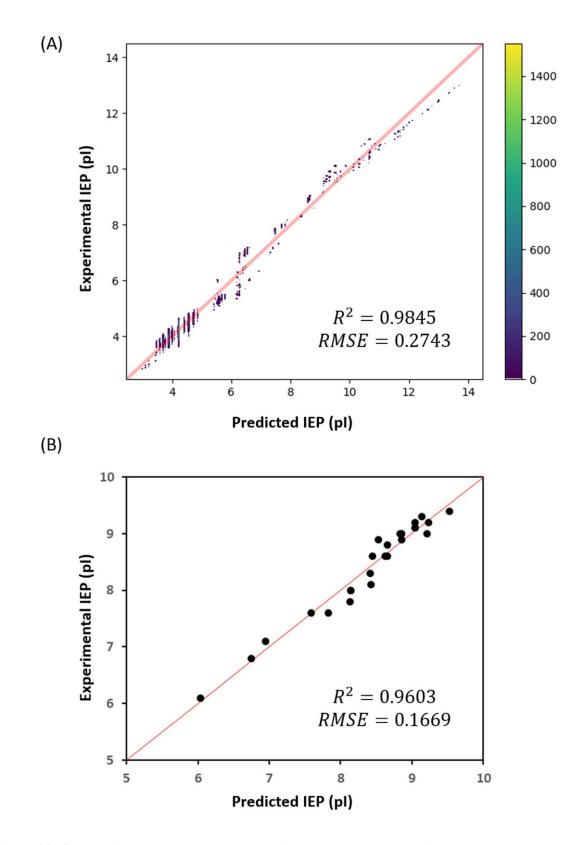



Figure S2. Violin plots for the polyreactive motifs and isoelectric points of scFvs.

Polyreactive mAbs are colored in red, while nonpolyreactive mAbs are colored in blue. Only statistically significant features (p-value < 0.001) are shown. The units of the features are summarized in Table S3.

Figure S3. Correlation plots between the experimental IEPs and predicted IEPs. (A) The correlation plot in 41,943 peptides. (B) The correlation plots in 25 antibodies.

Method	Tuning parameters	Fixed parameters
GBM	n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000	
	$max_depth = 10, 15$	
	max_features = 'auto', 'sqrt', 'log2'	
	$learning_rate = 0.01, 0.05$	
LGBM	n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000	class_weight='balanced'
LGBM	$learning_rate = 0.01, 0.05$	
RF	n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000	class_weight='balanced'
KI'	max_features = 'auto', 'sqrt', 'log2'	
	n_estimators = 50, 100, 500, 1000, 1500, 2000, 2500, 3000	gamma = 0
XGB	$max_depth = 10, 15$	$scale_pos_weight = 10559/8867$
	$learning_rate = 0.01, 0.05$	$min_child_weight = 1$
		subsample = 0.5

Table S1. Hyperparameter setting for tuning procedure

Descriptors	Method	Optimal hyperparameter
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'sqrt', n_estimators = 100
F46	LGBM	learning_rate = 0.01, n_estimators = 500
Г40	RF	max_features = 'log2', n_estimators = 3000
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 500
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'auto', n_estimators = 500
UniRep	LGBM	learning_rate = 0.01, n_estimators = 500
onnep	RF	max_features = 'sqrt', n_estimators = 1500
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 500
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'sqrt', n_estimators = 1000
TAPE	LGBM	learning_rate = 0.01, n_estimators = 500
III L	RF	max_features = 'auto', n_estimators = 3000
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 500
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'sqrt', n_estimators = 100
FSM-1b	LGBM	learning_rate = 0.05, n_estimators = 100
ESM-1b	RF	max_features = 'auto', n_estimators = 3000
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 500
	GBM	learning_rate = 0.05, max_depth = 15, max_features = 'log2', n_estimators = 3000
ESM-1v	LGBM	learning_rate = 0.01, n_estimators = 500
L'9141- 1 A	RF	max_features = 'sqrt', n_estimators = 500
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 50

Table S2. Optimal hyperparameters in this work (continue)

Descriptors	Method	Optimal hyperparameter
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'auto', n_estimators = 1000
E46/LtaiD on	LGBM	learning_rate = 0.01, n_estimators = 500
F46/UniRep	RF	max_features = 'auto', n_estimators = 1000
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 100
	GBM	learning_rate = 0.05, max_depth = 15, max_features = 'auto', n_estimators = 1500
F46/TAPE	LGBM	learning_rate = 0.05, n_estimators = 100
1'40/17A1 E	RF	max_features = 'auto', n_estimators = 2500
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 500
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'auto', n_estimators = 500
F46/ESM-1b	LGBM	learning_rate = 0.05, n_estimators = 50
1 40/LSWP10	RF	max_features = 'auto', n_estimators = 2500
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 50
	GBM	learning_rate = 0.01, max_depth = 10, max_features = 'auto', n_estimators = 100
F46/ESM-1v	LGBM	learning_rate = 0.01, n_estimators = 50
1°40/ESIVI-1V	RF	max_features = 'auto', n_estimators = 500
	XGB	learning_rate = 0.01, max_depth = 10, n_estimators = 50

 Table S2. Optimal hyperparameters in this work (continue)

Class	Feature Name	Unit	AUC	p-value ^a
	Net charge of all CDRs	e	0.521	***
Not Change	Net charge of CDR1	e	0.556	***
Net Charge	Net charge of CDR2	e	0.413	***
	Net charge of CDR3	e-	0.521	***
	AggScore	unitless	0.506	***
Aggregation	Zyaggregator	unitless	0.489	***
	Zyaggregator_p	unitless	0.541	***
Solvent-Accessible	SASA of all hydrophobic atoms	$Å^2$	0.502	**
Surface Area	SASA of exposed hydrophobic atoms	$Å^2$	0.512	**
	Partial specific volume (v _{bar})	mL/g	0.474	*
	Molecular weight (M)	Da	0.470	
	Anhydrous volume sphere radius (R _o)	Å	0.465	
	Anhydrous radius of gyration (Rg)	Å	0.628	***
	Maximum dimenstion (D _{max})	Å	0.598	***
	Axial ratio	unitless	0.584	***
Hydrodynamic	frictional ratio	unitless	0.600	***
properties	Translational diffusion coefficients (D _t)	cm ² /s	0.424	***
	Translational hydrodynamic radius (R _{trans})	Å	0.576	***
	Sedimentation coefficients (s)	second	0.426	***
	Rotational diffusion coefficients (D _r)	s^{-1}	0.404	***
	Rotational hydrodynamic radius (R _{rot})	Å	0.596	***
	Tumbling correlation time (tauC)	second	0.596	***
	Asphericity	unitless	0.621	***
	Length of all CDRs	count	0.482	*
CDD L are ath	Length of CDR1	count	0.393	***
CDR Length	Length of CDR2	count	0.530	
	Length of CDR3	count	0.545	***

Table S3. The classifying performance of physicochemical properties of scFvs

^a *** p < 0.001, ** p < 0.01, and * p < 0.05

Class	Feature Name	Unit	AUC	p-value ^a
	Glycine (Gly) counts in CDR3	count	0.521	***
	Glutamine (Gln) counts in CDR3	count	0.545	***
	Arginine (Arg) counts in CDR3	count	0.510	***
	Valine (Val) counts in CDR3	count	0.455	***
	Tryptophan (Trp) counts in CDR3	count	0.384	***
	Glycine (Gly) ratio in CDR3	unitless	0.506	***
	Glutamine (Gln) ratio in CDR3	unitless	0.512	***
	Arginine (Arg) ratio in CDR3	unitless	0.507	***
	Valine (Val) ratio in CDR3	unitless	0.447	***
	Tryptophan (Trp) ratio in CDR3	unitless	0.382	***
- Polyreactive	Glycine (Gly) counts in CDRH3	count	0.558	***
motifs	Glutamine (Gln) counts in CDRH3	count	0.498	
	Arginine (Arg) counts in CDRH3	count	0.508	***
	Valine (Val) counts in CDRH3	count	0.483	
	Tryptophan (Trp) counts in CDRH3	count	0.383	***
	Two valine motif counts (VV) in CDRH3	count	0.508	***
	Two tryptophan motif counts (WW) in CDRH3	count	0.482	***
	Glycine (Gly) ratio in CDRH3	unitless	0.548	***
	Glutamine (Gln) ratio in CDRH3	unitless	0.498	
	Arginine (Arg) ratio in CDRH3	unitless	0.505	***
	Valine (Val) ratio in CDRH3	unitless	0.477	**
	Tryptophan (Trp) ratio in CDRH3	unitless	0.383	***
	Isoelectric point of scFv	unitless	0.535	***
Isoelectric points	Isoelectric point of CDR	unitless	0.504	*

Table S4. The classifying performance of polyreactive motifs and isoelectric points of scFvs

^a *** p < 0.001, ** p < 0.01, and * p < 0.05