EMBO reports

Aleksandra Lopez Krol et al

Expanded View Figures

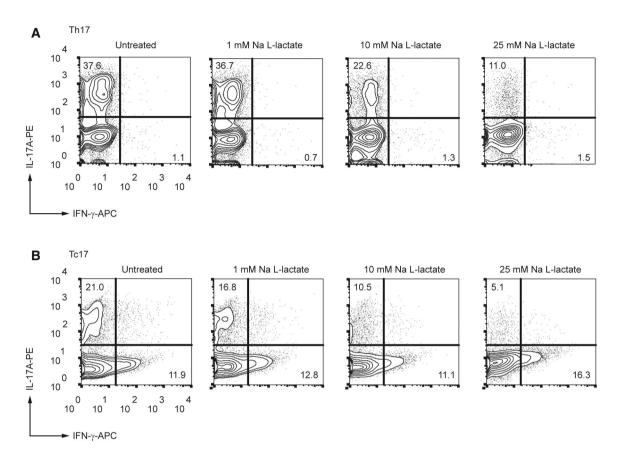


Figure EV1. Lactate suppresses production of IL-17A in T cells.

A, B CD4⁺ (A) and CD8⁺ (B) T lymphocytes were purified from spleens and LN of WT mice and differentiated under Th17-polarizing conditions for 3 days in the presence of increasing lactate concentrations, respectively. Representative contour plots indicate the percentage of IL-17A⁺ and IFN-γ⁺ cells, detected by flow cytometry (n = 3 biological replicates).

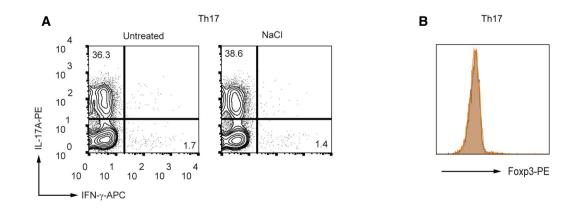
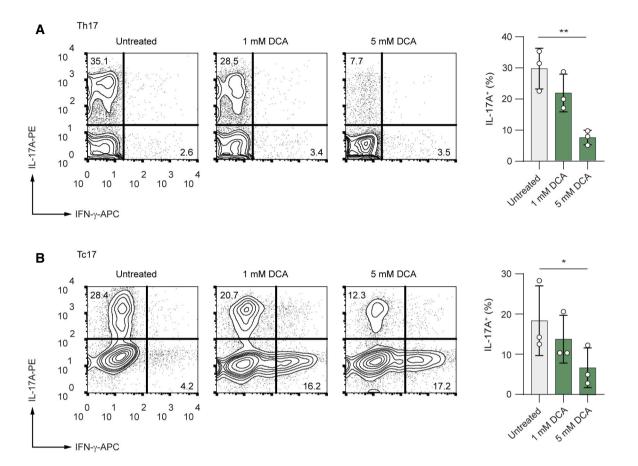


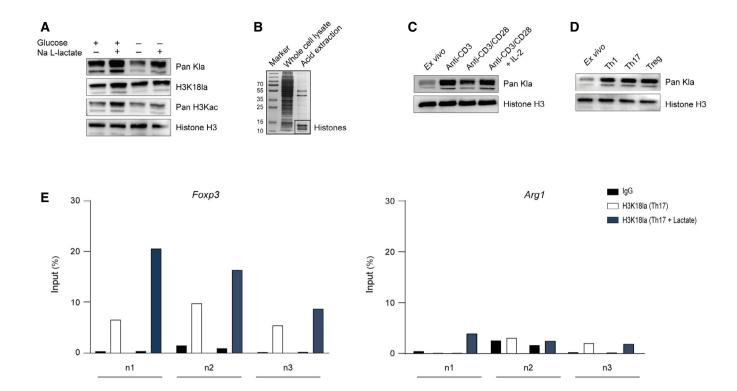
Figure EV2. Effect of NaCl on differentiation of Th17 cells.

EV1

A, B Murine CD4⁺ T cells were cultured under Th17-inducing conditions in the presence or absence of NaCl (25 mM) for 3 days. The percentages of IL-17A⁺ cells (A) and Foxp3 expression (B) were determined by flow cytometry (n = 3 biological replicates).

 Aleksandra Lopez Krol et al EMBO reports




Figure EV3. DCA suppresses production of IL-17A in Th17 and Tc17 cells.

A, B CD4⁺ (A) and CD8⁺ (B) T cells were isolated from spleens and LNs of WT mice. Purified T cells were polarized under Th17-inducing conditions and treated with increasing concentrations of DCA for 3 days. Representative contour plots show the frequencies of IL-17A⁺ and IFN- γ ⁺ cells analyzed by flow cytometry (n = 3 biological replicates; n.s., not significant; *P = 0.01-0.05; **P = 0.001-0.01; data are analyzed by the two-tailed unpaired Student's t-test).

© 2022 The Authors EMBO reports e54685 | 2022 **EV2**

EMBO reports

Aleksandra Lopez Krol et al

Figure EV4. Histone lactylation in CD4⁺ T cells.

- A Global histone (Kla) and specific H3K18 lactylation were analyzed by immunoblotting 24 h after stimulation of nonpolarized macrophages. Bone marrow-derived macrophages were cultured in the presence or absence of 25 mM glucose and 25 mM Na L-lactate. Immunoblotting of representative whole-cell extracts is shown (n = 3 biological replicates).
- B Histone preparation by acid extraction from the whole-cell lysate of murine CD4⁺ T cells, visualized by Coomassie blue staining.
- C Western blots of acid-extracted histones from activated CD4⁺ T cells showing global histone lactylation in the presence of glucose (25 mM) at 24 h after stimulation of cells. One of three similar experiments is shown.
- D Immunoblotting of acid-extracted lactylated histones from differentiated Th1, Th17, and Treg cells on day 3 of differentiation. As control lymphocytes, ex vivo purified, nonactivated CD4⁺ T cells were used.
- E ChIP analysis of H3K18-lactylated histones at the *Arg1* and *Foxp3* promoter regions in the absence or presence of extracellular lactate (25 mM) was performed after 24 h of the cell culture for Th17 cells. Three independent experiment (*n* = 3 biological replicates) are shown (n1, n2, n3).

Source data are available online for this figure.

EV3

Figure EV5. Gating strategy for detection of Th17 cells.

Gating strategy used for flow cytometry analysis of Th17 cells. The purity of CD4⁺ T cells, as well as IL-17A frequency and Foxp3 expression, is displayed.

 Aleksandra Lopez Krol et al **EMBO reports**

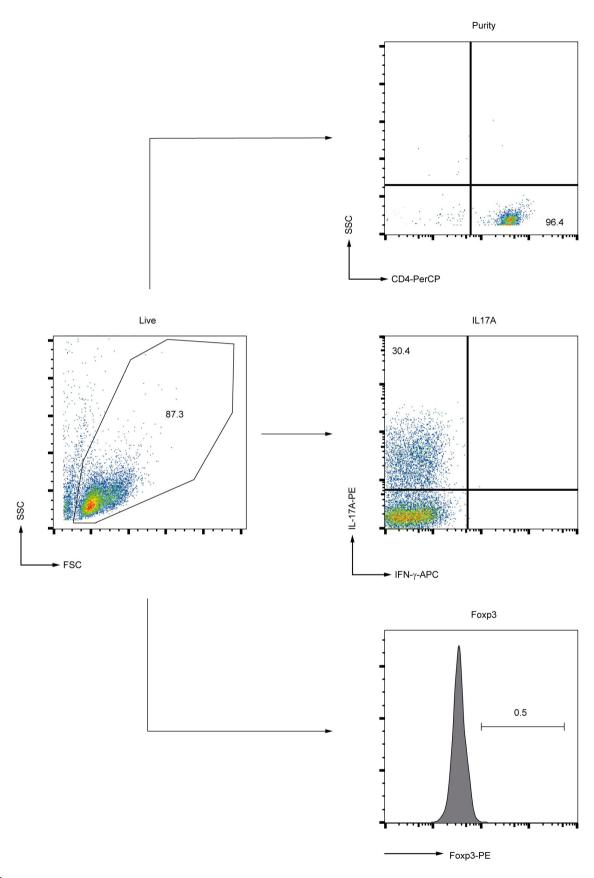


Figure EV5.