Supplemental information for "Depth dependence of climatic controls on soil microbial community activity and composition"

Nicholas C. Dove^{1,2*}, Morgan E. Barnes^{1,3}, Kimber Moreland^{1,4}, Robert C. Graham⁵, Asmeret Asefaw Berhe^{6,7}, and Stephen C. Hart^{6,7}

 ¹Environmental Systems Graduate Group, University of California, Merced, CA 95343, USA
 ²Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
 ³Ecosystem Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA
 ⁴Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA

⁵Department of Environmental Sciences, University of California, Riverside, CA, USA ⁶Department of Life & Environmental Sciences, University of California, Merced, CA 95343, USA

⁷Sierra Nevada Research Institute, Merced, CA 95343, USA

*Corresponding author: Nicholas C. Dove (ndove7@gmail.com); phone: +1-508-277-5039

SUPPLEMENTAL TABLES

Table S1:	Study	site	characteristics.
-----------	-------	------	------------------

Site	Pseudonym ¹	Dominant vegetation	Soil taxonomic family	MAT ² (C)	MAP ³ (cm)	Maximum sampling depth (cm)
Oak Savanna (OS)	San Joaquin Experimental Grassland	Quercus douglasii	Coarse loamy, mixed, active, thermic Mollic Haploxeralfs	16.7	50.2	270
Pine Oak Forest (POF)	Soaproot Saddle	Calocedrus decurrens, Pinus ponderosa	Fine loamy, mixed, semiactive, mesic Ultic Haploxeralfs	13.6	86	232
Mixed Conifer Forest (MCF)	Providence Creek Watershed	Pinus ponderosa, Abies concolor	Coarse loamy, mixed, superactive, frigid Humic Dystroxerepts	9.2	99.4	216
Subalpine Forest (SAF)	Shorthair	Abies magnifica, Pinus contorta	gnifica, Pinus Sandy-skeletal, mixed, Typic Cryorthents		107	115
Sagerbush Shrubland (SBS)	Granite 2 (GR2)	<i>Artemisia tridentata</i> ssp. vaseyana	Coarse-loamy, mixed, superactive, mesic Typic Calciargids	8.5	24.7	80
Pinyon Juniper Woodland (PJW)	Granite 3 (GR3)	Pinus monophylla, Juniperus occidentalis, Artemisia tridentata ssp. vaseyana	Coarse-loamy, mixed, superactive, mesic Typic Calciargids	7.3	27.7	55
Subalpine Shrubland (SAS)	Granite 5 (GR5)	Pinus monophylla, Juniperus occidentalis, Artemisia tridentata ssp. vaseyana	Loamy-skeletal, mixed, superactive, mesic Typic Haplargids	3.3	42.1	53
Alpine Desert Grassland (ADG)	Barcroft	Koeleria macrantha, Carex douglasii	Loamy-skeletal, mixed, superactive Typic Haplocryids	0.1	53.8	172

¹ Pseudonyms refer to previously published site names.

² Mean annual air temperature (1981 – 2018, PRISM Climate Group, Oregon State University,

http://prism.oregonstate.edu; accessed May 2020).

³ Mean annual precipitation (1981 – 2018, PRISM Climate Group, Oregon State University,

http://prism.oregonstate.edu; accessed May 2020).

Table S2: Horizons and depths in each soil profile across sites (provided in a separate data

sheet).

Table S3: χ^2 values of competing mixed effects models of enzyme activity (µmol) normalized by soil weight, microbial biomass carbon (MBC), and soil organic carbon (SOC). Bolded coefficients represent significant (p < 0.05) fixed effects. Key: BG = β -glucosidase, NAG = N-acetylglucosamine, AP = acid phosphatase, MAT = mean annual temperature (°C), MAP = mean annual precipitation (mm).

	Enzyme	Model*	Horizon	MAT	Horizon*MAT	MAP	Horizon*MAP
µmol kg ⁻¹ soil	BG	1	1 39F±01				
301	50	2	1.53E+01	2 89E+00	1 68F+01		
		3	1.41E+01	2.002.00	11002101	3 07E-02	6.55E+00
		4	1.53E+01	4.14E+00	1.27E+01	6.26E-02	4.11E+00
	NAG	1	4.76E+00			0.202 02	
		2	5.55E+00	1.52E-02	2.10E+01		
		3	5.41E+00			1.16E+00	7.45E+00
		4	6.04E+00	3.00E-04	1.94E+01	2.32E+00	5.53E+00
	AP	1	2.06E+01				
		2	2.06E+01	2.60E-01	2.87E+00		
		3	2.15E+01			2.85E-02	9.25E+00
		4	2.14E+01	1.21E-01	1.67E+00	8.17E-02	7.68E+00
µmol mol ⁻¹	PC	1					
IVIDC	BG	1 2	5.20E+00	0.00=-02	6 58E+00		
		2	5.52E+00	9.992-02	0.382+00	4 01 E±00	9 40E-02
		J 1	6.01E+00	3 30⊑-03	7.64E±00	4.01L+00	9.40E-02
	NAG	4	3.53E+00	3.30L-03	7.042700	J.29L+00	0.552-02
	NAO	2	4.67E+00	8 82E-01	1 05E±01		
		3	4 29E+00	0.022 01	1.002101	5 22E+00	8 72E-01
		4	5.69E+00	1.35E+00	1.16E+01	7.20E+00	-1.89E-05
	AP	1	7.20E+00				
		2	8.82E+00	5.72E+00	1.26E+00		
		3	6.73E+00			5.70E+00	6.24E-01
		4	8.14E+00	4.13E+00	1.13E+00	4.28E+00	5.03E-01
µmol mol ⁻¹			· ·				
SOC	BG	1	2.47E+01				
		2	2.72E+01	1.30E-01	1.69E+01		
		3	2.66E+01			3.24E+00	5.74E+00
		4	2.86E+01	1.16E-01	1.32E+01	2.56E+00	2.88E+00

NAG	1	1.61E+01					
	2	1.88E+01	7.25E+00	1.98E+01			
	3	1.69E+01			5.86E-01	6.20E+00	
	4	2.00E+01	7.74E+00	1.88E+01	4.06E-01	6.74E+00	
AP	1	4.34E+01					
	2	4.23E+01	7.56E+00	1.66E+00			
	3	4.50E+01			1.77E+00	5.05E+00	
	4	4.46E+01	1.01E+01	8.81E-01	3.81E+00	4.41E+00	
$*1 = \log_{10}(\text{enzyme})$) ~ Hor	rizon + (1 Pit)					
$2 = \log_{10}(\text{enzyme})$) ~ Hor	rizon + MAT	+ Horizon *I	MAT + (1 Pit))		
$3 = \log_{10}(\text{enzyme}) \sim \text{Horizon} + \text{MAP} + \text{Horizon} * \text{MAP} + (1 \text{Pit})$							
$4 = \log_{10}(\text{enzyme}) \sim \text{Horizon} + \text{MAT} + \text{Horizon} * \text{MAT} + \text{MAP} + \text{Horizon} * \text{MAP} + (1 \text{Pit}).$							

Table S4: Beta coefficients and *p*-values of beta-regressions of the relative abundance (%) of ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi with soil depth (cm). Bolded values represent sites where depth is significant (p < 0.05).

		E	N	AM		
	Site	β	р	β	р	
<u>SSCZO</u>	OS	< 0.01	0.950	< 0.01	0.918	
	POF	- 0.08	0.059	< 0.01	0.596	
	MCF	0.02	0.740			
	SAF	0.18	0.004	< 0.01	0.985	
<u>WMET</u>	SBS	- 0.11	0.360	- 0.13	0.033	
	PJW	0.25	0.205	- 0.02	0.578	
	SAS	< 0.01	0.962	- 0.03	0.760	
	ADG	- 0.02	0.728	- 0.04	0.030	

SUPPLEMENTAL FIGURES

Figure S1: Principal coordinates analysis (PCoA) plots of prokaryote (**A**) and fungal (**B**) community composition across study sites. The percentage in parentheses indicates the variation explained by each axis.

Figure S2: Mean and standard error of within horizon β -diversity (using Bray-Curtis dissimilarity).

Figure S3: Extracellular enzyme activity of β -glucosidase (BG), N-acetylglucosamine (NAG), acid phosphatase (AP) on soil weight basis colored by site (A), mol microbial biomass carbon (MBC, B), and mol soil organic carbon (SOC, C).

Figure S4: Extracellular enzyme activity of β -glucosidase (BG), N-acetylglucosamine (NAG), acid phosphatase (AP) on soil weight basis across sites and master horizons. Points represent samples and boxplots represents the median and interquartile range. Whiskers extend to the highest/lowest value within 1.5 times the interquartile range from the interquartile range.

Figure S5: Extracellular enzyme activity of β -glucosidase (BG), N-acetylglucosamine (NAG), acid phosphatase (AP) on a mol microbial biomass carbon (MBC) basis across sites and master horizons. Points represent samples and boxplots represents the median and interquartile range. Whiskers extend to the highest/lowest value within 1.5 times the interquartile range from the interquartile range.

Figure S6: Extracellular enzyme activity of β -glucosidase (BG), N-acetylglucosamine (NAG), acid phosphatase (AP) on a mol soil organic carbon (SOC) basis across sites and master horizons. Points represent samples and boxplots represents the median and interquartile range. Whiskers extend to the highest/lowest value within 1.5 times the interquartile range from the interquartile range.

Figure S7: Average relative abundance of prokaryotic taxa (**A**) and fungal classes (**B**) that significantly change (p-adjusted < 0.05) with depth at each site. Colored lines are calculated using loess regression of average relative abundance at each site (n = 4). Dashed lines represent depths of master horizon boundaries (boundary between B and C horizons is not shown when a C horizon was not encountered).

Figure S8: Relative abundance of ectomycorrhizal (**A**) and arbuscular mycorrhizal (**B**) fungi among sites and master horizons. Bars represent means, error bars represent standard error of the mean, and points represent samples. Letters represent significant differences among sites for each master horizon (Tukey HSD, p < 0.05).

