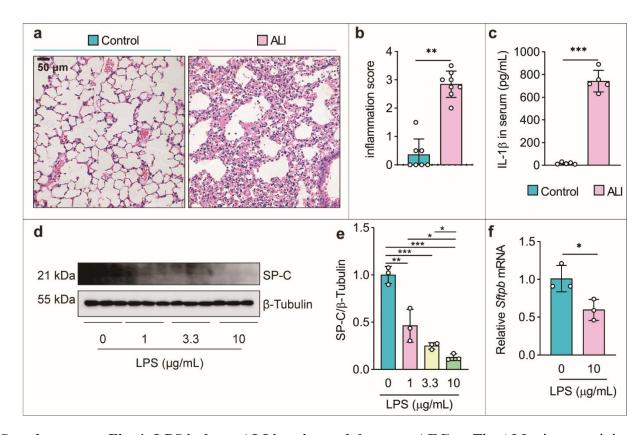
1 Materials and Methods

2 **RNA-Seq Gene Expression Analysis**

The transcriptome sequencing experiments were performed by Genechem Co., LTD. (Shanghai, 3 China). Briefly, total RNA was extracted from control and Slc25a1 plus Idh 3α -deficient MLE12 cells. 4 The transcriptome library for sequencing was generated using NEBNext® UltraTM RNA Library Prep 5 Kit for Illumina®, following the manufacturer's recommendations. The index codes were added to 6 attribute sequences to each sample. After the quality of sequencing libraries was confirmed on the 7 Agilent 2100 system, clustering of the index-coded samples was performed on a cBot Cluster 8 Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia, San Diego, CA, USA) 9 according to the manufacturer's instructions. The library preparations were then sequenced on an 10 Illumina Hiseq 2500 platform (Illumina, San Diego, CA, USA), and paired-end reads were generated. 11 12 Transcriptome assembly was accomplished based on the left.fq and right.fq using Trinity with min kmer cov set to 2 by default and all other parameters set to default. 13

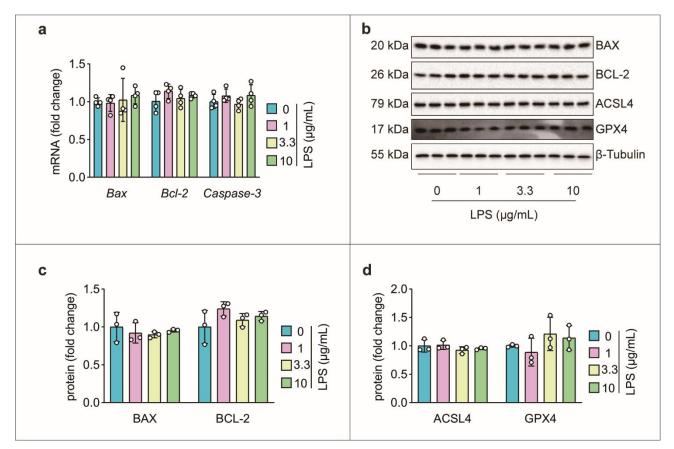
14 Supplementary Tables

Gene	Forward primer (5'–3')	Reverse primer (5'–3')	
Idh3a	TTGCTGGTGGTGTTCAGACA	ATTGCTGTGACATTGCGCTC	
Sdhlpha	AGAGATACGCACCTGTTGCC	ACTGGGATGGGCTCCTTAGT	
Slc25a1	TGCAGCCAGTGTCTTTGGAA	AGGATCTTCAAGCCGCAGTC	
Acly	TTCCTCCTTAATGCCAGCGG	AGGGATCTTGGACTTGGGACT	
Mfn l	CCTACTGCTCCTTCTAACCCA	AGGGACGCCAATCCTGTGA	
Mfn2	CGGTTCACTGTACCCCACTT	GAGGCCAGTAGTGTTGCCTT	
Sftpb	TGCCCCTGGTTATTGACTACTT	CCTGGATTCTGTTCTGGCTTAG	
Bax	GTCCACGTCAGCAATCATCC	GAGACACCTGAGCTGACCTT	
Bcl-2	AAACCCTCCATCCTGTCCAG	CCCTTTCCTAGACCCAGCAA	
Caspase-3	GAGCTTGGAACGGTACGCTAA	GAGTCCACTGACTTGCTCCC	
β -actin	TTCCAGCCTTCCTTCTTG	GGAGCCAGAGCAGTAATC	

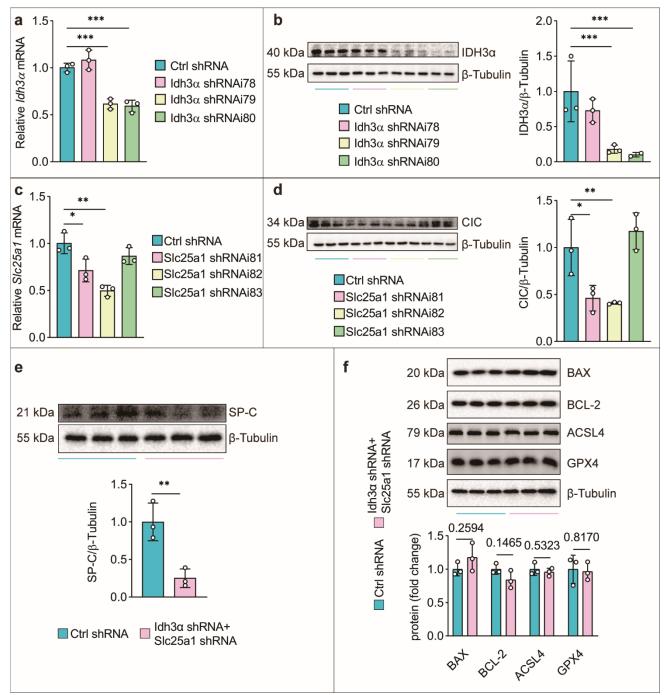

Antibodies	Source	Catalog	Dilution ratio
Primary antibodies for Western blotting			
Rabbit anti-CIC polyclonal antibody	Thermo-Fisher	PA5-85163	1:2000
Rabbit anti-IDH3 polyclonal antibody	Abcam	Ab228596	1:2000
Rabbit anti-MLKL polyclonal antibody	Abcam	Ab172868	1:2000
Rabbit anti-phospho-MLKL phospho-S345 nonoclonal antibody	Abcam	Ab196436	1: 2000
Rabbit-anti-RIPK3 polyclonal antibody	Abcam	Ab62344	1:2000
Rabbit anti-phospho-RIPK3 phospho-S232 nonoclonal antibody	Abcam	Ab195117	1:2000
Rabbit anti-Caspase-8 polyclonal antibody	Affinity	Ab-AF6442	1:2500
Rabbit anti-DRP1 monoclonal antibody	Abcam	Ab184247	1:2000
Rabbit anti-phospho-DRP1 phospho-S616	Cell Signaling Technology	# 3455	1:2500
Rabbit anti-PINK1 polyclonal antibody	Abcam	Ab23707	1:2000
Rabbit anti-LC3II/LC3I monoclonal antibody	Cell Signaling Technology	# 12741	1:2000
Rabbit anti-FUNDC1 monoclonal antibody	Cell Signaling Technology	#49240	1:2000
Rabbit anti-GPX4 polyclonal antibody	ABclonal	A1933	1:2000
Rabbit anti-ACSL4 monoclonal antibody	Abcam	Ab155282	1:2000
Rabbit anti-BCL-2 polyclonal antibody	Cell Signaling Technology	#3498	1:2000
Rabbit anti-BAX polyclonal antibody	Cell Signaling Technology	#2772	1:2000
Rabbit anti-GAPDH polyclonal antibody	Servicebio	GB11002	1:2000
Rabbit anti-α-Tubulin polyclonal antibody	Servicebio	GB11200	1:7500
Rabbit anti-β-Tubulin polyclonal antibody	Servicebio	GB11017	1:7500
Secondary antibodies for Western blotting			
HRP-conjugated goat anti-rabbit IgG	Signalway Antibody	#L3012-2	1: 5000
Primary antibodies for Immunofluorescence			
Rabbit anti-TOM20 polyclonal antibody	Proteintech	# 11802-1-AP	1:200
Mouse anti-MLKL monoclonal antibody	Proteintech	66675-1-Ig	1:200
	Affinity	DF6647	1:200

17 Supplementary Table2. antibodies for Western blotting, Immunofluorescence, and IP assay

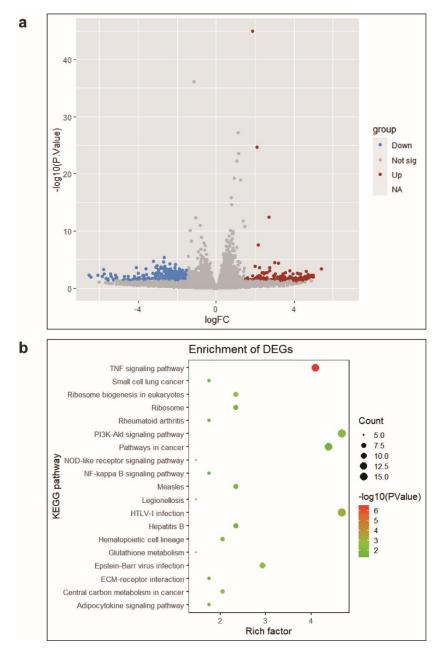
Rhodamine (TRITC) goat anti-rabbit IgG (H+L)Abclonal#AS0401: 400Cy5-conjugated goat anti-mouse IgG (H+L)ServicebioGB273011: 400Antibodies for IP assayCell Signaling Technology#85701: 100Rabbit anti-FUNDC1 monoclonal antibodyCell Signaling Technology#492401: 200	FITC goat anti-mouse IgG (H+L)	Abclonal	# AS001	1:400			
Antibodies for IP assayCell Signaling Technology#85701: 100Rabbit anti-EUNDC1 monoclonal antibodyCell Signaling Technology#492401: 200	× , , , , , , , , , , , , , , , , , , ,	Abclonal	#AS040	1:400			
Rabbit anti-DRP1 monoclonal antibodyCell Signaling Technology#85701: 100Rabbit anti-EUNDC1 monoclonal antibodyCell Signaling technology#492401: 200	Cy5-conjugated goat anti-mouse IgG (H+L)	Servicebio	GB27301	1:400			
Rabbit anti-DRP1 monocional antibodyTechnology#85701: 100Rabbit anti-EUNDC1 monocional antibodyCell Signaling#492401: 200	Antibodies for IP assay						
Rannit anti-RUNNIC E monocional antinodi \mathcal{O} \mathcal{O} $\pi \pi 49/40$ \mathcal{O} \mathcal{O}	Rabbit anti-DRP1 monoclonal antibody	0 0	#8570	1: 100			
	Rabbit anti-FUNDC1 monoclonal antibody	0 0	#49240	1:200			


20 Supplementary Figures and Figure legends

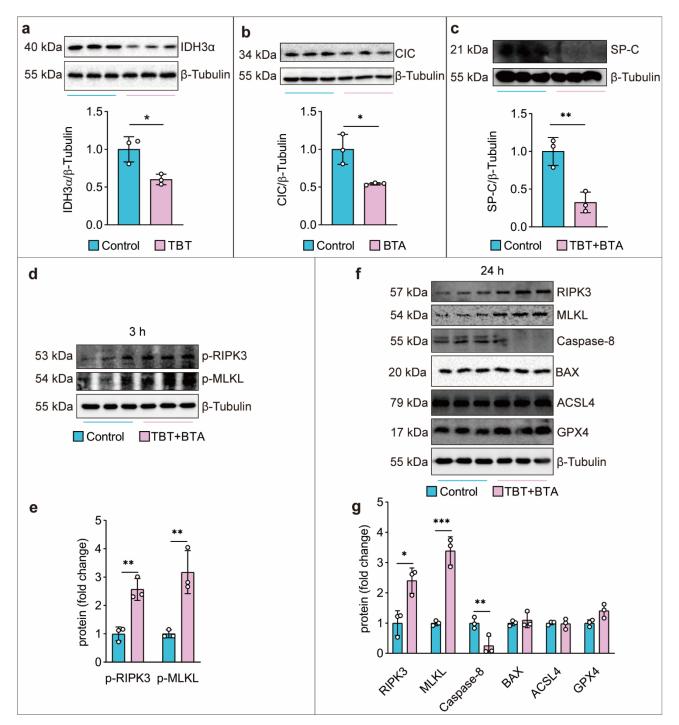
21


Supplementary Fig. 1. LPS induces ALI in mice and damages AEC. a. The ALI mice were injected 23 intratracheally with LPS (5 mg/kg, n=8) or physiological saline (Control group, n=7). Histology (H&E) 24 staining) of the right upper lung sections (n=7-8, scale bars=50 µm). b. Inflammation score was used 25 to quantify the degree of lung injury. Compared with controls, mice given LPS had increased 26 inflammation scores (n=7-8). c. IL-1 β content in serum was measured to quantify inflammation. 27 Compared with controls, mice given LPS had increased secretion of IL-1 β (*n*=7-8). d-f. The MLE12 28 29 cells were treated with an LPS concentration gradient from 0-10 µg/mL for 12 h (for gene detection) or 24 h (for protein detection). The expression of SP-C was measured to quantify AEC injury. 30 Compared with controls, MLE12 cells given LPS had reduced protein expression of SP-C (n=3) and 31 mRNA expression of *Sftp-b* (n=3). Data are shown as mean \pm SD. * P < 0.05, ** P < 0.01, and *** P32 < 0.001. 33

34

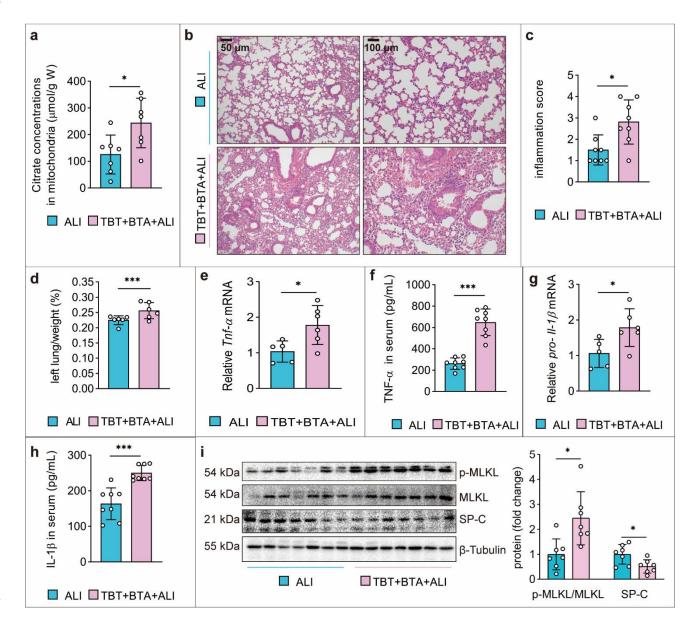

35 36 37

Supplementary Fig. 2. Indicated concentrations of LPS don't affect apoptosis or ferroptosis related-protein expression in MLE12 cells. The MLE12 cells were treated with an LPS concentration gradient from 0-10 µg/mL for 12 h (gene) or 24 h (protein). BAX, BCL-2, and Caspase-3 were 38 measured to quantify the apoptosis. a. Compared with control, MLE12 cells given indicated 39 concentration of LPS were unaffected in mRNA expression of *Bax*, *Bcl-2*, and *Caspase-3* (n=3). b-c. 40 Protein expression was concordant with the qRT-PCR results. Compared with controls, MLE12 cells 41 given indicated concentration of LPS were unaffected in protein expression of BAX or BCL-2 (n=3). 42 d. Expression of ACSL4 and GPX4 was measured to quantify ferroptosis of AEC. Compared with the 43 44 control, MLE12 cells given LPS were unaffected in protein expression of ACSL4 or GPX4 (n=3). 45 Data are shown as mean \pm SD.



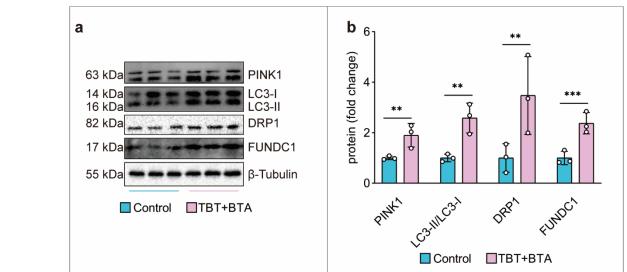
Supplementary Fig. 3. Effects of three pairs of shRNA expression vectors on Idh3 α and CIC gene and protein expression. Three pairs of shRNA expression vectors were transfected into MLE12 cells for 16 h. The cells were washed and cultivated for an additional 80 h. a-b. Compared with the control group, Idh3 α gene and protein expression were decreased in the shRNAi79 and shRNAi80 groups (*n*=2-3). c-d. CIC gene and protein expression were decreased in the shRNAi81 and shRNAi82 groups (*n*=3). e-f. Compared with controls, MLE12 cells given Idh3 α shRNA+Slc25a1 shRNA had reduced protein expression of SP-C (*n*=3), whereas there was no effect on protein expression of BAX, BCL-2,

- ACSL4, or GPX4 (n=3). Data are shown as the mean \pm SD. * P < 0.05, ** P < 0.01, and *** P < 0.0155 0.001.
- 56
- 57

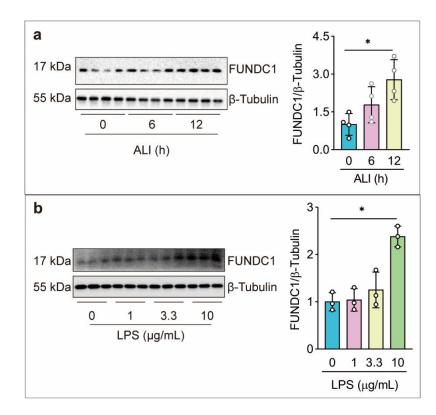

Supplementary Fig. 4. Transcription profiles of citrate^{mt}-accumulated cells. a. Volcano map
depicting genes upregulated (red) or downregulated (blue) 2-fold or more in MLE12 cells on 8 dpi. b.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway in citrate^{mt}-accumulated MLE12 cells
compared with control shRNA.

65

Supplementary Fig. 5. Simultaneous inhibition of IDH3 and CIC induces citrate^{mt} accumulation and damages AEC. a-b. MLE12 cells were treated simultaneously with the IDH3 inhibitor TBT (100 nM) and CIC inhibitor BTA (2 mM) or PBS for 24 h. The effects of inhibition were analyzed by immunoblotting (n=3). c. Expression of SP-C was measured to quantify AEC injury. Compared with controls, MLE12 cells simultaneously given TBT and BTA had reduced protein expression of SP-C (n=3). d-g. MLE12 cells simultaneously given TBT and BTA had increased amounts of p-RIPK3 and p-MLKL (n=3), augmented protein expression of RIPK3 and MLKL, and reduced expression of


- 73 Caspase-8, whereas there were no effects on BAX, ACSL4, or GPX4 (*n*=3). Data are shown as mean
- \pm SD. * P < 0.05, ** P < 0.01, and *** P < 0.001.

77


Supplementary Fig. 6. Inhibition of IDH3 and CIC expression aggravates lung tissue injury and 78 amplifies inflammation and necroptosis. Mice were intraperitoneally injected with both IDH3 79 inhibitor (TBT, 20 mg/kg body weight) and CIC inhibitor (BTA 20 mg/kg body weight) or 80 physiological saline every day for three days. Then mice were intratracheally injected with LPS (2.5 81 mg/kg, n=7) for 12 h. a. Compared with LPS-induced ALI, mice given LPS plus BTA and TBT had 82 increased content of citrate^{mt} (n=7). b. Histology (H&E staining) of the right upper lung sections (n=8, 83 Scale bars=50 or 100 µm). c. Inflammation score was used to quantify the degree of lung injury. 84 Compared with ALI, mice receiving ALI+TBT+BTA had increased inflammation scores (n=8). d. Left 85 lung/weight ratio was used to quantify the degree of pulmonary edema. Compared with ALI, mice 86

- given ALI+TBT+BTA had an increased left lung/weight ratio (n=6). e-h. The expression and secretion
- of TNF- α and IL-1 β in the lungs and serum were measured to quantify inflammation. Compared with
- ALI, mice given ALI+TBT+BTA had increased expression and secretion of TNF- α and IL-1 β (*n*=5-
- 8). Phospho-MLKL and MLKL were used to quantify necroptosis, and SP-C was measured to quantify
- 91 AEC injury. i. Compared with ALI, mice given ALI+TBT+BTA had increased p-MLKL/MLKL ratio
- 92 and reduced expression of SP-C (n=7). Data are shown as mean \pm SD. * P < 0.05, ** P < 0.01, and 93 *** P < 0.001.
- 94

96

97 Supplementary Fig. 7. Inhibition of IDH3 and CIC induces excessive mitophagy and enhances 98 the expression of DRP1 and FUNDC1. a-b. MLE12 cells treated with TBT and BTA simultaneously 99 had increased mitophagy related-protein expression, including PINK1 and LC3II/LC3I, and enhanced 100 expression of DRP1 and FUNDC1 (n=3). Data are shown as mean \pm SD. ** P < 0.01 and *** P <101 0.001.

105 Supplementary Fig. 8. Elevated expression of FUNDC1 in the lungs and MLE12 cells with LPS

challenge. a-b. The expression of FUNDC1 in the lungs (n=4) and MLE12 cells (n=3). Data are shown

107 as mean \pm SD. **P* < 0.05.