Supplementary information

Exercise plasma boosts memory and dampens brain inflammation via clusterin

In the format provided by the authors and unedited

Exercise plasma boosts memory and dampens brain inflammation via clusterin

Zurine De Miguel^{1,2,8,11,#}, Nathalie Khoury^{1,8,11†}, Michael J. Betley^{1,3,†}, Benoit Lehallier^{1,8,11,##}, Drew Willoughby^{1,8,11}, Niclas Olsson^{4,###}, Andrew Yang^{1,8,11}, Oliver Hahn^{1,8,11}, Nannan Lu^{1,8,11}, Ryan Vest^{1,8,11}, Liana Bonanno^{1,8,11}, Lakshmi Yerra⁶, Lichao Zhang⁹, Nay Lui Saw⁵, J. Kaci Fairchild⁶, Davis Lee^{1,8,11}, Hui Zhang^{1,8,11}, Patrick L. McAlpine¹⁰, Mehrdad Shamloo⁵, Joshua E. Elias^{4,9}, Thomas A. Rando^{1,6,8}, Tony Wyss-Coray^{1,6,8,11}

- 2 Psychology Department, California State University, Monterey Bay, CA, USA.
- 3 Neurosciences Graduate Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
- 4 Department of Chemical and Systems Biology, Stanford Medicine, Stanford, CA 94305, USA.
- 5 Behavioral and Functional Neuroscience Laboratory, Stanford Medicine, Stanford, CA 94305, USA.
- 6 The Veterans Affairs Palo Alto HealthCare System, Palo Alto, CA 94305, USA.

7 Glenn Center for the Biology of Aging and Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.

9 Chan Zuckerberg Biohub, Stanford, CA, USA

10 Otolaryngology Head and Neck Surgery Research Division, Stanford University, Stanford, CA 94305

11 Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.

† These authors contributed equally to this work.

*Correspondence to twc@stanford.edu (T.W.-C.)

current address: California State University, Monterey Bay, CA, USA ## current address: Alkahest, Inc., San Carlos, CA, USA ### current address: Calico Life Sciences LLC, South San Francisco, CA, USA

¹ Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.

Table of SI contents

Table #	Title
Sup. Tab. 1	RP vs CP HC
Sup. Tab. 2	REVIGO on GO from RP vs CP HC
Sup. Tab. 3	LPS - RP
Sup. Tab. 4	PCA
Sup. Tab. 5	Fluidigm
Sup. Tab. 6	REVIGO on GO from LPs - RP HC
Sup. Tab. 7	MS - RP
Sup. Tab. 8	PCA
Sup. Tab. 9	REVIGO on GO from MS - RP
Sup. Tab. 10	BEC Sal, LPS, LPS+CLU
Sup. Tab. 11	GO Up LPS Down CLU
Sup. Tab. 12	GO Down LPS Up CLU
Sup. Tab. 13	BEC WT, APP, CLU
Sup. Tab. 14	GO Up APP Down CLU
Sup. Tab. 15	GO Down APP Up CLU
Sup. Tab. 16	GO Common 20 genes
Sup. Tab. 17	Proteins human
Sup. Tab. 18	GO human proteins
Sup. Tab. 19	Complement and coagulation
Sup. Tab 20	Patients Demographic

Supplementary Table 1

Bulk RNA-sequencing hippocampal gene counts from mice injected with CP or RP.

Supplementary Table 2

List of redundancy depleted Gene Ontology terms. *P*-value of the enriched GO terms was provided by the authors and calculated using the Fisher Exact test on DEGs comparing mice injected with CP or RP (Wald test, P < 0.05). Semantic similarity measure was Resnik measurement (0.7 distance).

Supplementary Table 3

Bulk RNA-sequencing hippocampal gene counts from male mice (3-4 months of age) injected with LPS were treated with saline, runner plasma or control plasma (SAL – LPS, LPS – CP or LPS - RP). An additional control group received saline for all injections (SAL – SAL) (n=7-8 per group).

Supplementary Table 4

Complete list of selected DEGs (*P* <0.05 Wald test) across all comparisons (SAL – SAL vs SAL – LPS; SAL – LPS vs LPS – CP; SAL – LPS vs LPS - RP).

Supplementary Table 5

List of target and housekeeping genes in the Fluidigm 96.96 Dynamic Array IFC for Gene Expression chip.

Supplementary Table 6

List of redundancy depleted Gene Ontology terms. *P*-value of the enriched GO terms was provided by the authors and calculated using the Fisher Exact *t*-test on DEGs comparing mice injected with LPS and treated with saline, runner plasma or control plasma (SAL – LPS, LPS – CP or LPS - RP) and mice that received saline for all injections (SAL – SAL) (Wald test, P < 0.05). Semantic similarity measure was Resnik measurement (0.7 distance).

Supplementary Table 7

Abundance of plasma proteins from 28-day-runner and control male mice detected via shotgun mass spectrometry proteomic unbiased approach.

Supplementary Table 8

List of significantly changed proteins (Student's two-tailed t test, *P* <0.05) in plasma samples from 28-day-runner or control male.

Supplementary Table 9

List of redundancy depleted Gene Ontology terms. *P*-value of the enriched GO terms was provided by the authors and calculated using the Fisher Exact test on significantly changed proteins (Student's two-tailed t test, P < 0.05) between 28-day-runner and control mice. Semantic similarity measure was Resnik measurement (0.7 distance).

Supplementary Table 10

List of genes and their corresponding FC and significance (MAST test, FDR < 0.05) when comparing gene expression in BECs of mice treated with Saline, LPS, and LPS+CLU.

Supplementary Table 11

List of Gene Ontology terms (Benjamini-Hochberg test, P <0.05) of BECs genes that increase with LPS inoculation and decrease with CLU treatment

Supplementary Table 12

List of Gene Ontology terms (Benjamini-Hochberg test, P <0.05) of BECs genes that decrease with LPS inoculation and increase with CLU treatment

Supplementary Table 13

List of genes and their corresponding FC and significance (Benjamini–Hochberg adjustment test, FDR < 0.05) when comparing gene expression in BECs of APP mice treated with Saline or CLU and WT mice using a fold change of 1.1.

Supplementary Table 14

List of Gene Ontology terms (Benjamini-Hochberg test, P <0.05) of BECs genes that increase in APP mice and decrease with CLU treatment using a fold change of 1.1.

Supplementary Table 15

List of Gene Ontology terms (Benjamini-Hochberg test, P <0.05) of BECs genes that decrease in APP mice and decrease with CLU treatment

Supplementary Table 16

List of Gene Ontology terms (Benjamini-Hochberg test, P <0.05) of BECs genes that are commonly changed by LPS or APP and reversed by CLU using a fold change cutoff of 1.05.

Supplementary Table 17

Gene identification of significantly changed plasma proteins (paired Student's two-tailed *t*-test, P < 0.05) in humans before and after 6 months of exercise intervention.

Supplementary Table 18

List of Gene Ontology terms (Fisher Exact *t*-test) of significantly changed human plasma proteins (paired Student's two-tailed *t*-test, P < 0.05) in humans before and after 6 months of exercise intervention.

Supplementary Table 19

Comparison of changes in complement and coagulation plasma proteins in humans before and after 6 months of exercise intervention (paired Student's two-tailed *t*-test, P < 0.05) and 28-day runner mice and control (Student's two-tailed *t*-test, P < 0.05).

Supplementary Table 20

Description of patient's demographic information