Extracorporeal carbon dioxide removal in acute hypoxaemic respiratory failure: a systematic review, Bayesian meta-analysis, and trial sequential analysis.

JE Millar, AJ Boyle, TM Drake, CE Adams, AW Glass, B Blackwood, JJ McNamee, DF McAuley

Supplementary Material

Supplementary File 1.	A summary of clinical studies published between 1946 and 1 st January 1994
Supplementary File 2.	Search strategy
Supplementary Table 1.	Technical details of ECCO ₂ R, management strategies, and anticoagulation
	protocols for randomised controlled trials.
Supplementary Table 2.	Risk of bias rationale for randomised controlled trials
Supplementary Table 3.	Baseline characteristics of included observational studies
Supplementary Table 4.	Clinical outcome measures for ECCO ₂ R reported by observational studies
Supplementary Table 5.	ROBINS-I rationale for risk of bias in observational studies
Supplementary Table 6.	Primary outcome (mortality up to day 30 (or latest)) sensitivity analysis
Supplementary Table 7.	Safety and adverse events summary
Supplementary Table 8.	Summary of physiological changes reported by included studies
Supplementary Table 9.	Ongoing clinical trials of ECCO2R in acute hypoxaemic respiratory failure
Supplementary Figure 1.	Inclusion diagram
Supplementary Figure 2.	Risk of bias assessment for observational studies
Supplementary Figure 3.	Forest plots for secondary outcomes
Supplementary Figure 4.	Trial sequential analysis assuming $ARR \ge 5\%$

Supplementary File 1. A summary of clinical studies published between 1946 and 1st January 1994

Authors	Year	Title	Journal	Notes
Gattinoni L, Kolobow T, Agostini	1979	Clinical application of low frequency positive pressure ventilation	Int J Artif Organs	Case report. Earliest article identified.
A, et al.		with extracorporeal CO2 removal (LFPPV-ECCO2R) in treatment of		
		adult respiratory distress syndrome (ARDS).		
Gattinoni L, Pesenti A, Pelizzola	1981	Reversal of terminal acute respiratory failure by low frequency	Trans Am Soc Artif Intern Organs	
A, et al.		positive pressure ventilation with extracorporeal removal of CO ₂ (LFPPV-ECCO2R).		
Pesenti A, Pelizzola A,	1981	Low frequency positive pressure ventilation with extracorporeal CO ₂	Trans Am Soc Artif Intern Organs	
Mascheroni D, et al.		removal (LEPPV-ECCO ₂ R) in acute respiratory failure (ARF):		
		technique.		
Gattinoni L, Pesenti A, Pelizzola	1982	Extracorporeal carbon dioxide removal in acute respiratory failure.	Ann Chir Gynaecol	
А.				
Agostini A, Cicardi M,	1983	Complement activation in adult respiratory distress syndrome treated	Trans Am Soc Artif Intern Organs	
Bergamaschini L, et al.		with long-term extracorporeal CO ₂ removal.		
Gattinoni L, Pesenti A, Caspani	1984	The role of total static lung compliance in the management of severe	Intensive Care Med	Nineteen patients supported with ECCO ₂ R. The
ML, et al.		ARDS unresponsive to conventional treatment.		basis for the technique employed by Morris, et al
Gardinali M, Cicardi M, Frangi	1985	Studies of complement activation in ARDS patients treated by long-	Int J Artif Organs	
D, et al.		term extracorporeal CO ₂ removal.		
Peters J, Radermacher P, Pesenti	1985	Tracheal and alveolar gas composition during low-frequency positive	Intensive Care Med	
A, et al.		pressure ventilation with extracorporeal CO ₂ -removal (LFPPV-		
~		ECCO ₂ R).		
Solca M, Pesenti A, Iapichino G, et al.	1985	Multidisciplinary approach to extracorporeal respiratory assist for acute pulmonary failure	Int Surg	
Thies WR, Breulmann M	1985	Lung function during successful 10-day extracorporeal CO ₂ removal	Anaesthetist	
Lehnsen U.	- / • •	in acute lung injury: Case report.		
Gattinoni L, Pesenti A,	1986	Low-frequency positive-pressure ventilation with extracorporeal CO_2	JAMA	Forty-three patient un-controlled trial.
Mascheroni D, et al.		removal in severe acute respiratory failure		
Hickling KG, Downward G,	1986	Management of severe ARDS with low frequency positive pressure	Anaesth Intensive Care	
Davis F, et al.		ventilation and extracorporeal CO ₂ removal.		
Marcolin R, Mascheroni D,	1986	Ventilatory impact of partial extracorporeal CO ₂ removal (PECOR)	ASAIO Trans	
Pesenti A, et al.		in ARF patients.		
Krajewski S, Seltz RJ, Schober R.	1987	Prolonged extracorporeal CO2 - Removal in severe adult respiratory	Intensive Care Med	
		distress syndrome. Neuropathological observations in two cases.		
Peters J, Rademacher P, Kuntz	1988	Extracorporeal CO ₂ -removal with a heparin coated artificial lung.	Intensive Care Med	
ME, et al.				
Abrams JH, Gilmour IJ, Kriett	1990	Low-frequency positive-pressure ventilation with extracorporeal	Crit Care Med	
JM, et al.		carbon dioxide removal		
Pesenti A, Rossi GP, Pelosi P, et	1990	Percutaneous extracorporeal CO ₂ removal in a patient with bullous	Anesthesiology	
al.		emphysema with recurrent bilateral pneumothoraces and respiratory		
	1000	failure.		
Rossaint R, Slama K, Bauer R, et	1990	Extracorporeal CO ₂ -removal with a heparin coated extracorporeal	Intensive Care Med	
al.		system.		

Wagner PK, Knoch M,	1990	Extracorporeal gas exchange in adult respiratory distress syndrome:	Br J Surg	
Sangmeister C, et al.		associated morbidity and its surgical treatment.		
Bindslev L, Bohm C, Jolin A, et	1991	Extracorporeal carbon dioxide removal performed with surface-	Acta Anaesthesiol Scand Suppl	
al.		heparinized equipment in patients with ARDS.		
Hoffmann BH, Bohm SH, Morris	1991	In vivo demonstration of the Haldane effect during extracorporeal	Int J Artif Organs	
AH, et al.		gas exchange.		
Kee SS, Sedgwick J, Bristow A.	1991	Interhospital transfer of a patient undergoing extracorporeal carbon	Br J Anaesth	
		dioxide removal.		
Kropf J, Grobe E, Knoch M, et al.	1991	The prognostic value of extracellular matrix component	Eur J Clin Chem Clin Biochem	
		concentrations in serum during treatment of adult respiratory distress		
		syndrome with extracorporeal CO ₂ removal.		
Brunet F, Mira JP, Belghith M, et	1992	Effects of aprotinin on hemorrhagic complications in ARDS patients	Intensive Care Med	
al.		during prolonged extracorporeal CO ₂ removal.		
Knoch M, Kollen B, Dietrich G,	1992	Progress in veno-venous long-term bypass techniques for the	Int J Artif Organs	RCT of 18 patients, comparing heparin coated and
et al.		treatment of ARDS. Controlled clinical trial with the heparin-coated		non-heparin coated ECCO ₂ R circuits.
		bypass circuit.		
Ryan DP, Doody SP.	1992	Treatment of acute pulmonary failure with extracorporeal support:	J Pediatr Surg	
		100% survival in a pediatric population.		
Brunet F, Belghith M, Mira JP, et	1993	Extracorporeal carbon dioxide removal and low-frequency positive-	Chest	
al.		pressure ventilation. Improvement in arterial oxygenation with		
		reduction of risk of pulmonary barotrauma in patients with adult		
		respiratory distress syndrome.		

Supplementary File 2. Search strategy

Ovid MEDLINE and Epub Ahead of Print, In-Process & Other Non-Indexed Citations

1946 – November 30th, 2021.

AND

Embase Classic + Embase

1947 – December 31st, 2021

- 1 "interventional lung assist*".mp.
- 2 (extracorporeal adj (CO2 or "carbon dioxide") adj removal).mp.
- 3 ILA*.mp.
- 4 novalung*.mp.
- 5 PECLA*.mp.
- 6 "percutaneous extracorporeal lung assist*".mp.
- 7 "partial extracorporeal support*".mp.
- 8 (("carbon dioxide" or CO2) adj dialysis*).mp.
- 9 ECCO2R*.mp.
- 10 "low flow ECCO2R*".mp
- 11 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10
- 12 Exp Respiratory Distress Syndrome, Adult/
- 13 "respiratory failure".mp
- 14 "acute lung injury".mp.
- 15 12 or 13 or 14
- 16 11 and 15
- 17 limit 16 to humans

Supplementary Table 1. Technical details of ECCO₂R, management strategies, and anticoagulation protocols

	Morris, et al., 1994 ^[17]	Bein, et al., 2013 [18]	McNamee, et al., 2021 [8]
Mode of ECCO ₂ R	Veno-venous	Arterio-venous	Veno-venous
Model and manufacturer of	Roller pump and two Sci Med 3.5	iLA, Novalung, Heilbronn,	Hemolung-RAS, ALung,
ECCO ₂ R	m ² membrane lungs (ML) in	Germany	Pittsburgh, USA
	series ^a		
Cannula(e) type	NR ^b	Arterial cannula (≤ 15 Fr)	Dual-lumen cannula (15.5 Fr)
		Venous cannula (typically 2 sizes	
		larger than arterial)	
Cannula(e) site	NR ^b	Femoral artery and contralateral	Right internal jugular vein or any
		femoral vein.	femoral vein.
Flow settings	~2.4 L/min	~1 – 2 L/min	350 - 500 mL/min
Sweep gas settings	15 L/min per ML ^b	Stepwise increase to 10 L/min ^c	Started at 1 L/min.
			Increased in 1-2 L/min increments
			until:
			• pH ≥ 7.2
			• $V_T \le 3 \text{ mL/kg PBW}$
			• Pplat $\leq 25 \text{ cmH}_2\text{O}$
			Maximum 10 L/min.
Weaning strategy	When:	When:	When:
	 On CPAP ventilation 	• $F_1O_2 < 0.5$	 Signs of clinical improvement
	• F _I O ₂ 0.4	• PEEP $\leq 12 \text{ cmH}_2\text{O}$	• $PaO_2/F_IO_2 \ge 225 \text{ mmHg}$
	• PEEP 10 – 15 cmH ₂ O	• On an assisted spontaneous	• Pplat \leq 25 cmH ₂ O during trial of
	Or,	breathing ventilator mode	$V_T 6 \text{ mL/kg PBW}$
	• On low-frequency IMV for ≥ 6	Then, reduce sweep gas to 1	Then, reduce sweep gas in 1
	hours with no sweep gas flow	L/min.	L/min increments until at 1L/min.
	Then, may decannulate. ^b	If stable for 2 hours, may	If stable at 1L/min for 12 hours,
		decannulate.	may decannulate.
Anticoagulant	Unfractionated heparin	Unfractionated heparin	Unfractionated heparin
Anticoagulation target	ACT 180 – 210 s; APTTr 1.8 – 2.5	PTT 40 – 50 s	APTTr 1.5-2.0
Duration of ECCO₂R^d , days	9 ± 2	7 ± 4	4 ± 2

for randomised controlled trials.

Adjunctive therapies, % ECCO ₂ R vs. standard care							
Prone position	NR	NR	8 vs. 8 ^e				
Neuromuscular blockade	NR	NR	52 vs. 33 ^e				
Inhaled nitric oxide	NR	NR	3 vs. 2 ^e				

^a – Device was investigator-designed. The pump type was not described in the trial manuscript but was referenced as being as *Gattinoni, et al*, 1984. ^b These details were not reported in the trial manuscript but was referenced as being as *Gattinoni*, *et al*, 1984.

^b – These details were not reported in the trial manuscript. However, *Gattinoni, et al., 1986*, describes cannulation of the IVC via the femoral vein for venous access and cannulation of the SVC via the right internal jugular vein for venous return, or dual-lumen cannulation of the IVC via the femoral vein, or saphenous-saphenous venous cannulation.

^c – Sweep gas settings were not reported in the trial manuscript but were obtained from a published pilot trial.

 d – Mean ± sd.

^e – Day 3.

ACT – activated clotting time; APTTr – activated partial thromboplastin time ratio; CPAP – continuous positive airway pressure; ECCO₂R – extracorporeal membrane oxygenation; F₁O₂ – inspired fraction of oxygen; IMV – intermittent mandatory ventilation; NR – not reported; PaO₂/F₁O₂ – arterial partial pressure of oxygen to inspired fraction of oxygen ratio; PEEP – positive end expiratory pressure; Pplat – plateau airway pressure; V_T – tidal volume.

	Randomisation process	Assignment to intervention	Missing outcome data	Outcome measurement	Selective outcome reporting	Other
Morris, et al. ^[17]	Some concerns	Low	Low	Low	Low	
	Randomisation method not described. No good evidence that baseline imbalances suggest an issue with the randomisation process. However, ECCO ₂ R patients had a significantly longer duration of illness at randomisation	Non-blinded. Two patients assigned to ECCO ₂ R did not receive it (one died prior to initialisation and one recovered). Analysis was conducted on an intention-to-treat basis. Supportive care was highly protocolised with no evidence to suggest significant deviations from protocol.	No loss to follow-up.	Non-blinded but binary outcome.	Mortality, length of stay, and adverse events reported.	Trial stopped early due to futility.
Bein, et al. [18]	Low	Some concerns	Low	Low	Some concerns	
	Telephone randomisation via a random number table generated by the trial statistician. Well balanced at randomisation.	Non-blinded. All patients assigned to ECCO ₂ R received it. The study did not protocolise supportive care. There were significant differences in the cumulative doses of sedatives between groups, which is known to mediate duration of mechanical ventilation.	No loss to follow-up.	Non-blinded but binary outcome.	Limited reporting of mortality outcomes and adverse events.	Trial stopped early due to futility.
McNamee, et al. [8]	Low	Some concerns	Low	Low	Low	
	Online or telephone randomisation using a computer-generated schedule of variable block sizes. Well balanced at randomisation.	Non-blinded. Seventeen (8%) patients assigned to ECCO ₂ R did not receive it (8 improved, 6 had technical issues with ECCO ₂ R, 2 deteriorated, 1 withdrew consent). One patient in the control group received ECCO ₂ R. Analysis was conducted on an intention-to-treat basis. The study did not protocolise supportive care. There was a significantly higher use of neuromuscular blocking drugs and a lower rate of proning in the ECCO ₂ R group, both of which are known to mediate outcome in AHRF.	A small number of patients were not included in the primary analysis. There is no evidence to suggest this biased the result.	Non-blinded but binary outcome.	Pre-published study protocol.	Trial stopped early due to futility.

Supplementary Table 2. Risk of bias rationale for randomised controlled trials.

AHRF – acute hypoxaemic respiratory failure; ECCO₂R – extracorporeal carbon dioxide removal.

	Year	Design	Mode of	Co-intervention	Comparator	n	n	Age, years ^b	Sex	PaO_2/F_IO_2	Aetiology, % ^c	Notes
			ECCO ₂ R			total	ECCO ₂ R ^a			ratio, <i>mmHg</i> ^b		
Guinard, et al. [19]	1997	Controlled trial	VV		MV	36	8	35 ± 13	NR	74 ± 28	Pneumonia (44)	
Bein, et al. ^[20]	2006	Retrospective cohort	AV			90	90	44 (26 - 59)	21 F/69 M	58 (47 - 78)	Pneumonia (33)	
Terragni, et al. [21]	2009	Controlled trial	VV		MV	32	10	64 ± 14	3 F/10 M	136 ± 30	Pneumonia (34)	
Zimmermann, et al. [22]	2009	Prospective cohort	AV			51	51	52 (40 - 59)	8 F/43 M	75 (62 – 130)	NR	Pilot study
Lubnow, et al. ^[23]	2010	Retrospective cohort	AV	HFOV		21	21	51 (42 - 61)	5 F/16 M	61 (47 – 86)	Pneumonia (81)	
Bein, et al. [24]	2011	Matched cohort	AV	Aspirin	ECCO ₂ R	30	30	47 ± 7	4 F/26 M	127 ± 56	Trauma (43)	
Neirhaus, et al. ^[25]	2011	Retrospective cohort	AV			13	13	52 ± 19	5 F/8 M	100 ± 29	Pneumonia (54)	
Cho, et al. [26]	2012	Prospective cohort	AV			11	11	58 ± 14	3 F/8 M	110 ± 37	Pneumonia (64)	
Quintard, et al. [27]	2014	Retrospective cohort	VV	CRRT		16	16	59 ± 17	9 F/7 M	133 ± 71	Pneumonia (56)	Novel device
Weingart, et al. ^[28]	2015	Retrospective cohort	AV		VV-ECMO	255	63	50 ± 16	12 F/51 M	93 (66 - 153)	Pulmonary-ARDS (67)	
Fanelli, et al. [29]	2016	Prospective cohort	VV			15	15	55 ± 19	4 F/11 M	159 ± 34	Pneumonia (80%)	Feasibility study
Fanelli, et al. [30]	2018	Matched cohort	VV	CRRT	CRRT	54	14	60 ± 20	NR	NR	NR	
Combes, et al. [31]	2019	Prospective cohort	VV			95	95	60 ± 14	31 F/64 M	173 ± 61	Pneumonia (82)	Pilot study
Nentwich, et al. [32]	2019	Prospective cohort	VV	CRRT		20	20	64 (43 - 82)	8 F/ 12 M	159 ± 36	Pneumonia (85)	Pilot study
Moerer, et al. [33]	2019	Prospective cohort	VV	CRRT		14	11	61 ± 11	4 F/7 M	211 ± 60	Multiple ^d	
Petren, et al. [34]	2020	Retrospective cohort	AV			73	73	51 ± 17	28 F/45 M	126 ± 59	Pneumonia (60)	
Goursand, et al. [35]	2021	Quasi-experimental	VV			18	18	64 (57 - 76)	5 F/13 M	117 (100 - 136)	Pneumonia (83)	Pilot study
Ding, et al. [36]	2021	Prospective cohort	VV	CRRT		12	12	68 (62 - 71)	6 F/6 M	NR	Covid-19 ARDS (100)	

Supplementary Table 3. Baseline characteristics of included observational studies.

^a – number of patients who received ECCO₂R and were analysed.
 ^b – mean ± SD or median (IQR).
 ^c – commonest reported aetiology of respiratory failure.
 ^d – Two patients with ARDS, two with pneumonia, two with endocarditis, two with sepsis.

 $AHRF - acute hypoxaemic respiratory failure; ARDS - acute respiratory distress syndrome; AV - arterio-venous; Covid-19 - Coronavirus disease - 19; CRRT - continuous renal replacement therapy; ECCO_2R - extracorporeal carbon dioxide removal; ECMO - extracorporeal membrane oxygenation; MV - mechanical ventilation; VV - veno-venous.$

Supplementary	Table 4.	Clinical	outcome	measures	for	ECCO	R_c	reported	by	observational studies.
							_	1	~	

	n (%)		mean ± SD or median (range)	
	28/30-day mortality	ICU mortality	Hospital mortality	ICU length of stay, days
Guinard, et al. [19]	NR	NR	6/8 (75)	NR
Bein, et al., 2006 ^[20]	NR	NR	53/90 (58.9)	NR
Terragni, et al. [21]	NR	NR	NR	NR
Zimmermann, et al. [22]	NR	NR	25/51 (49)	NR
Lubnow, et al. ^[23]	9/21 (42.9) ^a	NR	12/21 (57.1)	NR
Bein, et al., 2011 [24]	NR	NR	1/15 (6.7)	NR
Neirhaus, et al. [25]	NR	7/13 (53.8)	NR	34.5 ± 65.3
Cho, et al. [26]	NR	NR	NR	NR
Quintard, et al. [27]	NR	7/16 (43.8)	NR	20.3 ± 10.7
Weingart, et al. [28]	30/63 (47.6) ^a	NR	35/63 (55.6)	NR
Fanelli, et al., 2016 ^[29]	7/15 (46.7) ^b	NR	NR	NR
Fanelli, et al., 2018 [30]	NR	NR	NR	NR
Combes, et al. ^[31]	26/95 (27.4) ^b	NR	36/95 (37.9)	NR
Nentwich, et al. [32]	NR	NR	NR	NR
Moerer, et al. [33]	NR	NR	NR	NR
Petren, et al. [34]	NR	NR	36/73 (49.3)	NR
Goursand, et al. [35]	NR	NR	NR	NR
Ding, et al. ^[36]	8/12	NR	NR	21 (16 – 36)

^a – 30-day mortality ^b – 28-day mortality

 $ICU-intensive\ care\ unit;\ NR-not\ reported.$

	Confounding	Selection of participants	Classification of interventions	Deviation from intervention	Missing data	Outcome measurement	Selection of reported results
Guinard, et al. [19]]	Serious	Low	Low	Critical	No information	Low	Serious
	Only a small number of potential confounders accounted for in regression analysis.			Nine patients meeting criteria for ECCO ₂ R did not receive it.		Primary outcome was binary.	Secondary outcomes were not pre-specified.
Terragni, et al. [21]	Serious	Low	Low	No information	No information	Moderate	Serious
	Multiple confounding variables not controlled for.					Outcome measures only minimally influenced by knowledge of the intervention and any error in measurement is unlikely to be related to intervention status.	In recording multiple clinical, imaging, and biochemical results there is a high risk of selective reporting.

Supplementary Table 5. ROBINS-I rationale for risk of bias in observational studies.

Supplementary Table 6. Primary outcome (mortality up to day 30 (or latest)) sensitivity analysis.

	Informative prior ^a		Non-informative prior	
	Mean posterior relative effect ^b	Heterogeneity (I^2)	Mean posterior relative effect ^b	Heterogeneity (I^2)
	(95% CrI)		(95% CrI)	
Estimates	1.19 (0.70 – 2.29)	41.5%	1.10 (0.60 - 2.05)	68.8%

^a – Derived from the results of *Guinard, et al.*. ^b - Relative risk.

CrI – credible interval.

	% of patients receiving ECCO ₂ R [% of standard care group]								
	ECCO ₂ R	Major	Intracerebral	Cannulation	Limb ischaemia	Circuit			
	mode	haemorrhage ^a	haemorrhage	complications ^b		complications ^c			
Randomised controlled trials									
Morris, et al. ^[17]	VV	100 [0]	5 [5]	NR	10	19			
Bein, et al., 2013 ^{d [18]}	AV	NR	NR	5	2.5	NR			
McNamee, et ale [8]	VV	8 [1]	10 [1]	4	NR	4			
Observational studies			•	•					
Guinard, et al. [19]	VV	25 [12.5]	12.5 [0]	NR	NR	NR			
Bein, et al., 2006 [20]	AV	1	1	7	10	NR			
Terragni, et al. ^[21]	VV	0 [0]	0 [0]	40	0 [0]	40			
Zimmermann, et al. ^[22]	AV	6	NR	6	6	NR			
Lubnow, et al. ^[23]	AV	10	5	NR	14	14			
Bein, et al., 2011 [24]	AV	NR	NR	NR	NR	NR			
Neirhaus, et al. ^[25]	AV	NR	NR	15	NR	NR			
Cho, et al. [26]	AV	9	NR	18	NR	72			
Quintard, et al. [27]	VV	NR	NR	NR	NR	NR			
Weingart, et al. [28]	AV	NR	NR	NR	NR	21			
Fanelli, et al., 2016 ^[29]	VV	NR	NR	7	NR	NR			
Fanelli, et al., 2018 [30]	VV	NR	NR	NR	NR	NR			
Combes, et al. [31]	VV	6	1	2	NR	17			
Nentwich, et al. [32]	VV	NR	NR	NR	NR	NR			
Moerer, et al. [33]	VV	NR	NR	NR	NR	NR			
Petren, et al. ^[34]	AV	NR	1	NR	NR	NR			
Goursand, et al. [35]	VV	6	NR	NR	NR	28			
Ding, et al. ^[36]	VV	NR	NR	NR	NR	NR			

Supplementary Table 7. Safety and adverse events summary.

^a - There were disparate definitions of major haemorrhage, and each study was classified as such if the authors report bleeding to be

significant or serious. ^b – Cannulation complications include; cannula-site haematoma or bleeding, false-aneurysm formation or vascular injury, and catheter displacement.

 c^{c} – Circuit complications include; clotting, device failure, and infection. d^{d} – *Bein, et al.*, did not report complications under a classification but did report a low rate of ECCO₂R-related adverse events (n = 3). These are included under the appropriate headings. $^{\circ}$ M. Maria

² – McNamee, et al., reported adverse events using an adverse and serious adverse event nomenclature. The rates above are for adverse events, which by definition include serious adverse events.

AV - arterio-venous; NR - not reported; VV - veno-venous.

	Timepoint	PaCO ₂ , mmHg	pH	V_T , mL/kg	V _E , L/min	Pplat , cmH_2O	PaO ₂ /F _I O ₂ , mmHg		
Randomised controlled trials									
Morris, et al. ^[17]	Randomisation	NR	7.36 ± 0.02	8.9 ± 0.6	15.0 ± 1.1	$55\pm3^{\mathrm{a}}$	63 ± 4		
	3-6 hours	NR	NR	3.0 ± 3.0	NR	45 ± 2	NR		
Bein, et al., 2013 [18]	Randomisation	57 ± 12	7.34 ± 0.07	5.9 ± 1.2	9.9 ± 1.6	29 ± 5	152 ± 37		
	Day 3	NR	NR	NR ^b	NR ^b	NR	NR ^b		
McNamee, et al. ^[8]	Randomisation	54 (47 - 63)	7.30 (7.25 – 7.37)	6.3 (5.8 – 7.0)	NR	26 (26 - 30)	118 (96 – 13)		
	Day 3	61 ± 14	7.32 ± 0.09	4.4 ± 1.7	7.6 ± 2.5	23 ± 5	148 ± 49		
Observational studies									
Guinard, et al. ^[19]	Physiological variables not reported on an ECCO ₂ R vs. non-ECCO ₂ R basis								
Bein, et al., 2006 [20]	Pre-ECCO ₂ R	60 (48 - 80)	7.27 (7.18 - 7.36)	430 (360 – 540) ^c	13.0 (10.0 - 16.4)	38 (35 - 40)	58 (47 - 78)		
	24 hours	34 (30 - 39)	7.45 (7.41 - 7.50)	380 (320 – 470) ^c	9.9 (8.0 - 14.8)	35 (31 - 39)	101 (74 - 142)		
Terragni, et al. ^[21]	Baseline	74 ^{e,f}	7.20 ^{e,f}	4.2 ^{e,f}	NR	24 ^{e,f}	122 ^{e,f}		
_	Day 3	49 ^{e,f}	7.39 ^{e,f}	4.5 ^{e,f}	NR	23 ^{e,f}	217 ^{e,f}		
Zimmermann, et al. ^[22]	Pre-ECCO ₂ R	73 (61 – 86)	7.23 (7.16 - 7.30)	6.6 (5.3 – 7.2)	11.5 (9.3 – 12.5)	35 (31 - 38)	75 (62 – 130)		
	24 hours	41 (34 - 48)	7.44 (7.37 - 7.49)	4.4 (3.4 – 5.4)	6.6 (5.5 - 8.3)	30 (26 - 34)	110 (86 - 160)		
Lubnow, et al. ^[23]	Pre-ECCO ₂ R	58 (50 - 70)	7.28 (7.16 - 7.36)	NR	NR	28 (24 - 31) ^d	61 (47 – 86)		
	24 hours	$36(32-42)^{e}$	7.45 (7.36 – 7.54) ^e	HF	ÖV	$33(29-34)^d$	102 (71 – 135) ^e		
Bein, et al., 2011 ^[24]	Physiological variables not reported for the overall cohort								
Neirhaus, et al. ^[25]	Pre-ECCO ₂ R	80 ± 23	7.18 ± 0.22	$293 \pm 94^{\circ}$	10.2 ± 3.4	$34\pm3^{\text{g}}$	100 ± 29		
	Day 3	50 ± 8	7.41 ± 0.10	$178 \pm 90^{\circ}$	3.3 ± 2.4	27 ± 4^{g}	152 ± 55		
Cho, et al. [26]	Pre-ECCO ₂ R	84 ± 23	7.18 ± 0.13	$331 \pm 87^{\circ}$	9.4 ± 2.5	30 ± 7^{a}	110 ± 37		
	Day 3	49 ± 14	7.41 ± 0.05	$324 \pm 94^{\circ}$	6.7 ± 1.9	25 ± 11^{a}	89 ± 18		
Quintard, et al. ^[27]	Pre-ECCO ₂ R	78 ± 14	7.17 ± 0.09	5.9 ^f	NR	28 ^f	133 ± 71		
	12 hours	48 ± 10	7.40 ± 0.07	5.6 ^f	NR	26 ^f	134 ± 43		
Weingart, et al. [28]	Physiological varia	bles only reported a	t baseline			•			
Fanelli, et al., 2016 ^[29]	Pre-ECCO ₂ R	51 ± 15	7.36 ± 0.1	6.2 ± 0.7	NR	28 ± 2	159 ± 34		
	Day 3	49 ± 11	7.40 ± 0.1	4.8 ± 0.7	NR	23 ± 3	176 ± 80		
Fanelli, et al., 2018 [30]	Pre-ECCO ₂ R	NR	NR	7.0 ± 0.5	NR	NR	NR		
	Day 3	NR	NR	4.8 ± 0.4	NR	NR	NR		
Combes, et al. [31]	Pre-ECCO ₂ R	48 ± 9	7.34 ± 0.08	6.0 ± 0.2^{e}	10.2 ± 2.3^{e}	27 ± 3^{e}	173 ± 61^{e}		
	24 hours	47 ± 7^{e}	7.39 ± 0.04^{e}	4.1 ± 0.3	6.0 ± 1.1	23 ± 3	167 ± 34		
Nentwich, et al. [32]	Pre-ECCO ₂ R	66 ± 9	7.20 ± 0.08	6.0 ± 0.7	9.6 ± 1.7	30 ± 4	159 ± 36		
	Day 3	54 ± 14^{e}	7.27 ± 0.14^{e}	5.4 ± 1.1^{h}	8.5 ± 2.1^{h}	28 ± 4^{g}	151 ± 35^{g}		
Moerer, et al. ^[33]	Pre-ECCO ₂ R	34 ± 6	NR	$425 \pm 51^{\circ}$	10. 1 ± 1.9	15 ± 4^d	211 ± 60		
	6 hours	32 ± 3	NR	$395 \pm 66^{\circ}$	9.6 ± 2.6	15 ± 5^{d}	NR		
Petren, et al. ^[34]	Pre-ECCO ₂ R	79 ± 31	7.23 ± 0.14	4.8 ± 1.6	NR	33 ± 6	126 ± 59		
	24 hours	49 ± 12	7.40 ± 0.10	4.4 ± 1.5	NR	29 ± 4	136 ± 54		
Goursand, et al. [35]	Day 0 ECCO ₂ R	43 (38 - 58)	7.38 (7.34 - 7.42)	6.1 (6.0 - 6.4)	10.7 (10.1 – 12.2)	26 (24 - 28)	109 (97 - 136)		
	Day 1 ECCO ₂ R	50 (45 - 59)	7.31 (7.26 - 7.35)	4.0 (4.0 - 4.2)	7.0 (6.4 - 8.4)	22 (20 - 26)	116 (83 - 161)		
Ding, et al. ^[36]	Pre-ECCO ₂ R	72 ± 17^{e}	NR	5.9 ± 0.2	NR	34 ± 7	NR		
	24 hours	65 ± 17^{e}	NR	5.1 ± 0.4^{e}	NR	26 ± 3^{e}	NR		

Supplementary Table 8. Summary of physiological changes reported by included studies.

- ^a Reported as peak inspiratory pressure.
 ^b Data presented as a figure, but inappropriate scaling prevented digital retrieval.
 ^c Reported as average tidal volume in mL.
 ^d Reported as mean airway pressure.
 ^e Digitally retrieved.
 ^f No metric of dispersion reported.
 ^g Reported as inspiratory pressure.
 ^h Values at 1 hour.

ECCO₂R – extracorporeal membrane oxygenation; HFOV – high frequency oscillatory ventilation; NR – not reported; PaCO₂ – arterial partial pressure of carbon dioxide; PaO₂/F₁O₂ – arterial partial pressure of oxygen to inspired fraction of oxygen ratio; Pplat – plateau airway pressure; V_E – minute volume; V_T – tidal volume.

Data are presented as mean \pm SD or median (IQR).

Supplementary Table 9. Ongoing clinical trials of ECCO2R in acute hypoxaemic respiratory failure.

Study	Design	Start date	Completion date	Status	n total	Country	Record identifier
Low-flow extracorporeal carbon dioxide removal in covid-19 associated acute	Observational	May, 2020	June, 2020	Recruiting	20	Germany	NCT04351906
respiratory distress syndrome							
Post-market study of low-flow ECCO ₂ R using Prisma-Lung+	Observational	April, 2021	June, 2022	Recruiting	50	France	NCT04617093
Registry of the experience of extracorporeal CO ₂ removal in intensive care	Registry	January, 2016	June, 2022	Recruiting	200	France	NCT02965079
units (REXECOR)							
ECCO ₂ R – mechanical power study	Observational	March, 2019	March, 2024 ^a	Recruiting	15	Italy	NCT03939260
Use of extracorporeal CO ₂ Removal in case of moderate to severe ARDS to	Observational	February, 2021	November, 2021	Recruiting	20	France	NCT04556578
apply ultraprotective mechanical ventilation strategy							
Ultra-protective lung ventilation with extracorporeal CO2 removal for	Randomised trial		December, 2023 ^a	Not yet	230	France	NCT04903262
moderate ARDS (SUPERNOVA)				recruiting			
Enhanced lung protective ventilation with ECCO2R during ARDS (PROVE)	Randomised trial	May, 2018	December, 2022	Recruiting	14	France	NCT03525691

^a – estimated completion date.

ECCO₂R – extracorporeal carbon dioxide removal.

Supplementary Figure 1. Inclusion diagram. ECCO₂R – extracorporeal carbon dioxide removal; ECMO – extracorporeal membrane oxygenation

	Risk of Bias Domains								
	D1	D2	D3	D4	D5	D6	D7	Overall	
Guinard, et al.	X	+	+		?	+	X		
Terragni, et al.	X	+ + ? ? -					X	X	
	Domains: D1: Bias D2: Bias D3: Bias D4: Bias D5: Bias D6: Bias D7: Bias	Judgement Critical Serious Moderate Low No information							

Supplementary Figure 2. Risk of bias assessments for observational studies. Performed using the Cochrane ROBINS-I. A detailed rationale for each assessment is provided in supplementary table 5.

28-day ventilator free days

	ECCO₂R Mean	SD	n	Standard ca Mean	are SD	n	Mean estimate Shrinkage estimate	Mean difference (95% Crl)
Bein et al. [19]	10	8	40	9.3	9	39	· · · · · · · · · · · · · · · · · · ·	0.7 (-3.1 - 4.5)
McNamee, et al. [8]	7.1	8.8	199	9.2	9.3	206		-2.1 (-3.9 - 0.3)
Overall			239			245	5.0 -2.5 0.0 2.5 5.0 Mean difference	-1.4 (-3.6 - 0.9)
ICU length of sta	y (days)							
	ECCO₂R Mean	SD	n	Standard ca Mean	are SD	n	Mean estimate Shrinkage estimate	Mean difference (95% Crl)
Morris, et al. [18]	23.8	4	21	24.2	4.4	19		-0.4 (-3.0 - 2.2)
Bein et al. [19]	31.3	23	40	22.9	11	39	······································	8.4 (0.5 - 16.3)
McNamee, et al. [8]	14	14.1	202	13	11.1	210		1.0 (-1.5 - 3.5)
Overall			263			268		0.9 (-1.3 - 3.1)
							0 5 10 15 Mean difference Favors ECCOR Favors standard care	
Hospital length c	of stay (day	ys)						
	ECCO₂R Mean	SD		Standard ca	are SD	n	Mean estimate Shrinkage estimate	Mean difference (95% Crl)
Morris, et al. [18]	26.9	4.9	21	28.8	5.7	19	· · · · · · · · · · · · · · · · · · ·	-1.9 (-5.2 - 1.4)
Bein et al. [19]	46.7	33	40	35.1	17	39		11.6 (0.1 - 23.1)
McNamee, et al. [8]	22	23	193	19	19.3	201		3.0 (-1.2 - 7.2)
Overall			254			258		0.8 (-2.2 - 3.9)
							0 10 20 Mean difference Favors ECCOR Favors standard care	
Intracranial haen	norrhage							
	ECCO₂R +ve	-ve		Standard ca	re -ve			Relative risk (95% Crl)
Morris, et al. [18]	1/21	20/2	1	1/19	18/19		•••••	0.90 (0.06 - 13.48)
McNamee, et al. [8]	10/202	192/2	202	2/210	208/2	10	·	5.20 (1.15 - 23.43)
Overall	11/223	212/2	223	3/229	226/2	29		3.00 (0.41 - 20.51)
							0.1 1.0 10.0 100.0 Relative risk	

Supplementary Figure 3. Forest plots for secondary outcomes. Non-informative prior distributions were used for pooling secondary outcomes. Estimates are presented as relative risk or mean difference (95% credible intervals). Both mean and shrinkage estimates are shown. $ECCO_2R$ – extracorporeal carbon dioxide removal.

Supplementary Figure 4. Trial sequential analysis assuming ARR ≥ 5 %. The Z-value is the test statistic where |Z| = 1.96 is equivalent to P = 0.05 (green line). The Z-score horizontal bounds are set with O'Brien-Fleming alpha monitoring and beta futility boundaries (red lines). The required information size (RIS) is diversity adjusted and set to detect a 5% absolute difference in mortality (from 35% to 25%) at 80% power. Two tailed alpha = 0.05 and beta = 0.2.