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Details of the Deep Network Architectures 

3D Residual Network 

The 3D residual network applied in this study is an extension of residual networks or ResNets with 

3D components instead of 2D ones. Historically, the trend of making networks deeper to increase 

their modeling capabilities was hindered by vanishing gradient. After numerous applications of 

the chain rule, the gradients from which the loss function is derived simply drop to zero when the 

network is too deep. As a consequence, the weights at higher layers never update their values, 

hence no learning takes place. By introducing skip connections, gradients can flow backward from 

deeper layers to initial filters directly via these connections. Skip connections enable the network 

to easily model the identity function, where the output of a function becomes its input. More 

specifically, instead of learning the output function 𝐻(𝑥) = 𝑓(𝑥), the output is changed into 

𝐻(𝑥) = 𝑓(𝑥) + 𝑥. Simply, by setting 𝑓(𝑥) = 0, 𝐻(𝑥) becomes the identity function. Figure 1.a 

shows the architecture of the 3D residual network applied in this study. The most important part 

of the architecture is the stack of residual blocks and skip connections to preserve the gradient. 

Further to preserving gradient, another reason that skip connections prove useful is the fact that 

the learned features correlate to lower semantic information retrieved from the input in prior levels. 

That information become too abstract if the skip connections are not utilized in this architecture. 

CBAM: Convolutional Block Attention Module 

When it comes to feed-forward convolutional neural networks, CBAM is a simple yet effective 

attention module. Given an intermediate feature map, the module progressively infers attention 

maps along two different dimensions, i.e., channel and spatial, and then multiplies the attention 

maps by the input feature tensors to perform adaptive feature refinement on the intermediate 

feature tensors. The fact that CBAM is a lightweight and universal module means that it can be 

smoothly integrated into any CNN architecture with minimal overhead and that it is trainable from 

start to finish alongside the base CNNs. 

As mentioned above, CBAM consists of two sequential separate attention mechanisms, 

channel attention, and spatial attention. Because each channel of a feature tensor may be 

considered as a feature detector, channel attention is focused on 'what' is significant in the context 

of an input image when using feature tensors. Channel attention begins by aggregating spatial 

information from the feature tensor using both average-pooling and max-pooling processes, 

resulting in the generation of two separate spatial context descriptors for each feature map: 𝐹𝑎𝑣𝑔
𝑐  
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and 𝐹𝑚𝑎𝑥
𝑐 , which denote average-pooled features and max-pooled features, respectively. 

Afterwards, both descriptors are forwarded to a shared network, which generates the channel 

attention map 𝑀𝑐 ∈ 𝑅1×1×1×𝐶, where C is the number of channels. The shared network is made up 

of a multi-layer perceptron (MLP) with one hidden layer. Following the application of the shared 

network to each descriptor, the resulting feature tensors are combined by applying element-wise 

summing to form a single feature tensor. To summarize, the channel attention module is computed 

as 𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))), where 𝜎 denotes the sigmoid 

function.  

The next step is to compute spatial attention. In order to build a spatial attention map, the 

spatial attention module uses the inter-spatial relationship between features. At the other end of 

the spectrum from channel attention, spatial attention focuses on 'where' informative features are 

located in the image, and it is considered a complement to the channel attention. Using average-

pooling and max-pooling operations along the channel axis, the spatial attention map can be 

calculated. A convolution layer is applied to the concatenated feature descriptor in order to 

construct a spatial attention map based on it, i.e., 𝑀𝑠(𝐹) ∈ 𝑅𝑋×𝑌×𝑍. The channel information in 

the feature tensor is aggregated via the use of two pooling processes, resulting in the generation of 

two 3D maps: 𝐹𝑎𝑣𝑔
𝑠 ∈ 𝑅𝑋×𝑌×𝑍×1 and 𝐹𝑚𝑎𝑥

𝑠 ∈ 𝑅𝑋×𝑌×𝑍×1, that denote the average-pooled features 

over the channel, and the max-pooled features, respectively. Formally, 𝑀𝑠(𝐹) =

𝜎(𝑓7×7×7([𝐹𝑎𝑣𝑔
𝑠 ; 𝐹𝑚𝑎𝑥

𝑠 ])), where 𝜎 is the sigmoid function and 𝑓7×7×7 is the convolution function 

with the filter size of 7 × 7 × 7. 

The channel and spatial modules are applied to the intermediate feature maps sequentially and 

output the refined features. Figure 1.e shows the architecture of CBAM. In our proposed 

architecture, the CBAM block was added right before the 3D average pooling layer to filter out 

irrelevant information and focus on important details for classification. Figure 1.b shows the 

proposed architecture augmented with CBAM.  

The Self-attention Module 

A self-attention module is defined as a tensor mapping that transforms the input tensor to a query, 

a key, and a value tensor. The key and value are learned features extracted by convolution blocks, 

and the query determines which values to focus on for the learning process. The role of 3D 

convolution blocks (1 × 1 × 1 convolutions) before the key, query, and value is to perform linear 

transformations on the input feature tensors. The key, query, and value vectors are denoted by 
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𝑘(𝑥), 𝑞(𝑥), and 𝑣(𝑥) and are calculated as 𝑘(𝑥) = 𝑊𝑘𝑥, 𝑞(𝑥) = 𝑊𝑞𝑥, and 𝑣(𝑥) = 𝑊𝑣𝑥, where 

𝑊𝑘, 𝑊𝑞, and 𝑊𝑣 are all 1 × 1 × 1 convolution filters and x is the feature tensor coming from the 

previous layer. After reshaping to permit matrix multiplications, 𝑘(𝑥), 𝑞(𝑥) and  𝑣(𝑥) ∈ 𝑅𝑁×𝐶, 

where C is the number of channels and 𝑁 = 𝑋 × 𝑌 × 𝑍 is the number of elements in the input 

feature tensor. The self-attention map 𝛼 can be calculated as 𝛼𝑖,𝑗 =
exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)

𝑇
)

∑ exp (𝑞(𝑥𝑖)𝑘(𝑥𝑗)
𝑇

)𝑛
𝑖=1

. 𝑎𝑖,𝑗 is the 

correlation between the feature element 𝑖 and other feature elements, and 𝑗 is the index of 

corresponding output position. The output of the attention branch is 𝑜 = (𝑜1, 𝑜2, … , 𝑜𝑁)𝑇 ∈ 𝑅𝑁×𝐶, 

where 𝑜𝑗 = ∑ 𝑎𝑖,𝑗𝑣(𝑥𝑖)
𝑁
𝑖=1 . Finally, a 1 × 1 × 1 convolution (𝑊𝑜) is applied to the reshaped output 

(∈ ℝ𝑋×𝑌×𝑍×𝐶) to keep the number of channels consistent between the input and output feature 

tensors of the attention layer (𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑊𝑜𝑜). Figure 1.f shows the self-attention block. Our 

proposed self-attention-guided 3D residual network architecture is demonstrated in Figure 1.c.  

The 3D self-attention module is added to the architecture after each residual block to ensure 

deriving long-range dependencies along with the convolution layers that mostly capture local 

features and dependencies.  

3D Visualization 

In order to provide explainability to the model, we proposed a framework for creating 3D heatmaps 

of the importance that highlight areas with the most contribution to the network’s decision. For 

each voxel (or cubic super-voxel) in the MRI volume (or volumetric ROI within MRI), the 

importance is calculated by the absolute difference in network’s output probability with and 

without that specific voxel. More specifically, the impact is defined as 𝑖𝑚𝑝𝑎𝑐𝑡 = |𝑝(𝑥) − 𝑝(𝑥/𝑖)|, 

were 𝑝(𝑥/𝑖) is the output probability of the network after occluding voxel 𝑖. The following steps 

are then performed to generate a 3D heatmap of importance:  

i. For each point (voxel center) in the MRI volume a vector [𝑥, 𝑦, 𝑧, 𝑟, 𝑔, 𝑏] is assigned, where 

𝑥, 𝑦, 𝑧 refer to the position of the point and 𝑟, 𝑔, 𝑏 refer to the color of the point which shows 

its impact (or intensity) according to a pre-defined color-coding scheme (color map). 

ii. The generated point cloud is then normalized (each 𝑥, 𝑦, 𝑧 are normalized between 0 and 1) 

iii. A desired surface within the MRI volume is specified. Since the impact of all voxels within 

the MRI volume is estimated and color-coded, it is possible to explore and visualize any 

desired areas throughout the MRI (or the volumetric ROI), for a comprehensive 
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understanding of how different intra- and peri-lesional regions contribute to the network’s 

decisions in therapy outcome prediction. 

iv. Since the number of points in the point cloud is limited, in order to improve the quality of 

the final 3D heatmap, interpolation is performed to generate new random points with the 

constraint of being on the specified surface. 

v. Using a k-nearest neighbor algorithm the 10 closest points to each newly generated point 

are identified and their average color code is assigned it. 

vi. The interpolated point cloud is used to calculate and generate surface normal orientations at 

each point required for surface reconstruction. Calculating normal orientations was done 

using a minimum spanning tree. 

vii.Once the normal orientations are calculated, using the Poisson surface reconstruction 

techniques a smooth surface is generated showing important regions contributing to network 

decisions.   

Figure S1 shows the overall procedure for generating a desired 3D surface from the initial point 

cloud. 

 

Figure S1 – The procedure for creating explorable 3D brain models and visualization heatmaps from a set of individual 

slices. (a) initially, the coordinates (𝑥, 𝑦, 𝑧 ) of each voxel center in the MRI volume is determined. Since the number 

of slices is often limited, the resulting point cloud consists of multiple clusters with the same 𝑧 and different 𝑥 and 𝑦 

which is visually undesirable. To mitigate this issue, the points between slices are randomly interpolated, (b) the point 

cloud after the inter-slice interpolation, (c) the 3D brain model after assigning an intensity to each point in the point 

cloud and surface reconstruction, (d) applying the same procedure to generate a color-coded 3D visualization heatmap 

of importance for a lesion within the brain.  
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Supplementary Tables 

Table S1. Patient Characteristics 

Clinical Features / Outcome 
Training Set 

(99 Patients and 116 lesions) 

Test Set 

(25 patients and 40 lesions) 

Age            62 ± 15 years         63 ± 17 years 

Gender 

     Male            39 patients (39%)         11 patients (44%) 

     Female            60 patients (61%)         14 patients (56%) 

Number of Brain Metastases 

One lesion 34 patients (34%) 9 patients (36%) 

Two lesions 35 patients (35%) 7 patients (28%) 

Three lesions 11 patients (11%) 4 patients (16%) 

More than three lesions 19 patients (19%) 5 patients (20%) 

Tumour Size (Longest Diameter) 
Range: 0.4 – 7 cm 

Mean: 1.99 cm 

Range: 0.6 – 6.6 cm 

Mean: 2.06 cm 

Tumour Location 

Supratentorium 87 lesions (75%) 29 lesions (72.5%) 

Infratentorium 29 lesions (25%) 11 lesions (27.5%) 

Histology 

Lung cancer 58 lesions (50%) 23 lesions (57.5%) 

Breast cancer 26 lesions (22%) 9 lesions (22.5%) 

Melanoma cancer 9 lesions (8%) 3 lesions (7.5%) 

Colorectal cancer 7 lesions (6%) 0 lesions (0%) 

RCC cancer 8 lesions (7%) 1 lesion (2.5%) 

Other 8 lesions (7%) 4 lesions (10%) 

Total Dose (Over 5 Fractions) 

22.5 Gy 1 lesion (1%) 0 lesions (0%) 

25 Gy 20 lesions (17%) 8 lesions (20%) 

27.5 Gy 6 lesions (5%) 2 lesions (5%) 

30 Gy 73 lesions (63%) 20 lesions (50%) 

32.5 Gy 7 lesions (6%) 6 lesions (15%) 

35 Gy 9 lesions (8%) 4 lesions (10%) 

Previous WBRT 

Yes 45 lesions (39%) 9 lesions (22.5%) 

No 71 lesions (61%) 31 lesions (77.5%) 

Prior SRT/SRS 

Yes 1 lesion (1%) 0 lesions (0%) 

No 115 lesions (99%) 40 lesions (100%) 

Graded Prognostic Assessment (GPA) 

0.00 –1.00 15 patients (15%) 3 patients (12%) 

1.01–2.00 39 patients (39%) 14 patients (56%) 

2.01–3.00 36 patients (36%) 3 patients (12%) 

3.01– 4.00 9 patients (9%) 5 patients (20%) 

SRT Outcome 

Crude LC 70 lesions (60%) 23 lesions (57.5%) 

Crude LF 46 lesions (40%) 17 lesions (42.5%) 
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Table S2. Experimental results of the proposed framework on the validation set for 3D residual network, 3D residual 

network + CBAM attention, and 3D residual network + self-attention with different hyperparameters and pre-training 

settings. 

Model 
Pre-train 

(UCF101) 

Pretrain 

(BraTS) 

Learning 

Rate 

Batch 

Size 
Epochs Accuracy Sensitivity Specificity 

3D Residual Network ✓ ✓ 0.003 4 300 80% 66.7% 88.9% 
3D Residual Network + BiT ✓ ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + CBAM Attention ✓ ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + CBAM Attention + BiT ✓ ✓ 0.003 4 300 80% 100% 66.7% 
3D Residual Network + Self-attention ✓ ✓ 0.003 4 300 86.7% 83.3% 88.9% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.003 4 300 86.7% 83.3% 88.9% 
3D Residual Network   0.003 4 300 60% 66.7% 55.6% 
3D Residual Network  ✓ 0.003 4 300 73.3% 66.7% 77.8% 
3D Residual Network + BiT  ✓ 0.003 4 300 73.3% 83.3% 66.7% 
3D Residual Network + Self-attention + BiT  ✓ 0.003 4 300 80% 83.3% 77.8% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.00001 4 300 73.3% 83.3% 66.7% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.01 4 300 80% 83.3% 77.8% 
3D Residual Network + Self-attention + BiT ✓ ✓ 0.003 8 300 86.7% 100% 0.78% 

 

 

Table S3. Table 1. Results of radiotherapy outcome prediction for different models on the training, validation, and 

test sets. Acc: Accuracy; Sens: sensitivity; Spec: specificity. 

Network 

Train Set Validation Set Independent Test Set 

Acc. Sens. Spec. AUC 
F1-

Score 
Acc. Sens. Spec. AUC 

F1-

Score 
Acc. Sens. Spec. AUC 

F1-

Score 

3D Residual Network 85% 75% 91.8% 0.88 80% 80% 66.7% 88.9% 0.84 72.7% 80% 71% 87% 0.83 75% 

3D Residual Network + 

BiT 
85% 77.5% 90% 0.89 80% 80% 83.3% 77.8% 0.86 76.9% 80% 82.4% 78.% 0.84 77.8% 

3D Residual Network + 

CBAM Attention 
87% 80% 91.8% 0.95 83.1% 80% 83.3% 77.8% 0.88 76.9% 80% 82.4% 78.2% 0.87 77.8% 

3D Residual Network + 

CBAM Attention + BiT 
87% 82.5% 90% 0.95 83.5% 80% 100% 66.7% 0.88 80% 80% 88.2% 73.9% 0.88 78.9% 

3D Residual Network + 

Self-attention 
89% 82.5% 93.5% 0.97 85.7% 86.7% 83.3% 88.9% 0.89 83.3% 82.5% 76.5% 87% 0.88 78.8% 

3D Residual Network + 

Self-attention + BiT 
90% 82.5% 95% 0.98 86.8% 86.7% 83.3% 88.9% 0.93 83.3% 82.5% 82.4% 82.6% 0.91 80% 

 


