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1. General information

All reactions were performed in oven-dried glassware under an atmosphere of dry argon or
nitrogen unless otherwise noted. Moisture-sensitive reactions were carried out using standard
syringe septum techniques and under an inert atmosphere of argon or nitrogen. All solvents
and reagents were purified by standard techniques unless otherwise noted. Solvents for
filtration, transfers, and chromatography were certified ACS grade. Evaporation of solvents
was carried out under reduced pressure on a rotary vacuum evaporator below 40 °C. “Brine”
refers to a saturated solution of sodium chloride in water. *H, *C, 3P NMR spectra were
recorded on Bruker 500- and 700-MHz spectrometers. Chemical shifts are reported in parts per
million (ppm) downfield from tetramethylsilane. Spin multiplicities are described as s (singlet),
bs (broad singlet), d (doublet), dd (double of doublets), dt (double of triplets), ddd (doublet of
doublet of doublets), t (triplet), g (quartet), m (multiplet). Coupling constants are reported in
Hertz (Hz). The assignments of signals were done using 2D homonuclear *H-'H COSY,
NOESY and heteronuclear *H-3C HMQC or HSQC, and HMBC spectra. NMR spectra were
processed in TopSpin. High-resolution electrospray mass spectra were recorded on a Thermo
Fisher Scientific Q Exactive Focus Hybrid Quadrupole-Orbitrap mass spectrometer. lons
generated by ESI were detected in positive ion mode for small molecules and negative ion
mode for oligonucleotides. Total ion count (TIC) was recorded in centroid mode over the m/z
range of 100-3,000 and analyzed using Thermo Fisher Xcalibur Qual Browser. Analytical thin
layer chromatography (TLC) was performed on MERCK precoated silica gel 60-F254 (0.5-
mm) aluminum plates. Visualization of the spots on TLC plates was achieved either by
exposure to UV light or by dipping the plates into aqueous KMnQO4 and heating with a heat
gun. Silica gel column chromatography was performed using silica gel 60 (40-63 um).
Oligonucleotide syntheses were carried out on a MerMade-4 DNA/RNA synthesizer
(BioAutomation) on a 5 umol scale using standard manufacturer’s protocol for unmodified

nucleotides.

2. Synthesis of modified azido CPG
2.1. Synthesis of 2-deoxy-3,5-di-O-(4-methylbenzoyl)-g-D-erythro-pentofuranosyl
azide (2)
To a stirring solution of sodium azide (97.5 g, 1.5 mol) and tetrabutylammonium hydrogen
sulfate (101.7 g, 0.3 mmol) in saturated sodium bicarbonate solution (1 L), chloroform (1 L)

was added, and the mixture was vigorously stirred for about 5 min until a milky emulsion was
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formed. Hoffer’s chloro-sugar 1 (116.7 g, 0.3 mol) was rapidly added to the emulsion and the
mixture was stirred 20 min. After the disappearance of starting material, the organic layer was
washed with satd. sodium bicarbonate (1 L), water (2 x 1 L), dried over anhydrous sodium
sulfate and was filtered. Solvent was evaporated in vacuo and the product was recrystallized
from ethanol (450 mL) to yield compound 2 (105 g, 88%, B:a ratio of 19:1).
'H NMR (500 MHz, DMSO-ds): 6 7.94-7.84 (m, 4H, H-3); 7.36-7.29 (m, 4H, H-4); 5.87 (dd,
1H, J=6.0 Hz, J = 4.2 Hz, H-1"); 5.56-5.50 (m, 1H, H-3'); 4.59-4.39 (m, 3H, H-4'5"); 2.49-
2.42 (m, 1H, H-2'a); 2.375, 2.370 (2s, 6H, H-6); 2.37-2.30 (m, 1H, H-2'b).
13C NMR (125.7 MHz, de-DMSO): ¢ 165.4; 165.3 (2C, C1); 144.0, 143.8 (2C, C5); 129.4,
129.3, 129.2, 129.2 (8C, C3,4); 126.7, 126.4 (2C, C2); 91.6 (C1"); 82.0 (C4"); 74.6 (C3"); 63.9
(C5"; 37.8 (C2"; 21.1, 21.1 (2C, C6).
IR ATR (cm™): 2943.74, 2126.16, 1715.46, 1611.78, 1509.61, 1443.95, 1407.97, 1378.51,
1271.93, 1238.71, 1176.04, 1114.15, 1101.23, 1083.75, 1059.76, 1035.31, 1019.42, 970.45,
939.79, 885.50, 844.42, 750.80, 691.50.
HRMS (ESI) m/z: [M+Na]" Calcd for C21H21N3OsNa 418.1379; found 418.1372.

2.2. Synthesis of 2-deoxy-5-0-(4,4'-dimethoxytrityl)-p-D-erythro-pentofuranosyl

azide (3)

Synthesis was performed by a similar procedure described earlier.* To a stirring solution of 2-
deoxy-3,5-di-O-(4-methylbenzoyl)-p-D-erythro-pentofuranosyl azide 2 (3.96 g, 10 mmol) in
370 mL methanol was added 37 mL of 30% ag. ammonia solution and kept it stirring for 3
days. After the disappearance of the starting material, volatiles were removed by rotary vacuum
evaporator and residue was co-evaporated again with water to remove formed methyl toluate
and then freeze dried from water to get the deprotected compound 2-deoxy-p-D-erythro-
pentofuranosyl azide (1.65 g). This product was used without further purification to protect it
with DMT. To a stirring solution of the deprotected azido sugar (1.65 g, 10 mmol) in dry
pyridine (40 mL) at 0 °C 4,4'-dimethoxytrityl chloride (3.72 g, 11 mmol) was added and
mixture was stirred at r.t. overnight. Pyridine was evaporated in vacuo. The residue was
dissolved in 50 mL ethyl acetate and washed with brine (2 x 10 mL). The organic layer was
dried over anhydrous sodium sulfate, filtered, and evaporated in vacuo. The crude product was
purified by column chromatography over silica gel treated with 10% EtsN in DCM and
compound 3 was eluted with 5% EtOAc in DCM to afford the desired product 3 as a foam
(3.13 g, 68%).
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IH NMR (500 MHz, DMSO-de): & 7.47-7.42 (m, 2H, H-2); 7.34-7.26 (m, 6H, H-3, 2"); 7.25-
7.19 (m, 1H, H-4); 6.92-6.86 (M, 4H, H-3"); 5.68 (dd, 1H, J = 5.8 Hz, J = 3.1 Hz, H-1)); 5.25
(d, 1H, J =5.0 Hz, OH); 4.20-4.12 (m, 1H, H-3'); 3.93-3.86 (M, 1H, H-4'); 3.73 (s, 6H, 2XCHs);
3.15-3.02 (m, 2H, H-5'); 2.04-1.91 (m, 2H, H-2).

13C NMR (125.7 MHz, DMSO-ds): 6 158.0 (2C, C4"); 144.9 (C1); 135.7, 135.6 (2C, C1");
129.7 (4C, C2"); 127.8 (2C, C3); 127.7 (2C, C2); 126.6 (C4); 113.2 (4C, C3"); 91.5 (C1"), 85.4
(C4'): 85.3 (CArs); 69.9 (C3)); 63.9 (C5'); 55.0 (2C, CHa); 40.4 (C2)).

IR ATR (cm'Y): 2110.79, 1607.41, 1520.20, 1450.36, 1300.72, 1250.46, 1176.80, 1081.96,
1033.97, 829.42.

HRMS (ESI) m/z: [M+Na]* Calcd for C26H27N3OsNa 484.1848; found 484.1844.

2.3. Synthesis of modified azido-2-deoxyribose CPG (4)

Synthesis of the CPG support 4 was performed following the previously reported procedure.?
LCAA-CPG (3.0 g) with a pore size of 500 A and 120-200 mesh size obtained commercially
(ChemGenes Corporation) was activated by 3% trifluoroacetic acid in DCM (30 mL) and kept
overnight with gentle stirring. The slurry was filtered and washed with 9:1
triethylamine:diisopropylethylamine (50 mL), DCM and diethylether, then dried in vacuo.
Activated LCAA-CPG was then treated with succinic anhydride (6.6 mmol, 0.66 g) and 4-
dimethylaminopyridine (DMAP) (0.8 mmol, 0.1 g) in anhydrous pyridine (12 mL) and stirred
gently at r.t. overnight. The slurry was filtered off and washed successively with pyridine,
DCM, and ether, then dried in vacuo. This carboxylic derivatized CPG was then coupled with
compound 3 (0.4 mmol, 0.184 g) in presence of 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide (EDC base) (2.7 mmol, 0.48 mL), triethylamine (20 uL) and DMAP (0.8 mmol,
0.1 g) in 1:1 pyridine:DMF (36 mL). After 72 hours pentafluorophenol (1.5 mmol, 0.27 g) was
added and mixture was kept overnight. The slurry was filtered and washed with DCM and a
mixture of 9:1 pyridine:piperidine (10 mL) during 5 min followed by DCM, acetonitrile, THF
and again with DCM, then dried in vacuo. The CPG was then treated with the mixture of 2 mL
of Cap A (acetic anhydride:2,6-lutidine:THF, 1:1:8, v/v/iv) and 2 mL of Cap B (1-
methylimidazole:THF, 4:21, v/v) for 2 hours, followed by washing with DCM, methanol,
acetonitrile, THF and again with DCM and dried in vacuo. The load on the CPG 4 was
determined to be 39 umol/g based on UV absorption of DMT-cation at 504 nm (€ = 76000
L-molt.cm™) that was released from an aliquot of compound by treatment with 3%
dichloroacetic acid in DCM.

S5



3. Synthesis of modified 2'-deoxyadenosines

2.4. Synthesis of 2-azidoethyl-4-methylbenzenesulfonate (5)

NaNs TsCIl, DMAP
0,
OH Water oH DCM, 0°C-rt OT:
N e N R N3/\5/ s
60% 92%

Scheme S1. Synthesis of 2-azidoethyl 4-tosylate (5)

2-Azidoethan-1-ol (2.0 g, 23.0 mmol) was prepared according to a reported procedure® and
was dissolved in DCM (50 ml), cooled to 0 °C, then DMAP (34 mg, 0.27 mmol), tosyl chloride
(6.56 g, 34.40 mmol) and EtsN (6.39 mL, 46.0 mmol) were added. The reaction mixture was
stirred for 30 min, diluted with 50 mL more of DCM and washed with brine (2 x 10 mL). The
organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo.
The crude product was purified by column chromatography over silica gel, eluting with
hexane/EtOAc (7:3) to afford the desired product 5 as an oily liquid (3.12 g, 92%).

IH NMR (500 MHz, DMSO-ds): 6 7.79 (d, J = 8.3 Hz, 2H); 7.34 (d, J = 8.1 Hz, 2H,); 4.16 (t,
2H, J = 5.2 Hz, CH2CH2N3); 3.48 (t, 2H, J = 5.2 Hz, CH2CH2Ns); 2.45 (s, 3H, Ar-CHs).

13C NMR (125.7 MHz, CDCls): § 145.33 (1C, C1); 132.52 (1C, C4); 130.03 (2C, C3 and C5):
127.95 (2C, C2 and C6); 68.22 (1C, CH,CH:Ns3); 49.58 (1C, CH2CH2N3); 21.65 (1C, CHs).

HRMS (ESI) m/z: [M+Na]" Calcd for CoH11N3O3SNa 264.0419; found 264.0413.
2.5. N8,3' 5'-Triacetyl-2'-deoxyadenosine (7)

N®,3',5'-Triacetyl-2'-deoxyadenosine 7 was prepared similar to a reported procedure with some
modifications.* A mixture of 2'-deoxyadenosine 6 (1.0 g, 3.98 mmol), pyridine (7.5 mL) and
Ac20 (3.5 mL) was stirred at r.t. overnight. The resulting solution was heated to 60 °C for 6 h.
After the disappearance of the starting material, monitored by TLC (CH2Cl2/MeOH, 95:5, v/v),
the reaction was cooled down and quenched with excess of EtOH (20 mL). Volatiles were
evaporated in vacuo. Traces of pyridine were co-evaporated with successive portions of EtOH
and MeOH (20 mL each). The resultant oily liquid was diluted with EtOAc (100 mL) and
washed with brine (2 x 20 mL). The organic layer was dried over anhydrous sodium sulfate,
filtered, and evaporated in vacuo. The crude product was purified by column chromatography
on silica gel, eluting with CH2>Cl,/MeOH (9.5:0.5, v/v) to afford the desired product 7 as a
white solid (1.15 g, 76%).
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'H NMR (500 MHz, DMSO-ds): 6 10.70 (s, 1H, NH); 8.663, 8.660 (2s, 2H, H-2, H-8); 6.48
(dd, 1H, J1> = 6.3, 7.8 Hz, H-1'); 5.44 (dt, 1H, J = 2.8, 6.5 Hz, H-3"); 4.32 (dd, 1H, Js52= 4.2
Hz, Jsa50 = 11.0 Hz, H-5'3); 4.28 (ddd, 1H, J34 = 2.7 Hz, Jy 5a= 4.2 Hz, J4 5= 5.5 Hz, H-4');
4.22 (dd, 1H, Ja5b= 5.5 Hz, Jsasb = 11.0 Hz, H-5'b); 3.20 (ddd, 1H, J2a3 = 2.8 Hz, J2a1= 6.3
Hz, Joa2b = 14.2 Hz, H-2'a); 2.60 (ddd, 1H, J2b3 = 6.6 Hz, Job 1 = 7.8 Hz, J2a20n = 14.2 Hz, H-
2'b); 2.26 (s, 3H, NHCOCHz3 ); 2.10, 2.00 (2s, 6H, OCOCHpg).

13C NMR (125.7 MHz, DMSO-ds): 6 170.1 (OCOCHs3); 170.0 (OCOCHs); 168.8 (NHCOCHs):
151.7 (C2); 151.5 (C4); 149.7 (C6); 142.9 (C8); 123.8 (C5); 83.7 (C1): 81.8 (C4'): 74.2 (C3');
63.5 (C5"); 35.3 (C2'); 24.3 (NHCOCHs); 20.8 (OCOCH3); 20.5 (OCOCHE).

HRMS (ESI) m/z: [M+H]" Calcd for C16H20N50¢ 378.1414; found 378.1397.

2.6. N°-(2-Azidoethyl)-N® 3" ,5'-triacetyl-2'-deoxyadenosine (8)
To astirring solution of N®,3',5"-triacetyl-2'-deoxyadenosine 7 (1.0 g, 2.65 mmol) in acetonitrile
(15 mL), Cs2C03(2.50 g, 7.67 mmol) and compound 5 (3.82 g, 15.80 mmol) were added and
mixture was heated to 60 °C. After the disappearance of the starting material on TLC the
reaction mixture was diluted with EtOAc (50 mL) and washed with water (2 x 10 mL). Organic
layer was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude
product was purified by silica gel column chromatography using CH2>Cl./MeOH (9:1,v/v) to

get desired compound 8 as a sticky solid.
Yield: 0.94 g, 80%.

IH NMR (500 MHz, DMSO-ds): J 8.84 (s, 1H, H-8); 8.82 (s, 1H, H-2); 6.52 (dd, 1H, Jy 2 =
6.7, Ju2n 7.2 Hz, H-1); 5.45 (dt, 1H, J = 2.3, 6.4 Hz, H-3"); 4.32 (dd, 1H, Ja5a= 4.2 Hz, Jsasb
= 10.6 Hz, H-5'); 4.31-4.28 (m, 3H, H5'b and NCH,CH,N3); 4.23 (ddd, 1H, Js.s = 2.3 Hz,
Jysa= 4.4 Hz, Jys0= 5.9 Hz, H-4); 3.52 (t, J = 7.0 Hz, 2H, NCH2CH2N3); 3.20 (ddd, 1H, Jza3
= 2.3 Hz, Jaar= 6.7 Hz, Jyazn = 14.3 Hz, H-2'): 2.63 (ddd, 1H, Jobs = 6.4 Hz, Jap1 = 7.2 Hz,
Jzaz0=14.3 Hz, H-2'0); 2.17 (s, 3H, NCOCH); 2.10 (5, 3H, OCOCHz); 1.99 (s, 3H, OCOCHy).

13C NMR (125.7 MHz, DMSO-dg): 6 170.8 (OCOCH;); 170.1 (OCOCH;); 170.0 (NCOCH3);
152.6 (C6): 152.3 (C4); 151.6 (C8); 144.5 (C2); 126.7 (C5); 83.9 (C1'); 81.8 (C4'); 74.1 (C3):
63.4 (C5); 49.4 (NCH2CH:N3); 45.6 (NCH2CH:N3); 35.4 (C2); 23.8 (NCOCH3); 20.8
(OCOCHS3); 20.5 (OCOCH3).

IR ATR (cm™): 3440.67, 2306.61, 2339.80, 2251.73, 2124.62, 1667.50, 1058.50, 1037.65,
1008.07, 823.02, 760.59, 667.93, 624.85.
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HRMS (ESI) m/z: [M +H]" Calcd for C1gH23NgOs 447.1741; found 447.1737.

2.7. N8-(2-Azidoethyl)-N®é-acetyl-2'-deoxyadenosine (9)
To a stirring solution of compound 8 (0.9 g, 2.0 mmol) in MeOH:water (10:10 mL) EtsN (1.5
mL) was added at r.t. The reaction was monitored by TLC. After 15 min volatiles were
evaporated in vacuo. The crude product was purified by silica gel column chromatography
using CH2Cl2/MeOH (7:3) to get desired compound 9 as a semisolid (0.65 g, 89%).

IH NMR (500 MHz, DMSO-de): 6 8.83 (s, 1H, H-8); 8.82 (s, 1H, H-2); 6.49 (app t, J = 6.7 Hz,
1H, H-1'); 5.43 (s, 1H, 3-OH), 5.05 (s, 1H, 5-OH), 4.45 (dt, 1H, J = 3.2, 5.6 Hz, H-3); 4.29
(t, J = 6.1 Hz, 2H, NCH,CH2N3); 3.90 (ddd, 1H, J3.4 = 2.3 Hz, Ja5b= 4.6 Hz, Josa= 5.9 Hz,
H-4); 3.63 (dd, 1H, Ja5a= 5.9 Hz, Jsasp = 11.7 Hz, H-5'a); 3.54 (dd, 1H, Ja 5t 4.6 Hz, Jsasb
= 11.7 Hz, H-5'b); 3.52 (t, 2H, J = 6.1 Hz, 2H, NCH2CH,Ns); 2.77 (ddd, 1H, Joaz = 2.8 Hz,
Jza1= 6.3 Hz, Jzazn = 13.2 Hz, H-2'a); 2.37 (ddd, 1H, Jabs = 6.2 Hz, J2b1 = 9.8 Hz, Joazb =
13.2 Hz, H-2'h); 2.16 (s, 3H, NCOCHb).

13C NMR (125.7 MHz, DMSO-ds): d 170.8 (NCOCHs); 152.5 (C2); 152.1 (C6); 151.5 (C4);
144.3 (C8); 126.6 (C5); 88.0 (C4"); 83.8 (C1'); 70.5 (C3); 61.4 (C5): 49.3 (NCH,CH,Ns):
45.6(NCH,CH2Ns), 39.8 (C2'): 23.8 (NCOCH3).

HRMS (ESI) m/z: [M + Na]* Calcd for C14H1sNsO:Na 385.1349; found 385.1342.

2.8. 5'-0-(4,4'-Dimethoxytrityl)-N°-(2-azidoethyl)-Né-acetyl-2'-deoxyadenosine (10)

To a stirring solution of compound 9 (0.6 g, 1.66 mmol) in dry pyridine (5 mL) 4,4'-
dimethoxytrityl chloride (0.67 g, 2.0 mmol) was added at 0 °C and the mixture was stirred at
r.t. overnight under argon. Pyridine was evaporated in vacuo and the residue was dissolved in
50 mL DCM, washed with brine (2 x 10 mL), organic layer was dried over anhydrous sodium
sulfate, filtered, and concentrated in vacuo. The crude product was purified by column
chromatography over silica gel treated with 10% EtsN in DCM and eluted with 5% EtOAc in
CH.Cl; to afford the desired product 10 as a foam (0.81 g, 74%).

Yield: 0.81 g, 74%.

IH NMR (500 MHz, DMSO-de): & 8.75 (s, 1H, H-8); 8.72 (s, 1H, H-2); 7.32-7.30 (m, 2H,H-
2"); 7.21-7.16 (m,7H, H-3", 4"and 2"); 6.81-6.77 (m, 4H, H-3"); 6.51 (dd, 1H, J12 = 5.9, 6.7
Hz, H-1); 5.43 (d, 1H, Json = 4.65 Hz, 3'-OH); 4.54-4.50 (m, 1H, H-3); 4.27 (t, J =6.17 Hz,
2H, NCH2CH,Ns); 4.09-4.02 (m, 1H, H-4'); 3.714 (s, 3H,0CHs); 3.710 (s, 3H, OCHs); 3.49 (t,
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J = 6.10 Hz, 1H, NCH,CH,Ns); 3.23-3.16 (m, 2H, H-5'); 2.95-2.90 (m, 1H, 1H, H-2'a); 2.43-
2.38 (M, 1H, H-2'b); 2.11 (s, 3H, NCOCHj).

13C NMR (125.7 MHz, DMSO-ds): 6 171.2 (NCOCHs): 158.4, 158.4 (2C, C4™): 152.9 (C6)
152.6 (C4); 151.9 (C2); 145.3 (C1"); 145.0 (C8); 136.0, 135.9 (2C, C1"™): 130.1 (4C, C2"):
128.1 (2C, C3"); 128.1 (2C, C2"); 127.1 (C5); 127.0 (C4"); 113.5, 113.5 (4C, C3"); 86.5 (C4');
85.8 (C-Ars); 843 (C1); 70.9 (C3); 645 (C5'); 55.4 (OCH3); 55.4 (OCHS3); 49.8
(NCH2CH;Ns); 46.0 (NCH,CH;N3); 38.9 (C2); 24.2 (NCOCHb).

IR ATR (cm™): 3440.50, 2951.36, 2098.43, 1682.24, 1574.42, 1505.16, 1446.01, 1364.68,
1295.85, 1248.04, 1211.82, 1175.50, 1032.04, 826.80, 700.85, 579.51.
HRMS (ESI) m/z: [M +H]" Calcd for CssH37NsOg 665.2836; found 665.2831.

2.9. 5'-0-(4,4'-Dimethoxytrityl)-Né-(2-azidoethyl)-N®-acetyl-3'-O-(N,N-

diisopropylamino-2-cyanoethoxyphosphanyl)-2'-deoxyadenosine (11)

To astirring solution of compound 10 (0.6 g, 0.90 mmol) in dry CDClIs (5 mL), EtsN (0.16 mL,
1 mmol) followed by 2-cyanoethyl-N,N-diisopropy! chlorophosphoramidite (0.27 mL, 1.08
mmol) were added under argon at 0 °C. After the consumption of the starting material, reaction
mixture was washed with saturated NaHCOs solution (2 x 5 mL) followed by brine (5 mL).
The organic layer was dried by passing through a column (12 x 1.5 cm) of anhydrous sodium
sulfate. The solution of compound 11 in CDCIs contains excess of phosphitylation reagent as
shown by NMR (Figure S61). For automated DNA synthesis, the reaction was performed
under the same conditions using dry DCM as a solvent. The concentration of azide
phosphoramidite in DCM solution was calculated as 0.2 M based on UV absorption of DMT-
cation at 504 nm (€ = 76,000 L-mol*-cm™) that was released from an aliquot of compound 11
by treatment with 3% dichloroacetic acid in DCM.

IH NMR (500 MHz, CDCls): § 8.72 (s, 1H, H-8); 8.27, 8.24 (2s, 1H, H-2); 7.39-7.37 (m, 2H,
H-2"); 7.29-7.19 (m, 7H, H-3", H-4" and H-2"); 6.80-6.77 (m, 4H, H-3"); 6.54-6.51 (m, 1H,
H-1Y); 4.84-4.77 (m, 1H, H-3'); 4.40-4.37 (m, 2H, NCH,CH2Ns); 4.22-4.16 (m, 1H, H-4"); 4.15-
4.09 (M, 2H, CH2CH.CN); 3.77 (2s, 6H, OCHs); 3.63-3.55 (m, 2H, NCH.CH,CN); 3.60-3.50
(M, 2H, NCHCHs); 3.50-3.46 (m, 2H, H-5); 2.93 (ddd,1H, J= 6.6, 9.8, 13.4 Hz, H-2'); 2.76-
2.73 (M, 2H, CH2CH,CN); 2.64-2.61 (m, 1H, H-2'a); 2.58-2.54 (m, 2H, NCH2CH,Ns); 2.25,
2.24 (25, 3H, NCOCH3); 1.20-1.18 (m, 10H, NCHCHS3); 1.13 (d, 2H, NCHCH3, J = 6.5 Hz).

13C NMR (125.7 MHz, CDCls): 9 171.6 (NCOCHs): 158.5 (2C, C4™); 153.0 (C6); 152.8 (C4);
152.7 (C6); 151.8 (1C, C2); 144.4 (C8): 142.5 (C1"): 135.56, 135.52, (2C, C1"); 130.09,
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130.06, 130.04, 130.02 (4C, C2"): 128.1, 128.0, (4C, C2", 3"); 127.8, 127.0, 126.99, 126.94,
126.91 (C4"): 117.58, 117.46 (CN); 116.9 (C5); 113.1 (4C, C3"); 86.5 (C-Ars); 86.0, 85.8 (1C,
C1); 84.8, 84.7 (1C, C4); 74.0, 73.9; 73.4, 73.3 (1C, C3'); 63.2, 63.1 (C5'); 58.3, 58.2, 58.16,
58.11 (1C, NCH2CH,CN); 55.2, 55.1 (2C, OCHs); 49.98, 49.95 (1C, NHCH2CH,Ns); 46.1 (1C,
2'; 45.3, 45.2 (1C, NHCH,CH;Ns): 24.65, 24.61, 24.57, 24.51 (1C, NCOCHs); 22.97, 22.95,
22.89, 22.87 (NCHCHS); 20.46, 20.40, 20.2, 20.1, 20.05 (CH,CH,CN).

3P NMR (202.5 MHz, DMSO-ds, ref. 85% H3sPO4) 5 148.8.

IR ATR (cm™): 3673.51, 2969.69, 2361.85, 2251.42, 2097.34, 1673.86, 1574.37, 1508.81,
1462.87, 1367.94, 1330.70, 1298.57, 1250.22, 1179.36, 1036.65, 911.31, 829.03, 732.85,
646.64, 558.98, 421.81.

4. Oligonucleotide synthesis and purification

Oligonucleotides were prepared on a MerMade-4 DNA/RNA synthesizer (BioAutomation) on
a 5 umol scale using standard manufacturer’s protocol. Coupling times of 2'-deoxyzebularine
(dZ) and other modified phosphoramidites were increased from 2 to 10 min. The final
detritylated oligonucleotides were cleaved from the solid support and deprotected with 30%
aq. ammonia solution (1.0 mL) at room temperature for 24 h. After filtering, an ag. solution of
0.3 M LiCIO4 (0.5 mL) was added and oligonucleotides were precipitated with acetone (14
mL). The pellets were washed with acetone and dried. Dry pellets were dissolved in milli-Q
water (1 mL), oligonucleotides were purified and isolated by reverse phase HPLC on 250/4.6
mm, 5 um, 300 A C18 column (Thermo Fisher Scientific) in a gradient of CH;CN (0—20%
for 20 min, 1.3 mL/min) in 0.1 M TEAA buffer (pH 7.0) with a detection at 260 nm.
Oligonucleotides were freeze-dried, pellets were dissolved in milli-Q water (1.5 mL) and
desalted by reverse-phase HPLC on 100/10 mm, 5um, 300 A C18 column (Phenomenex) in a
gradient of CH3CN (0—80% for 15 min, 5 mL/min) in milli-Q water with detection at 260 nm.
Pure products were quantified by measuring absorbance at 260 nm, analyzed by ESI-MS and
concentrated by freeze-drying.
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5. Cross-linking of linear oligonucleotides by CUAAC

The purified linear oligonucleotides were cross-linked by copper(l)-catalyzed azide-alkyne
cycloaddition (CUAAC) using the following protocol implemented in our laboratory (Table
S1).

Table S1. Protocol employed for the CUAAC reaction.

OD260 Units 5< 5-10 10-15 15-20 20-25 25-30 30-35 35-40
Oligonucleotide, puL 30 60 90 120 150 180 210 240
2M TEAA (pH7.0),yuL 10 20 30 40 50 60 70 80
DMSO, pL 40 80 120 160 200 240 280 320
‘Click catalyst’, pL* 10 20 30 40 50 60 70 80

Sodium ascorbate (10 5 10 15 20 25 30 35 40
mM), pL

*The “click catalyst’ is prepared fresh by mixing 10 mM of tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]lamine
(TBTA) dissolved in DMSO and 10 mM of Cu(ll) sulfate in water (1:1, v/v).

The oligonucleotides were dissolved in the required quantity of 2 M TEAA (pH 7.0) followed
by addition of DMSO. The bright blue colored ‘click catalyst’ was then added to the above
contents in a tube that was purged with argon, followed by addition of freshly prepared sodium
ascorbate solution in water. Reaction mixture was kept overnight at room temperature. A 10
ML aliquot of the reaction mixture was taken and the oligonucleotide was precipitated by adding
25 pL of 2 M LiClO4 and five-fold volume of acetone. The contents were centrifuged using an
Eppendorf MiniSpin Plus at 14500 rpm, 14100 xg, for 2 min. The supernatant was discarded,
and the pellet was washed carefully with acetone and dried. The dry pellet was dissolved in 10
pL milli-Q water and analyzed by reverse-phase HPLC for the product formation. After the
completion of the reaction as shown by reverse phase HPLC, the oligos were precipitated by
adding 1 mL of 2 M LiClOg, ten-fold volume of acetone and mixed well. The contents were
centrifuged using a Thermo Fisher Heraeus Multifuge X1R centrifuge with swing bucket rotor
at 5000 rpm, 4700 xg for 30 min. The supernatant was discarded, and the pellet was washed
carefully with acetone and dried. The dry pellet was dissolved in 10 mL milli-Q water, purified
and isolated by reverse-phase HPLC on 250/4.6 mm, 5 um, 300 A C18 column (Thermo Fisher
Scientific) in a gradient of CH3CN (0—20% for 20 min, 1.3 mL/min) in 0.1 M TEAA buffer
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(pH 7.0) with a detection at 260 nm. Purified oligos were freeze-dried, pellets were dissolved
in milli-Q water (1.5 mL) and desalted by reverse-phase HPLC on 100/10 mm, 5 um, 300 A
C18 column (Phenomenex) in a gradient of CH3zCN (0—80% for 15 min, 5 mL/min) in milli-
Q water with detection at 260 nm. Cross-linked oligos were quantified by measuring
absorbance at 260 nm, analyzed by ESI-MS and concentrated by freeze-drying.

2.10. Proof of cross-linking by RP-HPLC, HRMS and NMR experiments using an oligo
synthesized for pilot studies

As the internal cross-linking strategy of oligos has been done rarely in the past, we decided to
perform a pilot study of an oligo containing an alkyne attached to 2'-deoxyadenosine (dAY?) at
+1 position and our azido sugar (dR™®) at -2 position creating cross-link 1 (Figure S1). We
performed a trial cross-linking of the sequence using CUAAC and monitored the reaction using
reverse phase HPLC, isolated the product peak, which gave us the same mass as that of the
starting material as the product and starting material have the same atomic composition
(Figures S2 and S3). While this was one of the proofs of cross-linking, we decided to use NMR

experiments to provide further evidence of the successful cross-linking.

N\
A) B)
NH
' DNA N
5 -ATd2RN31T%:dAY2TTT & N DNA ¢ ﬁN
dRN3 dAYZ \\Q
Co-p=0 o ¢
DNA 0—0=0
DNA
C) =
NH H
/N\7 N /Nﬁ
A ¢!
\\\N ’\lll N N

CUAAC N~

N3
- >
O—DNA
DNA-O O—DNA—O O—DNA DNA—O
+1

5 “ , O—DNAO

Figure S1. (A) Sequence of a linear oligo dC[RN%(-2), AY?(+1)] used for internal cross-linking pilot study. (B)
Chemical structure of modifications used in the sequence. (C) A representation of the cross-linking reaction
using CuAAC.
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Figure S2. RP-HPLC profiles (on 250/4.6 mm, C18 column) of oligo used in pilot study before (top) and after
(bottom) CuAAC reaction showing the difference in retention times of the starting material and the cross-linked
product.

HA-20-CY #34 RT: 0016 AV: 1 NL: 2 09E+00T
T FTMS - p E51 Full mes [250.0000-3000.0000]

a)

1207 660.8671
1 z=4
100
4 660.6172
&0 = B61.1T
; 1 =4
&0+
3 6613676
404 =4
29 7178 6588671 660.3652 ulﬂa' 6623679 6641110 6646137 6651168
1 =0 z=0 z=0 | oz z=0) z=0 _z=0
88 6% e 66l 66z 663 664 665
miz
HA-20-3 #41 RT. 0.19 AV: 1 NL: 1.77E+009
T FTMS - p ES! Full ms [250.0000-3000,0000]
=4
100
GEOG155
§ w =4
&) BE1.1165
g 70 =4
60
é o 6613671
40 224
30
0 6616176 wﬁfm
10JE56.6137 6581187 £58.8710 659.8551 224 6631151 636102 664 6151
z=0 2=4 z=4 z=0 I ) =4 =4 =0 l g
T L] T L T L] T L} T T T Ll T T T T T T T
657 658 859 €60 661 €62 663 664 65 666 667
miz

Figure S3. HRMS spectra showing the m/z of linear oligo (a) and cross-linked oligo (b) done as a part of the
pilot study.

'H NMR of linear oligo and cross-linked oligo showed an obvious difference in the overall
chemical shifts (Figures S4 and S5) All the methyl peaks arising from the thymidines were
shifted (between 1.6 to 2.0 ppm) in cross-linked oligo compared to the linear oligo (Figure
S13), suggesting the formation of a new product (cross-linked oligo) as the result of CUAAC
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reaction. The anomeric proton of the azide 2'-deoxyribose in the linear oligo (triplet at 5.64
ppm, J = 5.60 Hz) and anomeric proton of the triazole nucleoside on the cross-linked oligo
(6.16-6.18 ppm as a part of a multiplet) had different chemical shifts. Assignment of these
peaks was done by 2D NMR experiments. In the linear oligonucleotide only one of the
anomeric protons at 5.64 ppm has no cross peaks with the aromatic region as there is no
aromatic nucleobase in the azide nucleotide as shown by the HMBC and NOESY NMR
experiments (Figures S6-S8). When it was cross-linked, there was an additional proton (8.13
ppm) in the aromatic region together with four aromatic protons of 2'-deoxyadenosines (Figure
S9). This proton has a cross peak with the proton at 6.18 ppm in the NOESY NMR spectrum,
which is the anomeric proton of the triazole nucleotide (Figure S10). In addition, acetylenic
proton (2.44 ppm) in the linear oligo was also assigned by HMBC NMR cross peak with the
CH> (18.30 ppm) immediately next to it (Figures S11 and S12). This characteristic peak was
absent in the cross-linked oligo and provided additional evidence of the successful cross-
linking by CUAAC.
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Figure S4. 'H NMR spectrum of the linear oligonucleotide dC[RN3(-2), AY?(+1)] used in internal cross-linking
pilot study.
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linking pilot study.
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Figure S7. HMBC NMR spectrum showing no cross-peaks between the anomeric proton of azido nucleoside
and aromatic carbons.
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Figure S8. NOESY NMR spectrum showing no cross-peaks between anomeric proton of azido nucleotide and
aromatic protons (see area in the box).
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Figure S9. 'H NMR spectra showing the aromatic protons without the triazole proton in the linear
oligonucleotide (top) and with the triazole proton (bottom) in the cross-linked oligonucleotide. Area in the box
shows appearance of an extra proton that belongs to a triazole in the cross-linked oligo, in comparison with the
linear oligo (top).
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Figure S10. NOESY NMR spectrum showing cross-peaks of a triazole proton and an anomeric proton of the
triazole nucleotide.
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Figure S11. 'H NMR showing acetylenic proton attached to 2'-deoxyadenosine nucleotide in the linear
oligonucleotide (top) and the absence of it in the cross-linked oligo (bottom).
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Figure S12. HMBC NMR spectrum showing two cross-peaks of acetylenic proton attached to 2'-
deoxyadenosine with the CH; in the linear oligo.
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Figure S13. *H NMR chemical shifts of methyl peaks arising from five thymidines in linear (top) and cross-linked
(bottom) oligos.

The above NMR experiments together with reverse-phase HPLC retention time differences and
HRMS suggest the formation of the monomeric cross-linked oligo as a product of CUAAC

reaction.

S18



6. Enzymes used in the current study

ha3a
A3A-ETZA
hA3Bcmo
A3BcroQMAL3ALL
hA3A

A3R-ETZA
hA3Bcrp
A3BcTpQMAL3ALL
hA3A

BL3A-ETZA
hA3B~m
A3BcroQMAL3ALL
hA3A

A3A-ETZA
hA3Berp
A3BcTpQMALZATLI

MEASPASGPRHLMDPHIFTSNENNG———-IGRHKTYLCYEVERLDNGTSVEMDQHRGELHN
MEASPASGPRHLMDPHIEFTSNENNG——-IGRHKTYLCYEVERLDNGTSVEMDQHRGELHN
—————————————— PDTEFTFNFNNDPLVLRRROQTYLCYEVERLDNGTWVLMDQHMGELCN
—————— EILRYLMDPDTETSNENNG---IGRHKTYLCYEVERLDNGTSVEMDOHMGELCN
QAFNLLCGFYGRHARLRFLDLVPSLOLDPAQIYRVIWFISWSPCEFSWGCAGEVRAFLOEN
QORAKNLLCGFYGRHAALRFLDLVPSLOLDPAQIYRVIWFISWSPCEFSWGCAGEVRAFLOEN
EAFNLLCGFYGRHAERLRFLDLVPSLOLDPAQIYRVIWFISWSPCEFSWGCAGEVRAFLOEN
f——————— SGRHAFELRFLDLVPSLOLDPAQIYRVIWEISWSPCESWGCAGEVRAFLQEN
THVELRIFAARTYDY-DPLYEEALOMLEDAGAQVSIMTYDEFEHCWDTEVDHOQGCPEQEW
THVELRIFARRIYDY-DPLYREALOQMLEDAGAQVSIMTYDEFEHCWDTEVDHQGCEPEQEW
THVRELRIFAARTYDY-DPLYEEALOMLEDAGAOVSIMTYDEFEYCWDTEVYROGCPFOEW
THVRLEIKAARIYDY-DPLYKEALQMLRDAGAQVSIMTYDEFEYCWDTEVYRQGCEFQPW
DGLDEHSQALSGRLEATLONOQGN

DGLDEHSQALSGRLEATILONQOGN

DGLEEHSQALSGRLEATLONQGHN

DGLEEHSQALSGRLRAILQ————

Figure S14. Amino acid sequences of human A3A (hA3A, hA3Bcrp in comparison with the enzymes used in this

work. A3Bcrp is the C-terminal domain of A3B. A3Bctp-QM-AL3-AL1swap (loop 1 swapped with A3A); A3A-
E72A-active site glutamate mutated to alanine.
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7. Kinetic characterization of 5'-T4CAT as a substrate of A3Bctp-QM-AL3-
ALlswap

For the purpose of inhibition assays, we decided to use a 7-mer DNA oligo 5-T4CAT as
substrate instead of our previously reported procedure with 9-mer oligo 5'-AT3CAT3. This was
due to the complex *H NMR spectrum arising from the broad singlets of 2'-deoxyadenosines’
amines seen for the 9-mer oligo substrate (Figure S15A). In contrast, 5'-T4CAT produced a
much cleaner spectrum (Figure S15B), making it easier for evaluation and quantification of
deamination reaction. A3-catalyzed deamination was evaluated using the NMR-based assay
described previously.®>’ Data acquisitions were done on a 700-MHz Bruker NMR spectrometer
equipped with a 1.7 mm cryoprobe at 298 K. A series of *H NMR spectra was recorded of the
substrate at various concentrations from 200 to 800 pM with 300 nM of A3Bctp-QM-AL3-
AL1swap® in buffer (pH 6.0) containing 50 mM sodium phosphate, 100 mM NacCl, 2.5 mM -
mercaptoethanol, 0.1 M EDTA, 50 uM 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid
(TSP). The H-5 proton doublet signal of the cytosine, which appears at 5.88 ppm (J = 7.7 Hz),
was baselined and integrated (Figure S15B). The signal of TSP at 0 ppm was used as an
internal standard to determine the concentration of the substrate and its conversion during the
reaction to the product, for which the signal appears at 5.71 ppm (J = 8.3 Hz).

a)  Substrate peak Product peak b) Product peak
] A Substrate peak I }\

‘ o 150 Min el .
VAVIAON ! - h ku //kﬁ‘\,r.wﬁ__mﬁfwﬁ,-) \ 150 Min
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59 538 57 59 58 57
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Figure S15. (a) *H-NMR spectra for the substrate (5'-AT3CAT3) and its conversion to the product (5-ATzdUATS,
dU is 2'-deoxyuridine) over time in the presence of A3Bcrp-QM-AL3-ALlswap (50 nM) at 298 K in activity
assay buffer (pH 5.5) containing 10 % deuterium oxide; 50 mM citrate-phosphate, 200 mM NaCl, 2 mM f-
mercaptoethanol, 200 uM 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS). (b) *H-NMR spectra for the
substrate (5'-T4CAT) and its conversion to the product (5'-T.dUAT) over time in the presence of A3Bctp-QM-
AL3-AL1swap (300 nM) at 298 K in activity assay buffer (pH 6.0) containing 50 mM sodium phosphate, 100
mM NacCl, 2.5 mM B-mercaptoethanol, 0.1 M EDTA, 50 uM 3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid
(TSP).
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The area of the integrated signal was converted to substrate concentration and plotted versus
reaction time. Linear regression was used to fit the data to determine the initial speed of the
reaction. Figure S16 shows the relationship between speed of the deamination reaction and
substrate concentration for A3Bctp-QM-AL3-ALl1swap. The double reciprocal plot which
shows the linear dependence of substrate concentration on the speed of deamination (Figure
S17) were then fitted with linear regression to determine Km and Kcat for A3Bcto-QM-AL3-
AL1swap using the following formula with enzyme concentration [E] = 300 nM:

o [S]
y= Vo= kca [E]m
1 Ky+ [S]

Vo kear[EI[S]

1 Kp 1 1
Vo kemlE1[S]  KemlE]

y=ax+b
where a and b are, respectively, the slope and intercept obtained from the plot shown in Figure
S17.

1
b = =1795suM 1
KearlE] H

Keae = 0194003571

Ko 6335.4s
a= = .
kcat[E]

Km = @/, = 352 + 65 uM

Uncertainties in a and b were calculated from regression fit (Figure S17) using LINEST
function of Excel and uncertainties in Km and kcat Were calculated by standard error propagation,
as detailed by us.®
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Figure S16. Initial rate of deamination 5-T4CAT catalyzed by A3Bcrp-QM-AL3-ALlswap (300 nM) as a

function of substrate concentration. The curve is for visual reference only.
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Figure S17. Double reciprocal plot of inversed speed of deamination catalyzed by A3Bcp-QM-AL3-AL1lswap
(300 nM) as a function of the inversed substrate concentration (5'-T4CAT), showing the linear dependence of

speed of deamination with the concentration of the substrate.
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The non-linear regression analysis of the data is presented in Figure S18 and was performed
by XLSTAT add-on in Excel (Microsoft) using the Michaelis-Menten enzyme kinetic equation

providing the following parameters of the system:

Table S2. Model parameters of A3Bcto-QM-AL3-AL1swap catalyzed deamination of 5'-
T4CAT obtained using non-linear regression analysis.

Standard

Parameters  Value
error

Vimax, WM/s 0.051 0.005
Km, uM 291.966  67.145

Non-linear regression (Vo versus [S
g ( s Pred (Vo) / Vo
0.04 0.04 7
/,/
0.035 + 0.035 + e
/’.
» 003 + 0.03 [ ]
2 0025 | 0025 + 4
>
002 g 002 1 o
0.015 } f 0.015 -+ } }
200 400 600 800 0.015 0.025 0.035
[So], uMm Predicted (Vo, nM/s)

Residuals

Obs5

Obs3

Observations

Obs2

-0.002 -0.001 0 0.001  0.002

Residuals

Figure S18. Non-linear regression analysis of A3Bcrp-QM-AL3-AL1swap-catalyzed cytosine deamination of
5-T4CAT. A) Plot of initial rate of deamination Vj as a function of substrate concentration [So] fitted with a
non-linear regression model to derive Ky, and Vimax reported in Table 2 (main text); B) observed versus predicted
values of initial rate of deamination; C) Residuals calculated from the model for each observation, showing

random distribution of residuals.
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8. Evaluation of substrate activity of cross-linked oligonucleotides using *H NMR

assay

Substrate preference and deamination activity by A3Bctp-QM-AL3-ALlswap on the
synthesized cross-linked oligonucleotides with dC were evaluated using the NMR-based assay
as described above using substrates and A3Bctp-QM-AL3-AL1swap at concentrations shown
in Figure 4 (main text) in a buffer (pH 6.0) containing 10 % deuterium oxide, 50 mM citrate-
phosphate, 200 mM NaCl, 2 mM B-mercaptoethanol, 200 uM 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS). The H-5 proton doublet signals of the cytosine from different
oligonucleotides were baselined and integrated. A doublet of doublets at 2.63 ppm originating
from the citrate buffer or peaks of TSP or DSS were used as an internal standard to determine
the concentration of the substrate which appears at 5.88 ppm (J = 7.7 Hz) and converted to 5.71
ppm (J = 8.3 Hz) during the reaction over a period of time (Figure S15B). The integrated signal
area was converted to substrate concentration and plotted versus time of the reaction. The data
were then fitted with linear regression to determine the initial speed of the reaction.

S24



9. Qualitative evaluation of inhibitors of A3Bcrp-catalyzed deamination using *H
NMR assay

Competitive inhibition of the synthesized oligonucleotides was performed by a similar
procedure reported by us previously.® ” A series of spectra was recorded in a similar fashion as
that of substrate analysis. Here, we used 400 uM of a standard 7-mer oligonucleotide substrate
5'-T4CAT, 8 uM of dZ-containing cross-linked oligos, 300 nM of A3Bctp-QM-AL3-ALlswap
in a buffer containing 50 mM sodium phosphate (pH 6.0), 100 mM NaCl, 2.5 mM -
mercaptoethanol, 0.1 M EDTA, 50 uM TSP. Deamination activity was monitored by the same
method as for DNA substrates.

10. Quantitative evaluation of inhibitors of A3Bcrp-catalyzed deamination using *H
NMR assay

The best inhibitors were characterized further by varying the concentration of the inhibitor
ranging from 1 uM to 8 uM in the presence of 300 nM of A3Bctp-QM-AL3-ALlswap in
activity assay buffer. After the rate of the reaction was determined at various inhibitor
concentrations, the data were analyzed by different methods.

2.11. Analysis of inhibitors of A3Bcrp-catalyzed deamination using Dixon plot
In the first instance, the data were analyzed using a plot of inverse speed versus inhibitor
concentration, the so-called Dixon plot (Figure S19), which was then fitted with linear

regression to derive the inhibition constant (K;).

250

y =23.823x + 28.864
200 R2=0.9868

4 -2 0 2 4 6 8 10
-50 Oligo concentration, uM

Figure S19. Dixon plot of inversed rates of A3Bcrp-QM-AL3-AL1swap-catalyzed deamination of 5-T4,CAT (400
M) at various concentrations of cross-linked oligo at 298 K. Enzyme concentration is 300 nM.
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Here, we assumed the competitive character of inhibition and, therefore, Michaelis-Menten

expression for deamination velocity v becomes:

v _ vmaX [S]
Ko [1+5]] + 1
1 [ Knm Knm +[S]
il o LU R s

By using Kn derived from the Lineweaver-Burk plot (Figure S17) and using the trend line for
dZ[UE(-2), AN¥(+1)]X:

y=ax+b
b =35692uM 1 a =24061suM !
K., = 353 uM, [S] = 400 um

_ KmbkeuIS]  bKn
' akeaSIKm + [SD) T a(Ky, +[S])

= 0.66 = 0.14 uM

Uncertainties in a and b were calculated from regression fit (Figure S19) using LINEST
function of Excel; uncertainty of K;was calculated by standard error propagation, as detailed
by us.®
2.12. Analysis of inhibitors of A3BcTp-catalyzed deamination using non-linear
regression

The second method used the non-linear regression analysis using XLSTAT add-on in Excel
(Microsoft) and performing a three-parameter fit (Vmax, Km and Kj) in the Michaelis-Menten
enzyme kinetic equation for the competitive inhibitor. Statistical parameters and details of non-

linear regression analysis are provided below.
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Table S3. Correlation matrices for non-linear regression analysis of A3Bctp-QM-AL3-
AL1lswap-catalyzed deamination of 5'-AT3CATj: in the presence of varying concentrations of

dZ-linear.
Variable [S] [ Rate
[S] 1.000 0.181 0.547
[n 0.181  1.000 -0.604
Rate 0.547 -0.604 1.000

Table S4. Correlation matrices for non-linear regression analysis of A3Bctp-QM-AL3-
AL1lswap-catalyzed deamination of 5'-T4CAT in the presence of varying concentrations of
cross-linked inhibitor.

dZ[UE(-2), AV (+1)]X

Variable [S] [ Rate

[S] 1.000 -0.120 0.408
[n -0.120 1.000 -0.856
Rate 0.408  -0.856 1.000

Table S5. Statistics of fit for non-linear regression analysis A3Bcto-QM-AL3-ALlswap-
catalyzed deamination of 5'-AT3CATj3 in the presence of varying concentrations of dZ-linear.

Statistic dZ-linear
Observations 12
DF 9.000
R2 0.975
SSE 0.000
MSE 0.000
RMSE 0.001
AIC -177.018
AICC -171.304
Iterations 8.000
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Table S6. Statistics of fit for non-linear regression analysis A3Bcto-QM-AL3-ALlswap-
catalyzed deamination of 5'-T4CAT in the presence of varying concentrations of inhibitor.

dZ[UE(-2), AW+ 1)]X

Statistic
Observations 23
DF 20
R2 0.964
SSE 0.000
MSE 0.000
RMSE 0.002
AIC -277.790
AICC -275.567
Iterations 5.000

Table S7. Parameters of A3Bctp-QM-AL3-AL1swap-catalyzed deamination of 5'-AT3CAT3
in the presence of varying concentrations of dZ-linear using non-linear regression analysis.

dZ-linear

Parameters

Standard

Value
error

Vinax, WUM/s 0.0126 0.0008
Km, uM 146. 28
Ki, uM 7.0 1.3

Table S8. Parameters of A3Bctp-QM-AL3-AL1swap-catalyzed deamination of 5'-T4CAT in
the presence of varying concentrations of cross-linked inhibitor using non-linear regression
analysis.

dZ[UE(-2), AN(+1)]X

Parameters
Standard
Value
error
Vinax, WUM/s 0.052 0.006
Km, uM 320 90
Ki, uM 0.69 0.14
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Figure S20. Non-linear regression analysis of A3Bcrp-QM-AL3-AL1swap-catalyzed cytosine deamination of
AT3CATS; in the presence of varying concentrations of dZ-linear inhibitor. Left column: observed versus
predicted values of initial rate of deamination; Right column: residuals calculated from the model for each

observation.
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Figure S21. Non-linear regression analysis of A3Bcrp-QM-AL3-AL1swap-catalyzed cytosine deamination of
5'-T4CAT in the presence of varying concentrations of cross-linked inhibitor dZ[U®(-2), AN3(+1)]X. Left
column: observed versus predicted values of initial rate of deamination; Right column: residuals calculated from

the model for each observation.
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2.13. Evaluation of dZ[UE(-2), AN(+1)]X as inhibitor of A3A
2.13.1. Expression of wild-type A3A

A3Awt with a Hise fusion tag at the C-terminus was cloned into pET27-b(+) (via Ndel/BamHI).
The plasmid was transformed into E. coli Al (T7 polymerase under control of the arabinose
promotor) together with the helper plasmid pLysS. The cells were selected for kanamycin,
tetracycline and chloramphenicol resistance on plates of non-inducing medium MDAG-135.°
For expression, the cells were grown to 5 mL high density in MDAG-135 and then to 1 L
volumes in ZYM-5052 supplemented with 100 uM ZnCl, and 0.05% (w/v) arabinose. After
reaching 0.4 OD the cells, which were previously grown at 37 °C exclusively, were now cooled
to 20 °C and incubated overnight. Next morning, all subsequent steps were performed at 4 °C.
The cells were harvested by centrifugation at 10,000g for 10 min and resuspended in buffer (50
mM Na*/K* phosphate pH 6.5, 300 mM sodium acetate, 300 mM (2-
hydroxyethyltrimethylammonium chloride (choline chloride), 200 mM NaCl, 1 mM TCEP
with 1 tablet of complete ultra EDT A-free protease inhibitor). The cells were lysed on a French
press at 4,000 — 5,000 psi and then sonicated at 35 W for 1 min. The cell lysate was centrifuged
at 30,0009 for 30 min and the supernatant applied to a Ni?*-NTA affinity column (BioRad).
After washing three times with the buffer the protein was eluted in the above buffer with 800
mM imidazole. The eluted liquid was saturated with (NH4)2SO4 (ca 8 g in 25 mL) and all
fractions containing proteins were precipitated. Aliquots were pelleted and then resuspended
in the above buffer and used as needed.

2.13.2. Evaluation of dZ[UE(-2), AN3(+1)]X as inhibitor of Hiss-A3A-catalyzed
deamination of dC-hairpin using Lambert’s W function

Time-resolved *H NMR kinetics were measured in 50 mM K*/Na* phosphate buffer (pH 7.4)
supplemented with 100 mM NaCl, 1 mM TCEP, 100 pM  sodium
trimethylsilylpropanesulfonate (DSS) and 10% D.O. Substrate  (dC-hairpin,
TGCGCTTCGCGCT, underlined C is deaminated) was at 500 pM concentration. Reaction
was performed in the presence of 140 nM of Hiss-A3A at 298 K. The course of the reaction
was followed by *H NMR until the substrate was consumed (28 hours). Subsequently the
amount of substrate or product at each time point was calculated by integrating the decreasing
substrate peak at 7.752 ppm (singlet) or the increasing product peak at 5.726 ppm (doublet)
and calibrated by the area of DSS standard peak at 0.0 ppm. Using the known concentration of
the standard, the peak was converted to a corresponding substrate concentration. The time at
which each spectrum was recorded as a difference to the first spectrum was used as the time
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passed. The product or substrate concentration versus the time of reaction was plotted and fitted
using the integrated form of the Michaelis-Menten equation (Figure S22A):

[S]y  [Sli=Vant
Km

[S]tszW<— e K,

where W is Lambert’s W function, [S]: is the substrate concentration at specific time, [S]o is the
initial substrate concentration, Vmax and Kn are the Michaelis-Menten constants and t is the
time. The two Michaelis Menten constants, the initial substrate concentration and an offset
which corrects for the integration baseline in the NMR spectra were fitted using Lambert’s W
function in Gnuplot.

By varying the concentration of an inhibitor, the plots of observed K versus inhibitor
concentration were obtained (Figures S22B and C) and K values were calculated. This allowed
determination of Km of the substrate (21 = 7 uM in Figure S22B and 17 + 7 uM in Figure
S22C) and K; of inhibitors (360 + 120 nM for dZ[UE(-2), AN3(+1)]X and 2.4 = 0.9 uM for
FdZ-linear).
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Figure S22. A) Hisg-A3A catalyzed formation of dU-hairpin (TGCGCTTdUGCGCT, dU is 2'-deoxyuridine) as
a result of deamination of dC-hairpin in the absence and presence of varying concentrations of dZ[U(-2),
AN3(+1)]X showing the fit of experimental data using the integrated form of the Michaelis-Menten equation (solid
lines). B) Observed K values of Hiss-A3A catalyzed deamination of dC-hairpin versus concentrations of
dZ[UE(=2), AN3(+1)]X and the linear fit of the data (solid line). C) Observed K values of Hisg-A3A catalyzed

deamination of dC-hairpin versus concentrations of FdZ-linear and the linear fit of the data (solid line).
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11. Isothermal titration calorimetry

We tested the thermodynamics of binding of our cross-linked oligos with A3 enzymes in
comparison to the linear oligos using A3A-E72A and the catalytically competent A3Bctp-QM-
AL3-AL1lswap. Desalted unmodified DNA oligonucleotides were purchased (Integrated DNA
Technologies) at 1 or 5 pumol synthesis scale and dissolved in one of the buffers described
below to give 10 mM solutions. ITC experiments were conducted at 25 °C using a MicroCal
ITC200 (now Malvern Instruments) isothermal titration calorimeter. Protein A3A-E72A,
which is an inactive protein, was diluted in ITC buffer to concentrations of 10-100 uM and
titrated with dC oligonucleotides [5'-AT3CATs3, 5'-T4CAT, cross-linked oligos] in ITC buffer.
The ratio of protein to oligonucleotide concentration is usually 1:10. Titrations are made up of
30 individual additions. To prevent protein precipitation during the long time-scale of the
experiment it was necessary to use improved ITC buffers. ITC buffer 1: 50 mM MES, pH 6.0,
100 mM NaCl, 200 uM EDTA, 1 mM B-mercaptoethanol and ITC buffer 2 (freshly prepared):
50 mM Na*/K* phosphate, pH 6.0, 50 mM NaCl, 50 mM choline acetate, 2.5 mM TCEP, 200
uM EDTA with 30 mg/mL BSA.

Protein A3Bctp-QM-AL3-ALlswap, which is an active protein, was used for establishing the
binding affinity of dZ-containing oligos [dZ-linear and dZ[UE(-2), AN3(+1)]X]. For A3Bcro-
QM-AL3-ALlswap we used ITC buffer 3: 50 mM Na*/K* phosphate, pH 6.0, 200 mM
trimethylamine N-oxide dihydrate, 2.5 mM TCEP, 200 uM EDTA. Data evaluation was
performed with the software provided by the supplier of MicroCal 1TC200.
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Figure S23. Representative titration of 5'-AT3CAT3 into A3A-E72A in the ITC buffer-1. The upper panel shows
raw injection data and the lower panel shows integrated injection enthalpies after background correction. The

solid line in the middle panel represents a fit of the data to a one-site binding model.
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Figure S24. Representative titration of 5-T,CAT into A3A-E72A in the ITC buffer-1. The upper panel shows
raw injection data and the lower panel shows integrated injection enthalpies after background correction. The
solid line in the middle panel represents a fit of the data to a one-site binding model.
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Figure S25. Titration of dC-9-mer-X into A3A-E72A in the ITC buffer-1. The upper panel shows raw injection
data and the middle panel shows integrated injection enthalpies after background correction. The solid line in
the middle panel represents a fit of the data to a one-site binding model. The bottom panel shows residuals
between observed and calculated data points.
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Figure S26. Titration of dC-7-mer-X into A3A-E72A in the ITC buffer-1. The upper panel shows raw injection
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between observed and calculated data points.

S37



time (s)
0 1000 2000 3000 4000

-

0.00 F frervlveetervEbiaveriIn ”

heat of injection
(kcal/mol)

resu?uals
coQ
[V o]
N
% I
1

0.0 0.5 1.0 1.5
molar ratio

Figure S27. Titration of dC-5-mer-X into A3A-E72A in the ITC buffer 1. The upper panel shows raw injection
data, and the middle panel shows integrated injection enthalpies after background correction. The solid line in
the middle panel represents a fit of the data to a one-site binding model. The bottom panel shows residuals
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Figure S28. Titration of 5'-AT3CAT; into A3A-E72A in the ITC buffer-2. The upper panel shows raw injection
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Figure S29. Titration of 5-T4CAT into A3A-E72A in the ITC buffer-2. The upper panel shows raw injection
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Figure S30. Titration of dC[UF(=2), AN3(+1)]X into A3A-E72A in the ITC buffer-2. The upper panel shows
raw injection data, and the lower panel shows integrated injection enthalpies after background correction. The
solid line in the lower panel represents a fit of the data to a one-site binding model.
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Figure S31. Titration of dZ-linear into A3Bctp-QM-AL3-AL1swap in the ITC buffer-3. The upper panel shows
raw injection data, and the lower panel shows integrated injection enthalpies after background correction. The
solid line in the lower panel represents a fit of the data to a one-site binding model.
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Figure S32. Titration of dZ[UF(-2), AN3(+1)]X into A3Bcro -QM-AL3-AL1swap in the ITC buffer-3. The
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13. Experimental data for compounds synthesized
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Figure S33. 'H NMR spectrum of compound 2.
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Figure S34. 3C NMR spectrum of compound 2.
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Figure S40. HRMS (ESI) of compound 3.
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'H NMR (500 MHz, CDCl3)
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Figure S42. 3C NMR spectrum of compound 5.
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Figure S43. HRMS (ESI) of compound 5.
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BC NMR (125.7 MHz, DMSO-ds)
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Figure S46. HRMS (ESI) of compound 7.
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'H NMR (500 MHz, DMSO-d5s)
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Figure S47. 'H NMR spectrum of compound 8.

BC NMR (125.7 MHz, DMSO-ds)
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Figure S48. 3C NMR spectrum of compound 8.

S52



ppm
——m pEm | { { | L__JJ l 145
e dg
— ., ’
- e T e g 150
s . o
= . ata . * 4
h g—: @ L
ol - 155
hso| . |
JE—— Ll ﬂ
160
200 T T T T T T T T T
s @ P % 5 W 3 g o
o]
165
)L@zCHst
M
ol 8 e — MR
Wi g O < L
== SDers x> XL SR
0]
9] 175
O%
T T T T T T T T T T T T T T T 180
442 4.40 4.38 4.36 4.34 4.32 4.30 4.28 4.26 4.24 4.22 4.20 4.18 416 414 ppm
Figure S49. HMBC NMR spectrum of compound 8.
[ o e A
= P LA e VAR { /‘ \ / A //
3 it A VS W/ \ / \H %, >
f / 1“ ‘f if { / \ / 1 j -~
4 [/ \‘r }I ( Y | / | \( 7 |/
| / ‘HE ‘J - 2 ‘ ( gl
821 \ / & ‘
804 | i / =
781 1 i B
5 \ / = 2
i | / 8
3 : \“ _yi & |
£ 704 i ,”
f el \[ ‘ 3
; 66 & | s
64 3
624
607
51
56 [
54+
524
il
|3
48+ =
461
J
424
T J u
]
4[‘-DU :::0 3&60 . HbU — ]Z‘W r JU‘UU . 271:] Zl-e!U . I\EE T ZZ‘UU TJ‘J 1560 |EE.D wﬁu . 12&'D Wﬁﬂ ﬂ:".' . Wlﬂ

Wavenumbers (cm-1)

Figure S50. IR (ATR) spectrum of compound 8.
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Figure S51. HRMS (ESI) of compound 8.
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13C NMR (125.7 MHz, DMSO-ds)
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Figure S54. HRMS (ESI) of compound 9.
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IH NMR (500 MHz, DMSO-ds)
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Figure S55. 'H NMR spectrum of compound 10.
13C NMR (125.7 MHz, DMSO-ds)
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'H NMR (500 MHz, CDCls)
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Figure S59. 'H NMR spectrum of compound 11.
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Figure S60. 3C NMR spectrum of compound 11.
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P NMR (202.5 MHz, CDCl3)
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Figure S61. 3P NMR spectrum of compound 11.
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Figure S62. 31P NMR spectrum of compound 11 after 24 hours at rt showing significant degradation of
phosphoramidite 11.
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Figure S63. IR(ATR) spectrum of compound 11.
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Figure S64. Reverse phase HPLC profile of dC-9-mer. Note that the broad peak at 10 min is an artefact of the
column.
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Figure S65. Reverse phase HPLC profile of dC-9-mer-X. Note that the broad peak at 10 min is an artefact of
the column.
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Figure S66. Reverse phase HPLC profile of dC-7-mer. Note that the broad peak at 10 min is an artefact of the
column.
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Figure S67. Reverse phase HPLC profile of dC-7-mer-X. Note that the broad peak at 10 min is an artefact of
the column.
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2000  MVK_DNA #3926 HA-18 ANA UV_VIS_1 WVL:260 nm

27504

2,500 4

2,250 4

2,000 4

1,750 4

1,500 4

1,250 4

1,000 4

7504

r T T T T T T T T T 1
00 25 50 75 100 125 150 175 200 225 250

Figure S68. Reverse phase HPLC profile of dC-5-mer. Note that the broad peak at 10 min is an artefact of the
column.
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Figure S69. Reverse phase HPLC profile of dC-5-mer-X. Note that the broad peak at 10 min is an artefact of
the column.
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Figure S70. Reverse phase HPLC profile of dC[UE(-2), AN}(+1)]. Note that the broad peak at 12 min is an

artefact of the column.
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Figure S71. Reverse phase HPLC profile of dC[UE(-2), AN}(+1)]X. Note that the broad peak at 12 min is an
artefact of the column.
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Figure S72. Reverse phase HPLC profile of dC[UE(-3), AN3(+1)]. Note that the broad peak at 12 min is an
artefact of the column.
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Figure S73. Reverse phase HPLC profile of dC[UE(-3), AN3(+1)]X. Note that the broad peak at 12 min is an
artefact of the column.
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Figure S74. Reverse phase HPLC profile of dZ[UE(-3), AN3(+1)]. Note that the broad peak at 11 min is an

artefact of the column.
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Figure S75. Reverse phase HPLC profile of dZ[UE(-3), AN3(+1)]X. Note that the broad peak at 11 min is an
artefact of the column.
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Figure S76. Reverse phase HPLC profile of dZ[UE(-2), AN3(+1)]. Note that the broad peak at 11 min is an

artefact of the column.
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Figure S77. Reverse phase HPLC profile of dZ[UE(-2), AN3(+1)]X. Note that the broad peak at 11 min is an
artefact of the column.
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HA-17 #35 RT: 0.16 AV: 1 NL: 5.39E+007
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S78. HRMS (ESI) of dC-9-mer.

HA-17cy #36 RT: 0.17 AV: 1 NL: 1.06E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S79. HRMS (ESI) of dC-9-mer-X.
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HA-18 #53 RT: 0.25 AV: 1 NL: 6.92E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S80. HRMS (ESI) of dC-7-mer.
HA-18cy #35 RT: 0.17 AV: 1 NL: 3.39E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S81. HRMS (ESI) of dC-7-mer-X.
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HA-14 #51 RT: 0.25 AV: 1 NL: 5.82E+007
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S82. HRMS (ESI) of dC-5-mer.
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Figure S83. HRMS (ESI) of dC-5-mer-X.

S74



HAB7 #59 RT: 0.26 AV: 1 NL: 2.03E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S84. HRMS (ESI) of dC[UE(-2), AN3(+1)].
HAB7cy #58 RT: 0.26 AV: 1 NL: 5.44E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000)
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Figure S85. HRMS (ESI) of dC[UE(-2), AN3(+1)]X.
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HAB85 #51 RT: 0.23 AV: 1 NL: 6.51E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure $86. HRMS (ESI) of dC[UF(-3), AN3(+1)].
HAB85cy #47 RT: 0.21 AV: 1 NL: 1.59E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S87. HRMS (ESI) of dC[U5(-3), AN (+1)]X.
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HA83 #60 RT: 0.28 AV: 1 NL: 1.60E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S88. HRMS (ESI) of dZ[UE(-3), AN3(+1)].

HAB83cy #49 RT: 0.22 AV: 1 NL: 1.20E+007
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S89. HRMS (ESI) of dZ[UE(-3), AN3(+1)]X.
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HAB84 #53 RT: 0.24 AV: 1 NL: 2.27E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S90. HRMS (ESI) of dZ[UE(-2), AN¥(+1)].

HAB4CY #89 RT: 0.41 AV: 1 NL: 1.97E+008
T: FTMS - p ESI Full ms [250.0000-3000.0000]
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Figure S91. HRMS (ESI) of dZ[UE(-2), AN3(+1)]X.
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