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1 sgcocaller phase

Haploid genomes of the pool of gametes collected from an individual are the
results of meiosis and meiotic crossovers. Based on the known mechanisms
of meiosis and crossovers, with respect to each crossover, half of the daughter
chromosomes will inherit the crossover and half will not. For each chromosome,
we aim to identify a template cell (gamete) that does not inherit crossovers,
thus their haploid genotype sequences represent the original (maternal/paternal)
haplotypes of the diploid donor (see Template cell identification). Depending
on the expected number of crossovers per chromosome in the meiotic crossover
process, the proportion of gametes that inherit no crossovers with respect to
each chromosome is different. It is possible that every gamete has one or more
crossovers inherited and the template gamete chosen hence has crossovers which
introduce “switch errors” in the inferred haplotypes and they can be corrected
by swphase (see Switch score calculation). Generally, though, crossovers are
low frequency events across chromosomes and crossover positions are sparse.
The SNP linkages in small chromosome regions across all haploid gametes are
therefore reliable for reconstructing the donor’s haplotypes.

1.1 Single gamete genotype matrix

To generate the two haplotypes of each chromosome for the diploid donor from
gametes, the first step is finding the list of unphased hetSNPs (heterozygous SNP
loci that differ between the maternal and paternal homologous chromosomes)
by standard variant calling tools such as bcftools using pooled DNA reads
from gametes. Only biallelic SNPs are considered in this step, therefore finding
one haplotype also implicitly resolves the second haplotype by switching all
alleles to its alternative at each hetSNP. In other words, the two haplotypes are
bitwise complementary to each other. With the hetSNPs known, the DNA reads
from each gamete are parsed and summarised into a genotype matrix for each
chromosome with values of 1 or 2 corresponding to matching with the REF allele
and the ALT allele at each unphased hetSNP. ALT allele read frequency (AF)
is used for genotyping each SNP in each gamete and AF ≤ 0.3 is genotyped as 1
(REF) while SNPs with AF ≥ 0.7 are genotyped as 2 (ALT). Filtering options
are available for excluding low mapping/base quality reads, low coverage SNPs
per cell with the options –minCellDP and –minTotalDP.

1.2 Template cell identification

An ideal template cell for phasing each chromosome is a cell without crossovers
and having sufficient SNP coverage regarding this chromosome. To find a cell
without crossovers, sgcocaller phase finds three pairs of gametes with lowest
genotype dissimilarity. The dissimilarity of two genotype sequences is calculated
by finding the proportion (p) of discordant SNPs between the two sequences
and we define the dissimilarity value as min(p, 1− p). sgcocaller phase includes
maxDissim as a user supplied option that controls how similar (1−maxDissim)
it requires for two cells to be considered as template cells. sgcocaller phase finds
a maximum of three cell pairs as potential template cells. When multiple tem-
plate cell pairs are available, the cell with the highest SNP coverage is chosen
as the template cell. This approach is based on the idea that when two gamete
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chromosomes have no crossovers, either their genotype sequences will be the
same (or at least very similar if the same parental haplotypes have been inher-
ited) or totally different (when different parental haplotypes are inherited by
the two chromosomes). There are rare cases when two gametes have crossovers
at exactly the same positions, which also leads to high genotype similarity in
the gametes. Such cases can be revealed by diagnostic plots (Fig. 2c,d) with the
simple R script provided and then corrected by sgcocaller swphase.

An ideal template cell can be found for gamete populations in which ga-
metes with zero crossovers with respect to one chromosome are relatively high
in proportion. However, for meiosis with high expected crossovers per chromo-
some (e.g., human eggs), an ideal template cell might not exist in the gamete
population. That would mean there are no template cell pairs identified given
a maxDissim threshold. For these cases, the cell whose total SNPs is the 85%
quantile among all cells is selected as the template cell and switch error correc-
tion should be applied (see Switch score calculation). The template cell to use
can also be chosen manually by the user via the templateCell option.

1.3 Infer missing SNPs in the haplotype template

Upon forming a haplotype template, sgcocaller phase increases the complete-
ness of the haplotype template by inferring the genotype of the missing SNPs
(that is, SNPs with no read coverage) from the template using other gametes in
which the SNP is available (that is, has read coverage). A haplotype template
represents two actual haplotype (allele) sequences (h, h′) that are bitwise com-
plementary with respect to the REF and ALT alleles defined for the hetSNPs
used; one haplotype is thus derived by changing all alleles from the comple-
mentary haplotype to their alternatives. Intuitively, we want to use linkage
information from other gametes to “fill in the gaps” in the template haplotype
by finding gametes with coverage at the missing SNP site. Loosely, if a gamete
with coverage at the missing SNP has the same haplotype as the template, then
we assume that the template should have the same allele at the missing SNP as
the gamete with coverage. If the gamete with coverage has the complementary
haplotype, then the missing SNP in the template should have the alternative
allele.

More precisely, to infer missing SNPs’ genotypes in the haplotype template,
we need to find the linkage type of the SNP to the haplotype template. Only two
types of linkages are possible due to the existence of two possible alleles (e.g., 1
or 2 ) for a given SNP. The first linkage type (“type 1”) refers to gametes with
the template haplotype and allele 1 at the missing SNP and gametes with the
haplotype complementary to the template haplotype and allele 2 at the miss-
ing SNP; that is, the missing SNP should have allele 1 in the template (type
1:{(1, h), (2, h′)}). The second linkage type (“type 2”) is the inverse, such that
the template should have allele 2 at the missing SNP (type 2:{(1, h′), (2, h)}).
To determine the linkage type of the SNP in supporting gametes (that is, those
with read coverage of the SNP), the nearby SNPs’ genotype sequence in each
supporting gamete (specifically, the 10 closest SNPs with read coverage in both
the template gamete and supporting gamete) is first compared with the tem-
plate haplotype at the matching positions to define the haplotype (template or
complementary) of the supporting gamete. With the haplotype of the support-
ing gamete determined, the linkage type supported by the gamete immediately
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follows. The posterior probabilities of linkage types of a missing SNP are calcu-
lated by looking at the number of gametes supporting each type of SNP linkage.
Assuming a genotype error rate of 0.1 and that the two linkage types are equally
likely to happen, the posterior probability of each linkage type of a missing SNP
can be calculated:

t1: {type 1 linkage counts} t2: {type 2 linkage counts}

p(type 1|t1, t2)
= p(t1,t2|type 1)p(type 1)

p(t1,t2|type 1)p(type 1)+p(t1,t2|type 2)p(type 2)

= p(t1,t2|type 1)
p(t1,t2|type 1)+p(t1,t2|type 2)

= 0.9t10.1t2

0.9t10.1t2+0.1t10.9t2

p(type 2|t1, t2) = 0.9t20.1t1

0.9t10.1t2+0.1t10.9t2 .

We use a threshold cut-off (default is 0.99 and it can be changed via the op-
tion posteriorProbMin) for determining whether a missing SNP can be inferred.
Missing SNPs with posterior probabilities over the threshold are inferred to be
the suggested linkage type. Applying this approach genome-wide, we can make
maximal use of read coverage across all gametes to maximise the completeness
of the template haplotype. After inferring missing SNPs from the template hap-
lotype, the step of inferring SNPs is then performed against all hetSNPs in the
template haplotype to correct any genotyping errors in the template haplotype.

2 sgcocaller swphase

When an ideal template cell is not used for phasing in the previous step, the
chosen template cell may have crossovers leading to switching errors in the in-
ferred haplotype (Fig. 2c). sgcocaller swphase is able to detect the switch errors
and generate the corrected haplotype. To save unnecessary computing, sgco-
caller swphase calculates the switch scores only for identified SNP bins whose
positions have high risk of having switch errors. High risk SNP bins are found
by firstly grouping all hetSNPs into bins of 2,000 consecutive SNPs with a mov-
ing step of 200 SNPs (both are changeable via options when running sgcocaller
swphase). The proportion of gametes having crossovers are calculated for each
bin. A SNP bin is labelled as a high risk bin when the proportion of gametes
having crossovers is above 0.5. sgcocaller swphase calculates switch scores for
SNPs positions potentially having switch errors. It is based on the idea that
when the majority of gametes have crossovers according to the template haplo-
type, it indicates a “crossover” or switch error in the template haplotype. The
crossover identification in this step is fast as it simply compares the dissimilar-
ity of gametes’ genotype sequences with the inferred haplotype sequence for the
SNPs in each bin. A default threshold value of 0.0099 is set for the dissimilarity
to decide whether a crossover has happened in the gamete or not.

2.1 Switch score calculation

To construct the switch score (formed using a concept for splitting blocks similar
to that from a previous haplotype construction method [1]), which represents
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how likely a switch error has happened at SNP i in the inferred haplotype,
the switched haplotype is first constructed. Let Hi

l represents the haplotype
sequence to the left N bases of SNP i, and Hi

r represents the haplotype se-
quence to right N bases of SNP i. The current haplotype around SNP i is
Hi= {Hi

l ,H
i
r}. The switched haplotype is a new sequence of Hi

sw = {Hi
l ,H

i′
r },

where Hi′
r is the bitwise complementary sequence of Hi

r. The switch score for
each SNP i is calculated using the log-ratio of the probability of observing the
genotype sequences in all gametes given the switched haplotype with the proba-
bility of observing the genotype sequences in all gametes given the non-switched
haplotype. Assuming the occurrence of a switch error or not at any site is ran-
dom, that is the prior of having switch or no switch at a SNP site equals 0.5,
the switch score is the log-ratio of the posterior probabilities of the switched
haplotype and the not-switched haplotype. When calculating the probability of
observing each gamete’s genotype sequence given the haplotype (Hi or Hi

sw),
only the local (N) SNPs are considered (controlled by the lookBeyondSNPs
option with default set to 20).

The haplotype Hi is a sequence of alleles and also implicitly defines the
second haplotype Hi′ which can be derived by switching all alleles to their
complementary alleles (in the called genotypes of the hetSNPs). The probability
of observing all gametes’ genotype sequences at the local (N) SNPs around SNP
i given the local haplotype (Hi, Hi′) is,

p(Gi | Hi, Hi′) =

m∏
j=1

p(Gi
j | Hi, Hi′),

where Gi represents local genotypes around SNP i of all (m) gametes, and Gi
j

represents local genotypes at SNP i from gamete j. For each gamete j, the
probability of its genotype sequence given (Hi, Hi′) is

p(Gi
j | Hi, Hi′) =

p(Gi
j | Hi) + p(Gi

j | Hi′)

2
.

Similarly for the switched haplotype Hi
sw, the probability of observing the local

genotypes of all gametes given

(Hi
sw, H

i′
sw),

p(Gi | Hi
sw, H

i′
sw) =

m∏
j=1

p(Gi
j | Hi

sw, H
i′
sw),

where

p(Gi
j | Hi

sw, H
i′
sw) =

p(Gi
j | Hi

sw) + p(Gi
j | Hi′

sw)

2
.

In addition, probability of observing a gamete’s genotype sequence given a
haplotype sequence, p(Gj | h), is calculated as (assuming genotype error rate
0.1 and using d as the number of different bases between the allele sequence in
Gj and the allele sequence in haplotype allele sequence h):

p(Gj | h) = 0.1d × 0.9(K−d),
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where K is the number of co-existing SNPs in two allele sequences under com-
parisons. The switch score for SNP i is thus

Si = log
p(Gi | Hi

sw, H
i′
sw)

p(Gi | Hi, Hi′)
.

Upon calculating switch scores for a sequence of SNP positions, the switch-
ing point is identified as the peak of a stretch of positive switch scores (Fig. 2b).
The minimum threshold for identifying switch points is set via the option min-
SwitchScore, which can vary depending on features of the dataset including the
number of cells available. The template haplotype is then corrected by flipping
all SNP alleles to their complementary alleles after an identified switch point,
thus generating the corrected haplotype with the switch error removed.

sgcocaller autophase validation

To test if the module autophase generates the same phasing results as running
sgcocaller phase and sgcocaller swphase separately. we re-anlyzed chromosome
3 using one dataset out of the ten constructed msperm-lowcovarege datasets.
sgcocaller autophase was called with options (combined options from running
sgcocaller phase, sgcaoller swphase before): “–minDP 2 –maxTotalDP 150 –
maxDP 10 –minSNPdepth 1 –maxDissim 0.0099 –binSize 1000 –stepSize 800
–lookBeyondSnps 10”.

3 sgcocaller xo and sgcocaller sxo

Crossovers can be detected by finding haplotype shifts in the gametes’ hap-
loid genomes. With DNA reads from each cell mapped, the haplotypes of SNP
markers are inferred by looking at the alleles carried by the DNA reads mapped
to genomic positions of these SNP markers. However, with technical artefacts
(from sequencing and mapping), it is expected to observe some proportion of
conflicting alleles from the underlying haplotype (Fig. 1b). To reconstruct the
haplotype structure of the haploid genomes from the mapped DNA reads while
accounting for technical noise including mapping errors for crossover identifica-
tion, sgcocaller applies a Hidden Markov model (HMM) with a binomial emis-
sion model (Fig. 2e). Breifly, we use a two-state HMM with states representing
the haplotype origins of DNA segments in the gametes’ genomes, and use the
abundance of haplotype alleles at each SNP for inferring state transitions. Tran-
sitioning from one state to another between two SNP markers corresponds to a
crossover detected.

3.1 The Hidden Markov Model

The two hidden states in the HMM represent the haplotype origins of DNA seg-
ments (represented by allele types of a list of SNPs) in the gametes’ genomes.
State transitions correspond to detected crossovers. We set the transition prob-
ability be dependent on the two SNP markers’ base pair distances (physical
distances) [2]. The transition probability is programmed as an configurable op-
tion (cmPmb) in sgcocaller xo. The relationship between observed allele counts
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and the underlying hidden states are modelled by the two binomial distributions
whose success rates are also user-configurable options (–thetaREF, –thetaALT )
in sgcocaller xo (Fig. 2e and MATERIALS AND METHODS). The two states
(named as REF and ALT) match with the alleles (bases) in the REF and ALT
fields in the input VCF. The binomial distributions in the HMM model the ALT
allele read counts at each SNP site and thus the –thetaREF value is expected
to be small (e.g., 0.1) while –thetaALT value is expected to be higher (e.g.,
0.9). The data in this model are the allele-specific read counts across the list
of hetSNP sites for each chromosome, whereas the underlying haplotype of a
SNP site on the chromosome is a hidden variable to be inferred. In the case of
gametes, which have haploid genomes, there are two possible hidden states for
each SNP corresponding to the two haplotypes of the parent. The two possible
alleles at each hetSNP site can be referred as REF or ALT arbitrarily. The REF
or ALT state for each SNP also aligns with the same REF or ALT allele in the
provided VCF input file. At each SNP site i, the two hidden states: si = alt
corresponds to ALT haplotype while si = ref corresponds to REF haplotype.
The emission probabilities are modelled by two binomial distributions:

citotal = cialt + ciref ,

cialt|si = alt ∼ Bin(citotal, palt) ,

cialt|si = ref ∼ Bin(citotal, pref) ,

where cialt and ciref denote the alternative allele read count and reference al-
lele read count at SNP i, respectively, citotal denotes the total read count at SNP
i, and palt and pref are configurable parameters when running sgcocaller xo and
denotes the success rates in the two binomial distributions respectively. The
transition probabilities (pitrans) are modelled dependent on markers’ base pair
distances [2] with the default of average 0.1 centiMorgan per 1Mb (1 million base
pairs) which can be changed via the cmPmb option. Lastly, the initial proba-
bilities for the two hidden states are both set to be 0.5, making the assumption
that they are equally likely to happen.

3.2 Measuring support for detected crossovers

We use a quantitative measure, the log-likelihood ratio (logllRatio), for mea-
suring the amount of support from data for detected crossovers. We define a
(Viterbi) state segment as a consecutive list of SNPs with the same state. We
also use the term “inferred state” to refer to the state inferred through applying
the Viterbi algorithm, whereas we use the term “altered state” of a SNP to refer
to the state obtained by altering its inferred state to its opposite. We measure
the support in the data for the detected crossover using the log-likelihood ratio
for the segment with the inferred state, relative to the altered state.

Specifically, the logllRatio is calculated by taking the log-likelihood of the
data given the current inferred state minus the log-likelihood of the data given
the altered state (Fig. 2f)

3.2.1 logllRatio calculation

For a state segment that spans SNP q to k, assuming the state segment has
been inferred with state REF ,
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Logllinferred = log(tl) +

k∑
i=q

log f(cialt; c
i
total, pref) + log(tr),

where tl and tr denote the transition probabilities from SNP q−1 to q and from
SNP k to k + 1, respectively, and f is the binomial probability mass function
given by

f(x; c, p) =

(
c

x

)
xp(c− x)1−p.

The log-likelihood of the data given the altered state is thus

Logllaltered = log(1− tl) +

k∑
i=m

log f(cialt; c
i
total, palt) + log(1− tr).

The logllRatio is derived by

Logllinferred − Logllaltered.

3.3 The outputs

Due to the sparsity of single-cell datasets, we have used sparse matrices in Ma-
trix Market format as the output for sgcocaller xo, which saves disk space and
enables efficient parsing in downstream analysis. sgcocaller xo generates sparse
matrices of the allele counts, inferred haplotype states (output of the Viterbi
algorithm) for each SNP across each cell. Columns of these matrices correspond
to the list of single gamete cell barcodes and rows correspond to the list of het-
SNPs. A supplementary text file (viSegInfo.txt), which contains the summary
features of inferred Viterbi segments (a list of consecutive SNP markers with
the same inferred haplotype state) (Fig. 2f), is also provided and can be used
for convenient post-processing such as filtering of false positive crossovers. The
haplotypes of each SNP are inferred using the Viterbi algorithm [3] therefore
the states/segments are also referred to as the Viterbi state/segments. Features
including starting SNP position, ending SNP position, the number of SNPs
supporting the segment, and the log-likelihood ratio of the Viterbi segment are
recorded for each segment in the text file (viSegInfo.txt).

4 False crossover filtering in comapr

The Viterbi state transitions in the inferred state sequence after running sgco-
caller xo and sgcocaller sxo correspond to crossovers detected (Fig. 2f). However,
they might correspond to false crossovers called, especially when the Viterbi
state transitions are close together due to the crossover interference phenomenon
in meiosis [4], which means two crossovers are more likely to space distantly than
randomly on a chromosome. Therefore, compar implements a crossover filter-
ing function to eliminate the false positive crossovers. A combination of three
metrics can be used for filtering, namely, bpDist (the base pairs covered by the
stretch of the segment), minSNP (the number of SNPs supporting the segment)
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and the minlogllRatio (see Measuring support for detected crossovers). Seg-
ments that do not meet the requirements of these thresholds are removed hence
the introduced crossovers by the segments are filtered out.

To understand the distribution of logllRatio and how it varies in different
datasets, we analysed the relationship of logllRatio and the chromosomal posi-
tions of the segments in the msperm and apricot datasets (with known phased
hetSNPs) (Fig. S6a,b).The value of logllRatio correlated with the number of
SNPs supporting each segment (Fig. S6c,d,e). We observed that using thresh-
old of nSNP > 30 or (logllRatio > (100 150) worked well for filtering false
crossovers for the two datasets.

As suggested by the logllRatio versus midpoint of segments plot (Fig. S6
a,b), the logllRatio has a decreased tail at both chromosome ends. Thus, gat-
ing on logllRatio might result in underestimated crossovers at the ends of the
chromosome however it is dependent on the SNP density at the chromosome
ends. We recommend users to check distributions of summary statistics (per-
CellQC and perSegChrQC) and do exploratory analyses for deciding filtering
thresholds.

5 comapr - resampling-based methods

To test for differences in the number of crossovers between any two groups of
cells, re-sampling methods, permutation and bootstrapping tests [5, 6, 7], have
been implemented in comapr. The two resampling-based functions in comapr
are able to either generate the to generate the empirical p-value or find the
confidence intervals for the estimate of the group differences.

The permuteDist function performs permutation:

1. Record the observed difference in total genetic distances between the two
groups of cells, dobs.

2. Take the group labels vector and permute the group labels by randomly
assigning the labels across cells and calculate the new difference with the
newly-generated permuted grouping.

3. Repeat step 2 for B times (e.g., B = 1, 000).

4. Calculate the permutation p-value by using the permp function from the
statmod package [8] that calculates the appropriate p-values for the per-
mutation test when permutations are sampled with replacement, avoiding
the common pitfalls of under-estimated p-values [5, 8].

The steps for generating the bootstrapping confidence intervals of genetic dis-
tance differences in two groups (A and B) of cells are implemented in the boot-
strapDist function:

1. Randomly draw n cells with replacement from cells in group A where n
is the group size of A and calculate the total genetic distance d1 with the
cells drawn.

2. Randomly draw m cells with replacement from cells in group B where m
is the group size of B and calculate the total genetic distance with the
cells drawn d2.
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3. Calculate difference in total genetic distances by d1 − d2.

4. Repeat step 1-3 for B times (e.g., B = 1, 000).

5. Calculate bootstrap confidence intervals for the sampling distribution of
the difference in genetic distance using the quantile functions at a de-
sired level from R (R Core Team, 2021).

Whether or not the acquired confidence intervals contain zero can be use to
decide whether or not the difference is statistically significant at a desired level.

6 Phasing 10X scCNV apricot gametes

To obtain the list of unphased hetSNPs for the apricot sample, the REF and
ALT alleles were swapped for every other position in called hetSNPs from pre-
processing the dataset. With the newly created list of unphased hetSNPs, and
BAM file containing DNA reads from 367 gametes (See Pre-processing public
datasets), sgcocaller phase and swphase were applied to generate the phased
haplotypes for the apricot sample. sgcocaller phase was called with options --
minDP 2 --maxDP 10 --maxTotalDP 80 --minTotalDP 6 --minSNPdepth
1 --posteriorProbMin 0.99. sgcocaller swphase was called with default
options and all cells were used for calculating switch scores.

7 Low phasing accuracy bins in apricot dataset

We observed certain bins with relatively lower phasing accuracies for chromo-
somes in the apricot dataset. We took two chromosomes, CUR1G and CUR3G,
for further investigation. We first located the SNP bins with phasing accuracies
lower than 0.8 in the two chromosomes, and we found 3 bins from chromo-
some CUR1G (Fig. S1a) and 6 bins from CUR3G (Fig. S1c). We obtained the
genotype of these SNPs in all single apricot gametes and checked the rate of
discrepancy of the genotype sequences (panel ii, Fig. S2) with the generated
haplotype by sgcocaller or the published haplotype. The percentage of haplo-
type contradictory genotypes in each bin per gamete were calculated. Precisely,
the genotype sequences for SNPs in each bin in each gamete were compared
with the haplotype sequence (a column out of the two columns in i or in iii,
Fig. S2), and the rate of discrepancy was calculated for all gametes (Fig. S1,
a,c). Without losing generality, we always used the haplotype sequence (the
column out of the two sequences in i or in iii, Fig. S2) that resulted in a smaller
value of discrepancy for each gamete. We observed that using the haplotypes
by sgcocaller resulted in more gametes having a discrepancy rate of zero. This
result suggests that the haplotypes generated by sgcocaller matched the geno-
types in the gametes better than the published haplotypes. For comparison,
we also plotted the proportion of SNPs with discrepant genotypes for SNP bins
with higher phasing accuracies (>=0.99) (Fig. S1b,d) and the numbers of ga-
metes with rate of discrepancy as zero for SNPs in these bins were similar using
either the haplotype by sgcocaller or the published haplotype.
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8 Calling crossovers

8.1 Mouse sperm dataset

Crossover results for mouse sperm data were obtained from calling sgcocaller
xo on the prepared phased hetSNPs and BAM file for 194 sperm cells as de-
scribed before (see MATERIALS ANDMETHODS). The detailed code available
in a public GitLab repository (see AVAILABILITY OF DATA AND MATERI-
ALS). with following filtering settings. sgcocaller xo was called with options: --
maxTotalDP 450 --maxDP 10 --thetaREF 0.1 --thetaALT 0.9 --
cmPmb 0.1. The final crossover intervals were identified using comapr with
detailed code available in a public GitLab repository (see AVAILABILITY OF
DATA AND MATERIALS) with following filtering settings. Cells with chromo-
somes that had fewer than 200 SNPs available were filtered out. Cells with chro-
mosomes that were called with more than 55 crossovers (before false crossover fil-
tering) were removed because excessive number of crossovers indicates abnormal
chromosomes (Fig. S5). False crossovers were filtered by removing crossovers
that were induced by segments that were supported by fewer than 30 SNPs. We
observed gating by the number of supporting SNPs was sufficient in removing
false crossovers. Other filtering cutoffs were also set although we did not observe
they removed extra crossovers than just using minSNP = 30.

1. minSNP=30, the segment that results in one/two crossovers has to have
more than 30 SNPs of support.

2. minlogllRatio=150, the segment that results in one/two crossovers has to
have minimal logllRatio value of 150

3. bpDist=105, the segment that results in one/two crossovers has to have
base pair distances larger than 105.

8.2 10X scCNV apricot data with known haplotype

sgcocaller xo was applied on 367 apricot gametes to identify crossovers using
the hetSNPs called (see Section Pre-processing public datasets) with option: --
thetaREF 0.2 --thetaALT 0.8 --maxTotalDP 100 --maxDP 10 --
minTotalDP 6 --minDP 1 --cmPmb 2. The following filtering thresholds
were applied when filtering false crossovers using functions in comapr: minSNP
= 30, minlogllRatio=0, maxRawCO = 20, minCellSNP=100. bpDist was set
to 106 for chromosome 1 and scaled by relative chromosome size for the rest of
the chromosomes.

8.3 10X scCNV apricot data with sgcocaller phased hap-
lotype

sgcocaller xo was applied on sgcocaller phased haplotypes. The following options
were applied --minTotalDP 6 --minDP 1 --thetaREF 0.2 --thetaALT
0.8 --cmPmb 2 --maxDP 10 --maxTotalDP 100. The following filter-
ing thresholds were applied when filtering false crossovers using functions in
comapr: minSNP = 10, minCellSNP = 100, maxRawCO = 10, minlogllRatio =
0. bpDist was set to 106 for chromosome 1 and scaled by relative chromosome
size for the rest of the chromosomes.
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9 Phasing performance comparison

The detailed function calls for applying the two methods on the constructed
datasets using human sperm, apricot gametes and mouse sperm datasets are
described below.

9.1 Human sperm cell dataset

Hapi was run following the tutorial example and the allowNA parameter in im-
puting missing genotypes function was set to 3. sgcocaller phase was run using
options: --threads 4 --barcodeTag CB --minDP 2 --maxDP 50 --
maxTotalDP 200 --minTotalDP 6 --maxDissim 0.099--minSNPdepth
1 --maxExpand 1000 --posteriorProbMin 0.9 for each chromosome
in each dataset. sgcocaller swphase was called for all chromosomes with
--lookBeyondSnps 150 --minSwitchScore 580 and
--minPositiveSwitchScores 100.

9.2 10X scCNV apricot gametes

The haploid genome assembly “Currot” published previously was used as the
haplotype ground truth. The alleles in the list of prepared hetSNPs (see Pre-
processing public datasets) were swapped for every other position to create the
list of unphased hetSNPs. Due to the sparsity of the dataset, the allowNA argu-
ment in the hapiImupte function of Hapi was raised to 310 to avoid triggering
running errors. sgcocaller phase was applied with options --threads 4 --
minDP 2 --maxDP 10 --maxTotalDP 80 --minTotalDP 6 --minSNPdepth
1 --posteriorProbMin 0.99 and sgcocaller swphase was called with --
binSize 1000 --stepSize 800.

9.3 Mouse sperm dataset

The alleles in the list of called hetSNPs (see Pre-processing public datasets) were
swapped for every other position to create the list of unphased hetSNPs. The
allowNA argument in the hapiImupte function of Hapi was set to 3 to avoid
triggering running errors. sgcocaller phase was applied with options --threads
4 --barcodeTag CB --minDP 2 --maxTotalDP 350 --maxDP 10 --
minSNPdepth 5 --maxDissim 0.0099 --posteriorProbMin 0.99 and
sgcocaller swphase was called with --binSize 1000 --stepSize 800 --
lookBeyondSnps 10.

9.4 Mouse sperm low coverage dataset

For the further low coverage mouse sperm dataset, the allowNA was set to be
3 and sgcocaller phase was called with options --threads 4 --barcodeTag
CB --chrom wildcards.chr --minDP 2 --maxTotalDP 150 --maxDP
10 --minSNPdepth 1 --maxDissim 0.0099. sgcocaller swphase was called
with options --binSize 1000 --stepSize 800 --lookBeyondSnps 10.

13



10 Applying HapCUT2 on the apricot gametes

We use the same pre-processing steps as in [9] for generating the input fragment
files that can be used as inputs for phasing haplotypes using the read-based
haplotype phasing tool HapCUT2 [1]. Briefly, the mapped BAM file was pro-
cessed to generate the genotype matrix file that contained the genotypes per cell
regarding the list of unphased hetSNPs. The genotype matrix was then used for
generating the fragment file by linking every two consecutive SNPs’ genotypes
in each cell into one fragment which was then supplied as input fragment file
when running HapCUT2. HapCUT2 was run with default options. The phasing
accuracies of HapCUT2 were calculated and compared with sgcocaller’s results
(Fig. S10), which demonstrated the advantageous phasing performance of sgco-
caller over HapCUT2.

11 Scalability testing

11.1 Dataset construction for scalability testing

We constructed simulated sperm cells (with chromosome 1 only) by sampling
DNA reads from sperms in the msperm dataset. Using different random seeds,
16 sampled cells were generated using DNA reads in each sperm in the msperm
dataset with the selected subsampling rate (0.04 or 0.08) using samtools-
v1.10 [10]. Therefore, in total (16 × 194 = 3, 104) cells were generated under
each subsampling rate. We then constructed datasets containing different num-
bers of cells ranging from 1,000 to 3,000 by merging randomly sampled cells
from the generated 3,104 sperm cells under each subsampling rate.

11.2 Pre-processing human sperm cells from donor1 for
scalability testing

To characterise the scale of single-gamete read data generated in a recent large-
scale study Bell et al (Nature, 2020), we obtained raw sequencing reads of sperm
cells from donor 1 downloaded from NCBI with accession codes: SRR10140439,
SRR10140440, SRR101404, SRR10140461, SRR10140462. Following the analy-
sis steps described in the original study, we used DropSeq tools (v2.4.0) Tag-
BamWithReadSequenceExtended for generating the unaligned BAM file with
cDNA reads tagged by cell barcode (XC) and sample name (XM). FilterBam
from DropSeq tools (v2.4.0) was called to remove the reads tagged with XQ (low
quality reads). The tagged cDNA reads were then converted to fastq files with
tags XC and XM remained in the sequence names using samtools-v1.10
[10]. The reads in the fastq files were then mapped to the human reference
genome hg.19 using minimap2-v2.20 [11]. PCR duplicates in the mapped BAM
file were identified and removed by gatk4.2 MarkDuplicates. Heterozy-
gous SNPs were called for donor1 using gatk4.2 HaplotypeCaller and
only SNPs were kept. The SNPs were filtered by gatk4.2 VariantFiltra-
tion with options “ --filter-expression DP < 2|| QD < 10.0|| FS >
60.0|| SOR > 3.0|| MQ < 30.0|| MQRankSum < −12.5|| ReadPosRankSum
< −8.0” and SNPs that were concordant with the SNPs in the downloaded
dbsnp 138.hg19.vcf.gz from dbSNP database were kept [12]. We filtered
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the cell barcodes by their number of DNA reads available and the top 3,000 cell
barcodes were kept.

11.3 Running sgcocaller on datasets for scalability testing

11.3.1 Simulated large scalability testing datasets

We applied sgcocaller on the constructed datasets and the computational re-
sources required were recorded for all datasets (Fig. S9a,b). In addition to the
number of cells and the mean number of DNA reads per cell, we also varied the
number of input hetSNPs (columns of Fig. S9a,b). Modules of sgcocaller were
called on all the simulated datasets with the same options and listed below, and
each module was run with three repeats:

• sgcocaller phase: “--minDP 2 --maxDP 10 --minSNPdepth 20
--maxDissim 0.0099”

• sgcocaller swphase “--binSize 1000 --stepSize 500
--dissimThresh 0.1 --lookBeyondSnps 10 --maxUseNcells 200”

• sgcocaller sxo “--thetaREF 0.1 --thetaALT 0.9 --cmPmb 0.1
--chrom chr1 --notSortMtx --batchSize 3000”

• sgcocaller xo “--minDP 2 --maxDP 10 --minSNPdepth 20
--thetaREF 0.1 --thetaALT 0.9 --cmPmb 0.1”

sgcocaller sxo was called with phased haplotypes from sgcocaller swphase and
allele count matrices from sgcocaller phase, while sgcocaller xo was called with
the BAM file and the list of known phased hetSNPs in a VCF file.

11.3.2 Human sperm cells from donor 1

With the de-duplicated (PCR duplicates removed) DNA reads from sperm
cells from donor 1 in Bell et al (Nature, 2020), and the prepared list of het-
SNPs (see Pre-processing human sperm cells from donor1), sgcocaller phase was
first called with options: “--minDP 1 --maxDP 20 --maxExpand 3000
--posteriorProbMin 0.9 --minTotalDP 10”. The phased haplotypes
from sgcocaller phase were further processed by sgcocaller swphase to correct
switch errors in the inferred haplotypes: “--binSize 2000 --stepSize
200 --dissimThresh 0.05 --lookBeyondSnps 10 --maxUseNcells
500”. sgcocaller sxo was called subsequently for detecting crossovers in the
cells with phased haplotypes by swphase with options: “--thetaREF 0.2
--thetaALT 0.8 --cmPmb 1 --batchSize 3000 --notSortMtx”

12 Simulated sperm cells with increased crossovers

To test how our software tool performs on gametes with more frequent crossovers
than the apricot gametes, mouse, and human sperm cells, we generated simu-
lated cells with crossovers manually inserted. We generated a dataset with 100
sperm cells (with DNA reads mapped to a 5M region, coordinates 50Mb to 55Mb
on chromosome 1 only) each with 6 inserted crossovers to test the performance
of sgcocaller on gametes generated from meiosis with more frequent crossovers.

15



To generate the 100 sperm cells dataset, we first identified sperm cells in msperm
in which no crossovers were detected on chromosome 1, which means their chro-
mosome 1 either had the reference haplotype or the alternative haplotype from
the donor. We selected 5 reference haplotype sperm cells and 5 alternative
haplotype sperm cells with respect to chromosome 1. We then pooled together
the 5 reference sperm cells to generate the pool of DNA reads from only the
reference haplotype, and took the same approach for the alternative haplotype
sperm cells. To insert 6 crossovers in each simulated sperm cell, 6 break points
were selected for each cell. To generate sperm cells with different crossover po-
sitions, we first created a list of potential break point positions (with a distance
of 125k base pairs per break point, 39 break points in total) in the 5M chromo-
some region. We sampled randomly 6 break points for each cell as the inserted 6
crossovers. The 100 simulated cells were simulated by sampling DNA reads from
the reference haplotype DNA reads or the alternative haplotype DNA reads
alternatively in alternating chromosome regions divided by the break points.
The mean number of DNA reads per cell was 62k. We ran sgcocaller autophase
with “--minDP 2 --maxTotalDP 350 --chrom chr1 --maxDP 10 --
minSNPdepth 5 --maxDissim 0.0099 --binSize 1000 --stepSize
800 --lookBeyondSnps 10” for generating the haplotypes (Fig. S7a). We
applied sgcocaller sxo subsequently for detecting crossovers in the 100 cells
with options “--thetaREF 0.1 --thetaALT 0.9 --cmPmb 1 --chrom
chr1 --batchSize 50”. We filtered out segments that were covered with
fewer than 30 SNPs, and the final number of crossovers was counted for each
cell by finding state transitions (Fig. S7b).

13 Effect of low hetSNP density

To demonstrate the effects of low SNP density, we took the simulated 100 sperm
cells each with 6 crossovers in a 5M chromosome region (see Simulated sperm
datasets with increased crossovers) for haplotype construction and crossover
detection using reduced hetSNPs. We randomly sampled 10%, 5% and 1% of
from the original list of 20K hetSNPs in the 5M regions and performed phas-
ing and crossover calling using the downsampled lists of hetSNPs. Crossovers
were called by applying sgcocaller xo with options “--minDP 2 --maxDP 10
--thetaREF 0.1 --thetaALT 0.9 --cmPmb 1”, and the resulted hap-
lotype segments were not further filtered. We observed that more crossovers
were missed when the sparsity of hetSNPs increased (Fig. S11a). In addition,
crossovers with shorter distances from each other were more likely to be missed.
Therefore, for this simulated sperm cell dataset with the closest crossovers dis-
tances as 125k base pairs away, the number of required SNPs for a successful
crossover calling result is 1,372 which corresponds to 274 SNPs per mega base
region. Meiosis with more frequent and closer double crossovers would require
higher density of hetSNPs.

We applied sgcocaller autophase on the 100 sperm cells with the reduced lists
of hetSNPs for haplotype construction. sgcocaller autophase was run using op-
tions “--minDP 2 --maxTotalDP 350 --chrom chr1 --maxDP 10 --
minSNPdepth 5 --maxDissim 0.0099 --binSize 1000 --stepSize
800 --lookBeyondSnps 20” for cases when using 2,727 hetSNPs and 1,372
hetSNPs. The lookBeyondSnps option was changed to 50 when running for
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280 hetSNPs. Even when the density of hetSNPs was low, the phasing model
was still able to generate the correct haplotypes (Fig.S11c).
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14 Supplementary figures

Figure S1: SNP bins with low (and high) phasing accuracies in apricot
gametes. a) Three 100-SNP bins from CUR1G that have lower (< 0.8 ) phas-
ing accuracies were identified. The rate of haplotype contradictory genotypes
in SNP bins in gametes were calculate and the distribution of the fractions were
plotted. b) Three 100-SNP bins with high phasing accuracies (>= 0.99) form
CUR1G were identified and the distribution of the rate of haplotype contradic-
tory genotypes in gametes were plotted. c) same as (a) but for six 100-SNP
bins from CUR3G. d) same as (b) but for 3 bins from CUR3G.
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Figure S2: Representation of phased haplotypes (i and iii) and genotypes (ii) in
haploid gametes
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Figure S3: Genetic distances calculated by the sgcocaller xo and the published
results from the original study in 10 Mb chromosome bins on the mouse sperm
dataset for all autosomes. The same plot as in Fig5 b.

Figure S4: Crossovers called by sgcocaller-comapr workflow(left columns in a
and b) and from published study (right columns in a and b) for two randomly
selected apricot gametes
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Figure S5: Examples of chromosomes with excessive crossovers called by sgco-
caller xo and filtered in analysis (left column). Right column plots the crossover
results released by previous study [13]
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Figure S6: False crossover filtering in different datasets a,b) The logll-
Ratio of state segments and the midpoint of each segment were plotted for each
chromosome in the msperm (a) and apricot dataset (b). Each point represents
one segment and coloured by the number of SNPs supporting the segment.c,d)
The number of supporting SNPs versus the logllRatio for each state segment in
the msperm (c) and the apricot dataset (d). e) The distribution of logllRatio
for segments in msperm and apricot dataset, grouped by whether the segments
have support from more than 30 SNPs.
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Figure S7: Performance of sgcocaller on simulated gametes with in-
creased crossovers a) The number of hetSNPs that were phased correctly
using the 100 simulated cells each with 6 crossovers inserted over a region of
5M base pairs. b) All cells were called with 6 crossovers. c) The haplotype
segments by sgcocaller sxo for 20 representative cells were plotted and colored
by the inferred haplotype states in a region of 5M base pairs (50M to 55M on
chromosome 1).

Figure S8: autophase generates the same result with running
phase—swphase separately. The number of consistently phased SNPs
on chromosome 3 using low coverage mouse sperm cells by autophase and by
running phase—swphase separately were counted. All SNPs were phased with
the same results by the two workflows.
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Figure S9: Module running time and memory usage by sgcocaller on
datasets with varying sizes a) The running time of each module was plotted
in format of hour:minute:seconds on datasets with varying numbers of SNPs
(columns), numbers of cells, and mean numbers of DNA reads per cell to process.
b) Same as a) but the maximum memory usage of each module was plotted in
units of GB. c) The number of hetSNPs per chromosome and the mean number
of reads per cell in the sperm cells from donor 1 obtained from study [9]. d,e)
The running time of each module (d) and the maximum memory usage in units
of GB (e) when processing the sperm cells from donor 1 in study [9] was plotted.
Each measurement has been repeated three times by using the ‘benchmark’
function from Snakemake [14].
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Figure S10: Phasing performance comparison of HapCUT2 and sgco-
caller The number of phased SNPs for the apricot dataset by HapCUT2 and
sgcocaller (top) and the percentage of correctly phased SNPs by HapCUT2 and
sgcocaller (bottom)
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Figure S11: The effect of low hetSNP density a) The haplotype segments
inferred by sgcocaller xo for 20 representative cells were plotted and colored by
the inferred haplotype states using different numbers of hetSNPs. b) Number
of crossovers called per cell using different number of hetSNPs. c) The number
of (in)correctly phased SNPs using different numbers of hetSNPs.
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Graph Dataset
name

Sample size Coverage

Figure3a apricot 367 low
Figure4 msperm 173 (after cell filtering by comapr) high
Figure5a,b msperm 173 (after cell filtering by comapr) high
Figure5c,d,e apricot 333 (the common gametes with results

from three methods)
low

Figure6a msperm low-
coverage

10 dataset repeats constructed (each
with 174 or 175 cells) from 194 DNA
reads downsampled mouse sperm cells

low

Figure6b apricot 10 dataset repeats constructed (each
with 330 or 331 cells) from 367 cells in
total

low

Figure6c msperm 10 dataset repeats constructed (each
with 174 or 175 cells) from 194 cells in
total

high

Figure6d hsperm 11 dataset repeats constructed (each
with 10 cells) from 11 human sperm cells
in total

high

Figure6f,g msperm 10 dataset repeats constructed (each
with 174 or 175 cells) from 194 cells in
total

high

Table S1: The dataset names and their sample sizes used in plots
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