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Detailed description of the Rbec algorithm 

A schematic workflow of Rbec is shown in Fig. 1. A detailed, step-by-step description of the 

algorithm is detailed below. 

Dereplication and assignment of initial abundances 

Initial abundances for each sequence present in the reference database are inferred on the basis of 

the number of exact matches found in the uncorrected sequencing reads. First, merged reads are 

dereplicated into unique tags in a sample-wise manner. Sequence quality scores for each unique 

tag are averaged over the scores of all identical copies of that sequence and for every residue. Each 

reference sequence is assigned an initial abundance equal to the number of identical copies of that 

unique tag found in the sample. If a reference sequence does not have any tags that exactly matches 

it, the strain from which the reference sequence is derived is marked as ‘absent’ from the sample. 

Assignment of erroneous reads to error-generating reference sequences 

Unique tags that do not exactly match any sequence in the reference database are initially assumed 

to originate from erroneous sequencing reads generated by a given reference sequence. In order to 

identify the most likely error-generating reference sequence for each unique tag, k-mer (k=7) 

distances between each unique tag and each reference sequence are calculated. We use k-mer 

distances for pairwise comparisons between unique tag queries and reference sequences instead of 

computationally intensive global alignments to improve the time performance of the algorithm. In 

addition, these distance calculations can be performed in parallel to further increase performance 

(see parameter ‘threads’). The reference sequence showing the lowest k-mer distance to the query 

unique tag is marked as the candidate error-producing sequence from which the corresponding 

erroneous sequences originate. If multiple candidates with the same k-mer distance are found, only 
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the reference sequence with the highest initial abundance is considered as the original error-

generating sequence, as sequences with higher abundances are more likely to generate erroneous 

sequences. 

Estimation of the transition and error matrices 

To calculate the probability that an unique tag is produced by a given error-generating reference 

sequence, transition and error matrices need to be estimated. The transition matrix is a 20 by 43 

matrix where the rows represent the transition combinations (e.g., A→A, A→T, A→G, A→C, 

T→T, …, C→G, C→C; including insertions), and the columns represent the sequence quality 

scores. This transition matrix can be estimated by performing a global alignment between a random 

set of subsampled unique sequences (or ‘tags’; 5,000 reads by default) and the reference sequences. 

Entries in the transition matrix are calculated by counting the number of each transition 

combination along the length of the alignment. The log-transformed transition matrix is then fitted 

with a weighted loess function to generate the error matrix. 

Calculation of error-generation probabilities 

We assume that the mismatches between query and reference are generated independently, so the 

rate at which a unique tag i is produced from the error-generating reference j, designated λ, is 

calculated by the product over the error probabilities at each position of the alignment l: 

 

Where L is the total length of the alignment.  

Similar to the error-aware model implemented in DADA2 [1], the abundance probability of each 

unique tag is calculated using the Poisson distribution: 
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Where E is the expectation of the Poisson distribution, ai is the abundance of a unique tag i, and 

aj' is the aggregated abundances of all unique tags assigned to a reference sequence j. 

Unique tags with a P-value lower than 10-40, and an expectation lower than 0.05 are discarded. 

This expectation cut-off is intended to retain tags that could be produced at least once by the 

reference with the probability above 5%. The aim of this step is to retain tags that are generated 

from intra-strain amplicon sequence variants, which show high abundance relative to the reference 

sequence but do not exceed the P-value cut-off. It is possible that, for certain experiments, 

modifying these parameters could be useful. For instance, in a community containing very low 

abundance strains, lowering the minimum expectation threshold might increase the sensitivity of 

the algorithm. Similarly, if the presence of low-abundance contaminants closely related to a 

reference strain is of particular concern, increasing the minimum P-value threshold will help 

identify potential contaminants, at the risk of generating a larger number of false positives. 

As discussed above, Rbec is able to identify polymorphic paralogues of the marker gene for a 

given strain. By summing up the number of (polymorphic) paralogues identified for each reference 

sequence from each strain, we can obtain an estimate of the copy number of the marker gene for 

each strain in the SynCom. Normalization of the output relative abundances using this internally 

inferred copy number estimate is conducted by Rbec by default (see also documentation regarding 

output files), although this can be controlled by the user (see parameter ‘cn’). However, identical 

paralogues of the marker gene will not be detected, and the copy number inferred by Rbec may be 
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underestimated. Additionally, the user can provide a table with copy number information for each 

strain (e.g., obtained from whole-genome sequences, if available) for abundance normalization. 

Iterative correction of unique tags 

Tags above the P-value or E threshold are then randomly subsampled (5 000 reads by default) and 

aligned to the reference sequences in an iterative process. In each iteration, the error matrix is 

updated with tags corrected during the last iteration. The iterations continue until the number of 

corrected reads falls below two fixed thresholds, which we set to determine whether the iteration 

should stop or not. These two thresholds correspond to the absolute and relative differences in the 

number of corrected reads between the present and previous iterations, and are calculated as 

follows: 

 

 

Nk and Nk-1 denote the number of corrected reads in the kth and k-1th iteration respectively. The 

threshold based on relative differences is used to appropriately stop the iterative process for 

samples with low sequencing depths, since they can easily satisfy the cut-off based on absolute 

differences. Once both of these two conditions are met, iterations stop and each reference sequence 

is assigned an abundance equal to the aggregated abundance of all its assigned unique tags. 

Detection of contamination 

Existing error-correction algorithms designed for culture-independent community profiling data 

cannot accurately estimate the abundances of strains with marker gene paralogs, and show a strong 

bias towards underestimation of their abundances. In addition, paralog sequences are typically 

classified as sequence variants originating from different strains, resulting in an inflation of alpha-
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diversity (within sample diversity). When amplicon sequencing data obtained from synthetic 

communities is analysed using approaches such as closed OTU-picking, reads from paralog 

sequences are discarded, leading to low percentages of aligned reads per sample. Samples with 

high abundance of strains containing polymorphic paralogous marker sequences can thus be 

erroneously considered contaminated. Given that Rbec not only corrects most erroneous amplicon 

sequencing reads, but also successfully identifies paralogous sequences, we can assume that a high 

proportion of uncorrected reads is likely the result of contamination. 

We evaluated the capacity of Rbec to identify contaminated samples by performing an in silico 

simulated dataset, where we included amplicon sequences from Escherichia coli with 5% relative 

abundance per ‘contaminated’ mock sample. When examining the percentage of reads successfully 

corrected per sample (Fig. S6), we observed a clear separation between ‘clean’ and ‘contaminated’ 

mock samples. Based on these results, we included a function in Rbec that can be used to flag 

potentially contaminated samples and output the amplicon sequences of putative contaminants. 

A sample i is flagged as contaminated, if 

 

Where 𝑅!  is the recruitment ratio of reads of sample i, µ is the mean of recruitment ratio of reads 

across all samples in the dataset, and 𝐼𝑄𝑅 is the interquartile range of the recruitment ratio. If a 

sequence accounts for more than 3% of total reads after error correction, we assume this sequence 

originates from a contaminant strain. The accuracy of this heuristic approach depends on the 

abundance of the contaminant as well as in its prevalence across samples within a dataset. When 

contamination occurs in the majority of the samples in a dataset, low read requitement rations 

would be observed in general, and no individual samples will be flagged. Based on our analyses, 
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samples with less than 90% input reads successfully corrected should be considered as potentially 

contaminated and further examined. If low recruitment ratios are observed across all samples in 

dataset, putative contaminant sequences provided by Rbec, which can then be used for further 

analysis. If no prevalent contaminant sequences are identified across samples, low percentages of 

error-corrected reads can be attributed to other technical factors, such as derelict DNA from the 

environment or unusually high PCR or sequencing errors. 

Construction of accurate reference sequence databases 

Analysis of amplicon data derived from SynCom experiments relies on the use of accurate 

reference sequences derived from each strain. As explained above, Rbec uses this reference 

database for error correction, identification of polymorphic paralogs, and contaminant detection. 

Generally, these reference sequences have been previously generated from clonal cultures of 

individual SynCom members, either by extraction from their respected whole-genome sequences 

or by Sanger sequencing of the specific marker sequence. 

Independently of the method, inaccuracies in the references are likely to occur. For instance, 

assembly and subsequent extraction of rRNA gene sequences from genomes obtained using short-

read technologies are common, and PCR or sequencing errors from targeted amplification could 

likewise result in erroneous sequences. Whenever errors are present in the reference sequence, no 

identical unique tags will be identified during the first step of the Rbec algorithm, and the 

corresponding strain will be labeled as ‘absent’ from all samples. Other methods, such as closed 

OTU picking suffer from similar pitfalls, making this a general problem for SynCom data analysis. 

However, errors in the reference database can be corrected by leveraging the feature described 

above, which allows Rbec to predict potential contaminants. If a reference sequence is inaccurate 

but its corresponding strain is found in a given SynCom sample with at least a 3% relative 
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abundance, the ratio of corrected reads will decrease and Rbec will output the correct sequence as 

a putative contaminant. By identifying contaminant sequences with high similarity to reference 

sequences from strains labeled as ‘absent’, these inaccuracies can be readily corrected. Once the 

reference database has been updated, Rbec can be re-run on the same dataset to obtain accurate 

strain abundances.  

Differences with respect to other error-correction algorithms 

Current error-correcting methods for amplicon sequencing data (e.g., DADA2, Unoise, Deblur, 

and AmpliCI) are designed for the analysis of natural communities, for which we have limited 

prior knowledge about the microbial strains present in a sample. These algorithms identify the 

amplicon variants present in a sample by comparing low-abundance to high-abundance sequences. 

Rbec, however, is designed for processing SynCom data, and utilizes prior knowledge regarding 

community composition, which is provided by the user as a nucleotide FASTA file containing 

reference amplicon sequences for SynCom members. Several differences account for the improved 

performance of Rbec when analyzing SynCom data. Firstly, Rbec can more accurately identify 

sequences from low-abundance strains which are included in the reference database and which 

other error-correcting methods might falsely classify as errors. In addition, Rbec is able to detect 

the presence of polymorphic paralogues of the amplified marker sequence within the same strain. 

This is accomplished by implementing a threshold based on the expectation of the Poisson 

distribution, relying on the fact that polymorphic paralogues will have a high expectation value 

due to their similarity to the reference sequence of the strain from which they originate. Finally, 

Rbec takes into account insertions when generating the error matrix, unlike other algorithms such 

as DADA2. 
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Simulation of mock communities 

To evaluate the performance of the different algorithms when analysing with SynCom data with 

varying complexities, strain similarities, and sequencing depths, we simulated mock samples using 

data obtained from sequencing of clonal cultures individually. Firstly, reference sequences of the 

V5-V7 region from all the bacterial strains were dereplicated, resulting in 114 strains having 

unique sequences in the V5-V7 region. We first evaluated the performance of different methods 

by analysing samples obtained from single strain cultures (Fig. 1). To assess the impact of the 

presence of polymorphic copies of the marker gene, we differentiated samples derived from 

bacterial strains with or without 16S rRNA polymorphism using information from their whole-

genome assemblies. Next, we generated mock community samples with different complexities, 10 

to 110 strains from the candidate list containing 114 strains were randomly picked for each mock 

sample, with a step size of 10 strains. The relative abundance of each strain was simulated using a 

log normal distribution (s.d. = 2). The total number reads in each mock sample was fixed at 10 000 

reads, and the reads for each strain were subsampled from the amplicon sequencing output of each 

individual strain using Seqkit [2]. For instance, to generate a mock community with 3 strains, with 

relative abundances of 70%, 20%, and 10% respectively, 7 000, 2 000, and 1 000 reads would be 

sampled from each of the three individual amplicon samples and subsequently mixed to generate 

a mock sample (Fig. S7).  

To generate mock samples with different strain similarities, we set a maximum pairwise similarity 

threshold between each pair of strains in each mock community, ranging from 85% to 100%. To 

alleviate the influence of uneven abundance distribution of each strain on the evaluation, only 20 

strains with equal abundances (5% relative abundance for each strain) were included in mock 

communities. Similarly, to evaluate the impact of different sequencing depths on the performance 
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of the different algorithms, we simulated mock data with 50 strains at different depths, ranging 

from 500 to 10 000 reads. For each evaluation category, we generated 20 replicates for each 

parameter combination. 

In addition to mock samples of bacterial communities, we also generated fungal mock 

communities for the purpose of evaluating our algorithm on a different marker gene. 97 fungal 

strains with unique ITS1 sequences were set as seeds and randomly chosen to generate the fungal 

mock communities. 

Data processing with different methods 

Raw reads were merged using Flash2 [3]  with parameters ‘-m 0.25 -M 250’. Merged reads with 

ambiguous bases were excluded with USEARCH [4]. DADA2 and Deblur plug-ins in QIIME2 [5] 

were applied to the filtered data by following the protocols indicated on the QIIME2 website 

(https://docs.qiime2.org/2019.7/tutorials/), to correct the reads and generate ASV tables. We also 

included the recently published algorithm AmpliCI [6] for comparison purposes. We followed the 

instructions on the corresponding Github website (https://github.com/DormanLab/AmpliCI) to 

process the data and generate the ASV table. The abundances of ASVs showing exact matches to 

the reference sequences were extracted from this feature table. For the UNOISE tool [7], filtered 

reads were dereplicated by USEARCH and subsequently denoised using the -unoise3 function in 

USEARCH. For the exact match method, the filtered sequencing reads were aligned to the 

reference database by running the -uparse_ref command in USEARCH. Only hits with 100% 

identities were retained for generating the profiling table. The Deblur and AmpliCI methods were 

not applied to fungal data since the two methods require the equal length of input data, while the 

length of ITS sequences shows a large variation among strains. 
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We applied the DADA2, UNOISE, Deblur, exact match, closed OTU picking, and Rbec methods 

to the simulated data sets. Finally, we calculated the Bray Curtis dissimilarities between the 

predicted profiling tables from different methods and the real composition for each mock sample 

(ground truth) using the vegan R package [8] to evaluate the performance of each algorithm. 

Significance differences between methods were assessed using a pairwise Wilcoxon test.  

We also compared the precision and recall of the two second-best performing methods, namely, 

DADA2 and exact match classification with Rbec, using the following formulas: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑜.		𝑜𝑓	𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑙𝑦	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	reads	

𝑇𝑜𝑡𝑎𝑙	𝑁𝑜.		𝑜𝑓	𝑟𝑒𝑎𝑑𝑠  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑜. 𝑜𝑓	𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑙𝑦	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝑟𝑒𝑎𝑑𝑠

𝑁𝑜. 𝑜𝑓	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑	𝑟𝑒𝑎𝑑𝑠  

Time performance 

The CPU time of Rbec on a single sample was tested on an Intel processor (Intel(R) Xeon(R) 

CPU E5-4657L v2 @ 2.40GHz) with 48 CPUs and 756 GB RAMs. Rbec can analyse 10 000 

reads from a SynCom sample comprising of 100 strains within 3 minutes by using single CPU. 

The comparison of time performance among different methods can be found in Table S1. All the 

methods were tested on 5 simulated bacterial SynComs with containing 100 strains at a depth of 

10 000 sequencing reads each by using 1 CPU. 

Description of output files 

• strain_table.txt: tab-separated file containing the strain-level community composition 

table. 

• strain_table_normalized.txt: tab-separated file strain-level community composition table, 

normalized using copy-number information (see also documentation on the parameter ‘cn’). 
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• contamination_seq.fna: nucleotide FASTA file containing the sequences of potential 

contaminants. 

• rbec.log: text file containing the percentage of corrected reads per sample, which can be 

used to predict potentially contaminated (see also parameter ‘min_cont_abs’). 

• paralogue_seq.fna: nucleotide FASTA file including sequences of polymorphic 

paralogues sequences found for each strain. 

• lambda_final.out: test file containing the lambda and P-values of the Poisson distribution 

for each unique tag. 

• error_matrix_final.out: text file containing the error matrix used in the final iteration. 

Description of parameters 

• fastq: path of the FASTQ file containing the merged amplicon sequencing reads (Ns are 

not allowed in the reads). 

• reference: path to the nucleotide FASTA file containing the unique reference sequences. 

Each sequence must be in one line (Ns are not allowed). 

• outdir: path to the output directory. 

• threads: number of threads used, default 1. 

• sampling_size: sampling size for calculating the error matrix, default 5,000. 

• ascii: ASCII characters used to encode phred scores (33 or 64), default 33. 

• min_cont_obs_abd: minimum observed abundance for a non-corrected unique tag to be 

considered a potential contaminant (default 200). 

• min_cont_abd: minimum relative abundance for a non-corrected unique tag to be 

considered a potential contaminant (default 0.03). 
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• min_E: minimum value expectation of the Poisson distribution for identification of 

paralogues (default 0.05). 

• min_P: minimum P-value of the Poisson distribution required to correct a sequencing read 

(default 1e-40). 

• ref_seeker: method used for finding the candidate error-producing reference sequence for 

a tag showing identical lowest k-mer distance to multiple references. 1 for the abundance-

based method; 2 for the transition probability-based method, default 1. 

• cn: path to a tab-separated table containing the copy number of the marker gene for each 

strain. The first column of the table should contain the strain IDs, and the second the copy 

number estimates (real values are allowed). If no table is provided, Rbec will normalize 

the abundance based on the internally inferred copy number (which tends to be un 

underestimate). Rbec will output the normalized as well as the non-normalized abundance 

tables. Default NULL. 

Sequencing library construction and preparation 

To evaluate the errors in the output from sequencing and test this algorithm, we performed 

amplicon sequencing on clonal cultures of 236 individual bacterial strains and 97 fungal strains 

isolated from the root of Arabidopsis thaliana separately [9, 10]. Genomic DNA was isolated from 

each strain using the MP Biomedicals FastDNATM Spin Kit for Soil. DNA concentration was 

determined fluorometrically using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 

Scientific). The V5-V7 region of the 16S rRNA gene in bacteria and ITS1 region in fungi was 

amplified using the AACMGGATTAGATACCCKG (799F) and ACGTCATCCCCACCTTCC 

(1192R) primers, and CTTGGTCATTTAGAGGAAGTAA  (ITS1F) and 

GCTGCGTTCTTCATCGATGC (ITS2R) primers, respectively. Indexing was done using 
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Illumina-barcoded primers. The indexed amplicons were subsequently pooled, purified, and 

sequenced on the Illumina MiSeq platform.  

To exclude the possibility that the observed error distribution of amplicon sequencing is specific 

to the MiSeq platform, we also analysed the amplicon sequencing data obtained using a HiSeq 

platform [11] (Fig. S1). 

Data deposition 

Raw sequencing data used to generate mock bacterial and fungal community data were deposited 

into the European Nucleotide Archive (ENA) under the accession number PRJEB43511. The 

scripts used for the computational analyses described in this study are available at 

https://github.com/PengfanZhang/Rbec, to ensure replicability and reproducibility of these results.  
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Supplementary Figures 

 

Figure S1. Error distribution of amplicon sequencing data from a HiSeq sequencer. Error 

profiles of amplicon sequencing data from 12 SynCom samples comprised of 12 bacterial strains 

and an artificial spike-in plasmid sequenced using the Illumina HiSeq platform.  
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Figure S2. Abundance ratios between second-most abundant and most abundant unique tags 

in each sample before and after correction with different methods. The x axis represents 

different strains and y axis represents the abundance ratio calculated as 

"#$%&'%()	+,	-)(+%&./+-0	'#$%&'%0	$%!1$)	0'2
"#$%&'%()	+,	/+-0	'#$%&'%0	$%!1$)	0'2

. The colour of each dot indicates the sequence 

dissimilarity between the two unique tags. Data points are depicted in dark brown if the two tags 

are close (≤ 10 base mismatches). 
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Figure S3. Workflow for the generation of mock dataset sand performance evaluation. 

Example of the in silico generation of a dataset from a mock community consisting of 3 strains. 

The relative abundance of each strain is simulated by a log-normal distribution. amplicon reads 

from each strain are subsampled from amplicon samples sequenced from clonal cultures and mixed 

according to their relative abundance. For evaluation of the different methods, Bray Curtis 

dissimilarities between the simulated relative abundances (ground truth) and the estimated 

compositions obtained by different methods are calculated. 

Strain 1 Strain 2 Strain 3

Relative abundance simulated by 
the log-normal distribution 

Strain 1: 70%
Strain 2: 20%
Strain 3: 10%

Mixture
Strain 1: 7000
Strain 2: 2000
Strain 3: 1000
Total No. of reads: 10000

Ground truth

Strain1 70%

Strain2 20%

Strain3 10%

Estimated compositions

Strain1 65%

Strain2 15%

Strain3 20%

Bray Curtis distance
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Figure S4. Effect of strain relatedness (A) and sequencing depth (B) on the performance of 

different methods to characterize bacterial communities. (A) Mock samples were generated 

from 20 strains with different strain similarities and 20 replicates for each threshold. Letters 

indicate the significant groups (paired Wilcox test, P < 0.05) within mocks with the same strain 

similarity. (B) The mock samples with different sequencing depth were directly subsampled from 

the mock samples with 50 strains. Circles represent the means of each method and parameter 

combination, while vertical lines represent the standard deviation.  
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Figure S5. Effect of community complexity (A), strain relatedness (B) and sequencing depth 

(C) on the performance of different methods to characterize fungal communities. Mock 

samples were generated by randomly picking fungal strains from 97 candidates and mixing 

subsampled reads from the corresponding strains. For mock samples with different similarities, 

only 20 fungal strains were included for each mock, while mock samples with different sequencing 

depths were directly subsampled from the dataset containing 50 fungal strains. For each threshold, 

20 replicates were generated. Letters indicate the significant groups (paired Wilcox test, P < 0.05) 

within mock samples with the same parameters. 

ab

a bc
a c a b a c d

ab

ab

a

b c

abc
a

b
c

d

ab

a

c
b

d

a

b
c b

d

a

a
b c

d

a

b
c d

e

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80

Br
ay

-C
ur

tis
 d

iss
im

ila
rit

ie
s t

o 
th

e 
gr

ou
nd

 tr
ut

h

No. of strains

Rbec
Exact Match
DADA2
UNOISE
Closed Picking

a

b

c

d

a a

b

c

d

a

a

b

c

d

a

a a
a

a

b

0.00

0.05

0.10

0.15

0.20

85 90 95 100
Maximum pairwise similarity

0.00

0.05

0.10

0.15

0.20

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sequencing depths

Br
ay

-C
ur

tis
 d

is
sim

ila
rit

ie
s t

o 
th

e 
gr

ou
nd

 tr
ut

h
Br

ay
-C

ur
tis

 d
is

sim
ila

rit
ie

s t
o 

th
e 

gr
ou

nd
 tr

ut
h

A

B

C



 20 

 

Figure S6. Precision and recall of different methods. Bacterial mock communities with different 

complexities were analysed to calculate the precision and recall of different methods. We used the 

formulas 𝑅𝑒𝑐𝑎𝑙𝑙 = 3+.		+,	56)(!-)78	(+66)(0)&	9:;<=	
>+0'7	3+.		+,	6)'&-

 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 3+.+,	56)(!-)78	(+66)(0)&	6)'&-
3+.+,	(+66)(0)&	6)'&-

. 

Crossed vertical and horizontal lines represent the standard deviation of precision and recall in 

each complexity threshold, while dots indicate the mean values. 
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Figure S7.  Segregation of percentages of corrected reads between clean and contaminated 

SynCom samples. A set of 100 ‘clean’ mock communities were generated by randomly picking 

up 50 bacteria from the bacterial seed pool and mixing the subsampled reads from corresponding 

strains. To generate a comparable set of contaminated samples, amplicon reads from the E. coli 

K12 16S rRNA sequence were added to each clean mock community to make up 5% relative 

abundance.  
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Supplementary Tables 

Method CPU Time (s) 
AmpliCI 277(±14.2) 

Closed picking 10(±0.3) 
DADA2 126.1(±6.1) 
Deblur 370.6(±8.6) 

Exact match 203.3(±1.7) 
Rbec 126.1(±4.5) 

Unoise 0.4(±0) 

 

Table S1. Time performance of different methods measured by CPU time (in seconds) for 

different methods tested using 5 SynComs samples with 10 000 reads in each on single CPU.  
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