
 

Supplementary data  

Supplementary Appendix 1. Methods 

The definitions of AMI, STEMI, NSTEMI, non-AMI and non-STEMI [2-4] 

The definitions of AMI, STEMI, NSTEMI, non-AMI, and non-STEMI in this study are summarised in detail in 

Supplementary Table 1. 

 

Data collection 

ECG recordings were collected using a Philips 12-lead ECG machine (PH080A). The ECG signal was recorded 

in a digital format. The sampling frequency was 500 Hz, with 10 seconds recorded in each lead. Patient 

characteristics and laboratory tests were collected from our electronic medical records. The laboratory data 

collected closest to the time of the ECG were assigned to each ECG record. Because the ECG records were 

sometimes conducted within a relatively short time period, some ECGs from the same patients shared the same 

patient characteristics and laboratory data. 

 

Timelines of door-to-balloon/CAG, door-to-ECG, and ECG-to-balloon/CAG 

In STEMI patients without cardiac arrest, endotracheal intubation, or mechanical support, the mean door-to-

balloon time was 65.7 min, the mean door-to-ECG time was 3.9 min, and the mean ECG-to-balloon time was 

60.8 min. In STEMI patients with cardiac arrest, endotracheal tube intubation, or mechanical support, the mean 

door-to-balloon time was 205.6 min, the mean door-to-ECG time was 25.9 min, and the mean ECG-to-balloon 

time was 178.7 min. In NSTEMI patients, the mean door-to-CAG time was 629.6 min, the mean door-to-ECG 

time was 6.7 min, and the mean ECG-to-CAG time was 622 min. 

 

Implementation of the deep learning model (DLM) 

We developed a DLM with 82 convolutional layers and an attention mechanism. The technology details, such 

as the model architecture, data augmentation, and model visualisation, have been described previously [14]. We 

used the same architecture to train two new DLMs for AMI detection and infarct-related artery (IRA) analysis 



of STEMI. The first DLM was trained via full samples with three categories, including STEMI, NSTEMI, and 

non-AMI, and the output of this model was a class-3 softmax output. The second DLM was trained via STEMI 

ECGs, and the output of this model was a class-4 softmax output for IRA analysis. 

 

The standard input format of the DLM was a length of 1,024 numeric sequences, but the original length of our 

12-lead ECG signals was 5,000. In the training process, we randomly cropped a length of 1,024 sequences as 

input. For the inference stage, nine overlapping lengths of 1,024 sequences based on interval sampling were 

used to generate a prediction and were averaged as the final prediction. Due to the scarcity of AMI cases in our 

study, an oversampling process was implemented to ensure that rare samples were adequately recognised. The 

settings for the training model were as follows: (1) Adam optimiser with standard parameters (β1 = 0.9 and β2 = 

0.999) and a batch size of 36 for optimisation; (2) a learning rate of 0.001; and (3) a weight decay of 10−4. The 

100th epoch model was used as the final model, and the presented performance in the validation set was only 

evaluated once. 

 

Implementation details of the DLM 

The DLM architecture 

The architecture of our DLM was based on ECG12Net, which was previously used for serum K+ concentration 

estimation [14]. Supposing that a standard 12-lead ECG signal comprised 12 sequences of N numbers (N = 

1,250 in our database), the ECG signal sequence X = [x1,1, x1,2, …, x1,N; x2,1, x2,2, …, x2,N; …; x12,1, 

x12,2, …, x12,N] was used as the input, and the output was a one-hot encoder of AMI categories (STEMI, 

NSTEMI, and non-AMI) and the IRA of STEMI (STEMI-LMCA, STEMI-LAD, STEMI-LCx, and STEMI-

RCA). 

 

For example, a label of STEMI is encoded as [1,0,0], and a label of NSTEMI is encoded as [0,1,0]. Each output 

label corresponded to a segment of the input. Because the ECG information was mostly provided by 

morphologic changes with shift invariance, convolutional layers with weight sharing were used to adapt to this 



situation and reduce the hazard of overfitting. We therefore developed a 12-channel sequence-to-sequence 

model to conduct this task as a revision of DenseNet. The complete architecture of the DLM is shown in 

Supplementary Figure 1. We defined a “dense unit” as a neural combination as follows: (1) a batch 

normalisation layer to normalise input data, (2) a rectified linear unit (ReLU) layer for non-linearisation, (3) a 

1×1 convolution layer with 4K filters to reduce the dimensions of the data, (4) a batch normalisation layer for 

normalisation, (5) a ReLU layer for non-linearisation, (6) a 3×1 convolution layer with 4K filters to extract 

features, (7) a batch normalisation layer for normalisation, (8) a ReLU layer for non-linearisation, and (9) a 1×1 

convolution layer with K filters to extract features. K was a model constant that was set at 32 in all our 

experiments. After using a dense unit to extract features, we used the dense connectivity resulting from direct 

connections from any layer to all subsequent layers to build a “dense block”. We designed a model with five 

dense blocks comprising 3,3,6,6, and three dense units. 

 

Dense blocks cannot be concatenated when the size of the feature maps changes. Thus, a pooling block was 

used to concatenate each dense block for downsampling in our architecture. This block included a dense unit 

with a 2×1 stride and an average pooling layer with a 2×1 kernel size and stride, which was used for 

downsampling. Each dense block was concatenated by the pooling block to integrate the features of the 

previous blocks. 

 

A length of 864 numeral sequences was used as the input in our experiment. We designed an ECG lead block 

with 80 trainable layers, the architecture of which is shown in Supplementary Figure 1A. The input data were 

passed through a batch normalisation layer, followed by a convolution layer, another batch normalisation layer, 

a ReLU layer, and a pooling layer. The initial convolution layer comprised K convolution filters with a kernel 

size of 7×1 and a stride of 2×1. Next, the data were passed through a series of dense blocks and a pooling block, 

resulting in a 16×1×864 array. A ReLU layer, a batch normalisation layer, and a global pooling layer were 

followed by the last dense block. Finally, a fully connected layer with k output was created for follow-up use, 

where k is the number of categories, which was equal to 3 in the first AMI detection model and 4 in the second 



IRA analysis model of STEMI. This ECG lead block was used to extract 864 features from each ECG lead, 

making a basic output prediction based on each lead. Supplementary Figure 1B shows how ECG12Net 

integrated all the information from the ECG to make an overall prediction. ECG12Net comprised 12 ECG lead 

blocks corresponding to lead sequences. We designed an attention mechanism based on a hierarchical attention 

network to concatenate these blocks, increasing the interpretive power of ECG12Net. The attention block 

comprised a batch normalisation layer followed by a fully connected layer and then two combinations of a batch 

normalisation layer, a ReLU layer, and a fully connected layer. The first and second fully connected layers each 

contained 8/k neurons. Attention scores were calculated for each ECG lead and then integrated for 

standardisation by a linear output layer. The standardised attention scores were used to weight the 12 ECG lead 

outputs by simple multiplication. The 12 weighted outputs were summed and converted into a softmax output 

layer to provide the final prediction value. The above model using ECG information was named ECG12Net, 

which contained 82 trainable layers. The m-log-loss function was used to calculate model loss. A dropout layer 

was added only in the fully connected layer, and the dropout rate was set to 0.5. 

 

Training details 

The 12-lead ECG signal sequences were first trained by the 12 ECG leads separately. Due to the seriously 

uneven distribution in STEMI, NSTEMI, and non-AMI, an oversampling process was implemented to improve 

performance by ensuring that rare samples were adequately recognised. We sampled 12 STEMI ECGs, 12 

NSTEMI ECGs, and 12 non-AMI ECGs in each batch. This process sufficiently considered rare STEMI and 

NSTEMI cases so as not to be skewed by the overwhelming number of normal cases. We used the software 

package MXNet version 1.3.0 to implement ECG12Net. The settings used for the training model were as 

follows: (1) Adam optimiser with standard parameters (β1 = 0:9 and β2 = 0:999) and a batch size of 36 for 

optimisation; (2) initial learning rate set at 0.001 and lowered by 10 three times when validation loss plateaued 

after an epoch; and (3) a weight decay of 10−4. Because the sampling rate of our machine is 500 Hz, our 12-lead 

ECG signal includes 12 numeral sequences with 5,000 digits. However, the standard input format of ECG12Net 

was a length of 1,024 numeric sequences. We randomly cropped a length of 1,024 sequences as input in the 



training process. During the inference stage, the nine overlapping lengths of 1,024 sequences based on interval 

sampling (X1 to X1024, X498 to X1521, X995 to X2018, X1492 to X2515, X1989 to X3012, X2486 to X3509, X2983 to X4006, X3480 

to X4503, and X3977 to X5000) were used to generate predictions and averaged as the final prediction. The 100th 

epoch model was used as the final model, and the model performance in the validation set was verified only 

once. 

 

Data augmentation                                                                          

A previous study reported severe overfitting in an atrial fibrillation detection task and suggested a series of data 

augmentations to improve model performance. In the current study, the problem of overfitting was due to the 

large number of parameters in the deep learning architecture (~3 million trainable parameters) relative to the 

sample size. The first step in tackling this issue was to resize the sequence length by adjusting heart rate. We 

randomly resampled a broader range of heart rates in a uniform distribution from 0.8 HR to 1.2 HR, where HR 

was the original heart rate for each sample. The second step was to randomly crop a length of 1,024 sequences 

as input. The third step was to add a random variable drawn from a Gaussian distribution with a mean of 0 and a 

standard deviation of 0.1. Fourth, time points were selected uniformly and at random, and the ECG signal 

values within a 50 ms vicinity of these points were set at 0. This method was called dropout burst. Finally, we 

set six random ECG lead sequences to 0 in the combined training step. We observed that the final DLM only 

used information from a few ECG leads to make a prediction and inferred that the model had ceased to learn 

features from the other ECG leads because it had perfectly predicted all the data in the training set. This 

approach forced the DLM to learn all the abnormal ECG leads. 

 

Model visualisation 

To interpret the network predictions, we conducted heatmaps to visualise the ECG rhythms and leads using 

class activation mappings (CAMs) and attention mechanisms based on the global average pooling (GAP) 

architecture in the last network, which was used at the end of each ECG lead. In addition, the various 



contributions each ECG lead made to the final prediction were weighted by the attention mechanisms, which 

were used to visualise the importance of each ECG lead. 

 

Summary of the research interests, model comparison and statistical methods 

The research interests, model comparison and statistical methods in this study are summarised in detail in 

Supplementary Table 2. 

 

Supplementary Appendix 2. Results  

The baseline characteristics of the cohorts 

The characteristics and laboratory data are shown in Supplementary Table 3. Patients in the validation cohort 

were significantly older, had more comorbidities, had impaired estimated glomerular filtration rates and alanine 

aminotransferase, lower cTnI, and higher glucose and low-density lipoprotein cholesterol levels than those in 

the development cohort. The development/validation cohorts consisted of 860/191, 559/138, and 

109,904/30,432 STEMI, NSTEMI, and non-AMI ECGs, respectively. The LAD and RCA were the most 

commonly identified IRAs in STEMI. Patients with STEMI were more likely to be male, to be overweight, to 

have prior coronary artery disease (CAD), and to have higher cTnI and more impaired lipid profiles than those 

in the non-AMI group. Patients with NSTEMI were more likely to be male, be older and have prior CAD and 

more comorbidities, higher cardiac biomarkers, and more impaired lipid profiles than those in the non-AMI 

group.  

 

ECG lead-specific analysis 

The ECG lead-specific analyses for the detection of STEMI and the corresponding IRA are shown in 

Supplementary Figure 4. ECG leads were specifically analysed for the detection of STEMI in the hypothetical 

real world. Leads III, V2, aVL, and V3 demonstrated better performance than the other leads for the detection 

of STEMI, with the AUCs of 0.913, 0.913, 0.911, and 0.908, respectively. For the detection of the IRA of 

STEMI, lead-specific ROC curve analysis on the IRA of STEMI demonstrated that the best performances for 



the LAD were V4, V2, and V3 with AUCs of 0.970, 0.955, and 0.953, respectively, and those for the RCA were 

aVL, lead III, and aVF with AUCs of 0.995, 0.978, and 0.966, respectively. 

 

Discussion 

With the aid of the first recorded cTnI, the DLM exhibited an excellent diagnostic yield with an AUC of 0.978 

for NSTEMI detection, which was significantly better than those of the DLM or cTnI alone, with AUCs of 

0.877 and 0.949, respectively. The universal diagnosis of NSTEMI is derived from the clinical presentation, 12-

lead ECG, and cardiac troponin levels. To date, biomarker measurement for myocardial injury, preferably high-

sensitivity cardiac troponin, was mandatory in all patients with suspected NSTEMI due to its high sensitivity 

and specificity [4]. However, several concerns should be considered in current practice. First, the guidelines 

suggest that the second cardiac troponin assessment be performed 1-3 hours after the first blood test in 

unconfirmed cases. Repeated time-consuming laboratory tests might delay the diagnosis. Second, cardiac 

troponin levels might be perturbed in some clinical conditions other than AMI. Combined with the information 

of the first recorded cTnI, the DLM allows rapid and powerful NSTEMI detection in patients at high or very 

high risk. 

 

Regarding NSTEMI detection, DLM showed less sensitivity than the cardiologists. Several points should be 

clarified. Among the 58 NSTEMI ECGs unrecognised by the DLM, there were several atypical ECG 

presentations, including intraventricular conduction disorders, ventricular hypertrophy, poor R wave 

progression, or baseline variants. Even experienced cardiologists could not identify some of these ECGs. 

Moreover, overdiagnosis of NSTEMI by ECG is commonplace in clinical practice, which may partially explain 

the high sensitivity and low specificity of the performance of the physicians in this study. With the aid of the 

DLM with its high specificity in the detection of NSTEMI, physicians could exclude NSTEMI early, which 

reduced subsequent lab tests, ED observation time and guided physicians to differentiate it from other diagnoses 

unrelated to AMI. As a result, it was worthwhile to increase the ECG training data along with the first-record 

cTnI to enhance the capacity of the DLM in NSTEMI detection in the future. 



 

 

 

 

 

Supplementary Figure 1. Architecture of the DLM.  

A) Electrocardiography (ECG) lead block with 80 trainable layers.  

B) The DLM integrated all the information from the ECG leads to make an overall prediction. The bold and 

coloured words denote the output dimensions of the layers and the black words signify the important role for the 

layers. The model constant K was equal to 32 for all the dense blocks and pooling blocks.  

BN: batch normalisation; Conv: convolution; FC: fully connected; ReLU: rectified linear unit 

 



 



 

Supplementary Figure 2. Performance rankings of infarct-related artery detection of STEMI among DLM, 

physicians and the Philips algorithm in the human-machine competition.  

Global performance rankings based on the 6-class kappa values. V(X) denoted the (V) visiting staff with (X) 

years of experience. The infarct-related arteries of STEMI were classified into the LMCA, LAD, RCA and LCx. 

LAD: left anterior descending artery; LCx: left circumflex artery; LMCA: left main coronary artery; RCA: right 

coronary artery   



 

 

 

 

Supplementary Figure 3. Performance comparison for anterior (LAD), inferior (RCA), and combined anterior 

and inferior (LAD+RCA) STEMI detection in the human-machine competition.  

The area under the receiver operating characteristic curve (AUC) was generated by the prediction of the DLM. 

The triangles, the square and the diamond denote the cardiologists, the emergency physician and the Philips 

algorithm, respectively. 



 

 

 

Supplementary Figure 4. ECG lead-specific analyses for the detection of STEMI, STEMI-LAD and STEMI-

RCA.  

The receiver operating characteristic (ROC) curves with the specificity on the x-axis and the sensitivity on the 

y-axis were generated by the DLM for the detection of STEMI and the corresponding IRA in the revised 

proportion of the hypothetical real world (STEMI = 0.1%, NSTEMI = 0.2%, and non-AMI = 99.7%). The 

controls were the non-AMI samples.  

AUC: area under the ROC curve 

 

 



 

 

 

 

Supplementary Figure 5. Univariate and multivariate logistic regression analysis of STEMI, and NSTEMI in 

the development cohort.  

The controls in all analyses were non-AMI samples. The adjusted variables included gender, age, body mass 

index, and all disease histories. The continuous variables were standardised by the mean and standard deviation. 

The units of each continuous variable were one standard deviation. 

 



 

 

Supplementary Figure 6. Comparison of the diagnostic value among additional demographic variables, cTnI 

and DLM in the validation cohort.  

The receiver operating characteristic (ROC) curves were generated from the logistic regression analysis using 

the development cohort. Patient demographic variables to predict (5A) STEMI and (5B) NSTEMI included 

gender, age, BMI, CAD, eGFR, and Hb. (5A) DLM vs DLM + Demographics vs DLM + Demographics + cTnI, 

p=ns; DLM or DLM + Demographics or DLM + Demographics + cTnI vs Demographics, p<0.0001. (5B) DLM 

vs Demographics, p<0.05; DLM + Demographics + cTnI vs DLM + Demographics, p=0.08.  

AUC: area under the ROC curve 

 



 



 

Supplementary Figure 7. The test examples of the detection of STEMI equivalents by the DLM.  

STEMI equivalents including de Winter sign, Wellens’ syndrome, posterior wall MI, ST elevation in lead aVR 

with diffuse ST depression, hyperacute T-waves and ST elevation in the presence of bundle branch block. The 

prediction rate of STEMI in each example of STEMI equivalent ECG by the DLM is shown in each figure. 

  



 

 

 

 

Supplementary Figure 8. The test examples of the detection of high take-off T ECG by the DLM. High take-

off T ECG including hyperkalaemia, benign early repolarisation, left ventricular hypertrophy, and Brugada 

syndrome. The prediction rate of STEMI in each example of high take-off T ECG by the DLM is shown in each 

figure. 

 

 
  



 

 

Supplementary Table 1. The definitions of AMI, STEMI, NSTEMI, non-AMI and non-STEMI. 

 
Groups Definition and inclusion in this study 
AMI AMI included symptoms of myocardial ischaemia, the ECG presentation and the elevated cTnI (above the 99th 

percentile of the upper reference limit of healthy individuals), which included both STEMI and NSTEMI 
STEMI AMI patients with ST-segment elevation on ECG who were validated by CAG 
NSTEMI AMI patients without ST-segment elevation on ECG who were validated by CAG 
Non-AMI Patients with a normal cTnI series during an ED stay who had neither STEMI nor NSTEMI 
Non-STEMI NSTEMI and non-AMI 

AMI: acute myocardial infarction; CAG: coronary angiogram; cTnI: conventional cardiac troponin I; ECG: 12-lead 

electrocardiogram; ED: emergency department; NSTEMI: non-ST-segment elevation myocardial infarction; STEMI: ST-segment 

elevation myocardial infarction   

 
 
 
 
 
 
 
 
 
Supplementary Table 2. The research interests, model comparison and statistical methods. 

 
Figures Purpose Comparison Methods 

Figure 1 

 

To compare the performance between the 

DLM and physicians in detecting STEMI by 

ECGs in the human-machine competition. 

STEMI vs 

non-STEMI 

AUC-ROC curve, PRROC curve with 

sensitivity (recall), specificity, and positive 

predictive value (precision). 

Figure 2 To compare the performance of STEMI 

detection among the DLM, the physicians 

and the Philips algorithm. 

DLM vs physicians, 

Philips algorithm 

The performance (kappa value) and 

consistency analysis. 

Figure 4A 

 

To compare the performance of the DLM, 

cTnI and the DLM plus cTnI in detecting 

STEMI in the validation cohort 

STEMI vs 

non-AMI 

AUC-ROC curve. 

Figure 4B 

 

To compare the performance of the DLM, 

cTnI and the DLM plus cTnI in detecting 

NSTEMI in the validation cohort. 

NSTEMI vs 

non-AMI 

AUC-ROC curve. 

AMI: acute myocardial infarction; AUC-ROC: area under the receiver operating characteristic curve; CAG: coronary angiogram; 

cTnI: cardiac troponin I; DLM: deep learning model; ECG: 12-lead electrocardiogram; NSTEMI: non-ST-segment elevation 

myocardial infarction; STEMI: ST-segment elevation myocardial infarction 
 
 



 

Supplementary Table 3. Corresponding patient characteristics and laboratory results of STEMI, NSTEMI, and non-AMI ECGs in the development and validation cohorts. 

 Development cohort   Validation cohort   p-value# 

 STEMI 

(n=860) 

NSTEMI 

(n=559) 

non-AMI 

(n=109,904) 

p-value  STEMI 

(n=191) 

NSTEMI 

(n=138) 

non-AMI 

(n=30,432) 

p-value   

STEMI location             

STEMI-LMCA 21 (2.4%)     3 (1.6%)      

STEMI-LAD 420 (48.8%)     105 (55.0%)      

STEMI-LCx 87 (10.1%)     11 (5.8%)      

STEMI-RCA 332 (38.6%)     72 (37.7%)      

Gender (male) 688 (83.8%) 420 (76.2%) 55,453 (50.5%) <0.001  150 (82.9%) 84 (62.2%) 15,484 

(50.9%) 

<0.001  0.369 

Age (years) 61.8±13.8 64.3±13.8 60.9±19.6 <0.001  62.9±14.6 65.9±13.7 62.6±20.2 0.165  <0.001 

BMI (kg/m2) 25.9±4.5 24.4±3.9 24.5±8.8 0.009  26.9±4.7 25.0±4.9 24.5±6.0 0.043  0.575 

Disease history            

CAD 197 (24.0%) 188 (34.1%) 20,275 (18.4%) <0.001  133 (73.5%) 95 (70.4%) 7,439 (24.4%) <0.001  <0.001 

HF 50 (6.1%) 66 (12.0%) 8,099 (7.4%) <0.001  21 (11.6%) 33 (24.4%) 2,972 (9.8%) <0.001  <0.001 

DM 176 (21.4%) 187 (33.9%) 25,429 (23.1%) <0.001  39 (21.5%) 50 (37.0%) 7,675 (25.2%) 0.004  <0.001 

HTN 249 (30.3%) 243 (44.1%) 42,081 (38.3%) <0.001  67 (37.0%) 83 (61.5%) 14,177 

(46.6%) 

<0.001  <0.001 

CKD 68 (8.3%) 101 (18.3%) 9,929 (9.0%) <0.001  8 (4.4%) 26 (19.3%) 2,332 (7.7%) <0.001  <0.001 

Hyperlipidaemia 198 (24.1%) 219 (39.7%) 30,087 (27.4%) <0.001  34 (18.8%) 53 (39.3%) 8,579 (28.2%) <0.001  0.007 

COPD 85 (10.4%) 62 (11.3%) 21,600 (19.7%) <0.001  24 (13.3%) 19 (14.1%) 7,090 (23.3%) <0.001  <0.001 

Laboratory test            

Na (mEq/L) 137.3±3.2 136.9±3.6 136.6±4.5 <0.001  137.1±2.7 135.9±3.4 135.8±4.7 0.005  <0.001 

K (mEq/L) 3.9±0.6 4.0±0.6 3.9±0.5 0.006  3.8±0.5 4.0±0.6 3.9±0.5 0.008  0.211 

eGFR (mL/min) 74.2±26.3 63.8±30.7 82.5±37.0 <0.001  74.2±26.5 64.3±37.4 81.0±35.0 <0.001  <0.001 

Cr (mg/dl) 1.3±1.3 1.9±2.2 1.3±1.6 <0.001  1.3±0.9 2.3±2.6 1.2±1.3 <0.001  <0.001 

CK (ng/mL) 389.8±650.7 296.1±325.4 131.7±409.0 <0.001  348.9±597.0 252.5±310.7 122.5±306.9 <0.001  <0.001 

cTnI (ng/mL) 60.6±598.7 224.8±1,121.7 0.0±0.0 <0.001  4.8±16.6 2.7±6.5 0.0±0.0 <0.001  0.015 

WBC (103/ul) 11.1±3.6 8.8±3.0 8.9±4.5 <0.001  11.2±3.2 9.3±2.8 8.8±4.6 <0.001  0.125 

Hb (gm/dl) 14.6±1.9 13.2±2.4 12.9±2.3 <0.001  14.7±1.7 13.2±2.7 12.9±2.3 <0.001  0.120 

PLT (103/ul) 228.5±64.0 221.0±74.6 227.0±81.9 0.425  228.4±90.7 216.5±52.9 210.1±74.9 0.015  <0.001 

GLU (gm/dl) 193.9±85.3 219.4±126.3 198.7±114.8 0.631  166.0±13.1 215.8±85.5 241.1±128.5 0.462  <0.001 

AST (U/L) 54.0±85.3 45.6±104.5 32.6±81.3 <0.001  51.3±65.0 36.4±37.1 33.0±91.3 0.075  0.590 

ALT (U/L) 41.3±73.4 34.2±78.9 32.8±93.1 0.215  44.6±21.3 39.0±40.6 79.0±200.9 0.762  <0.001 

TC (gm/dl) 172.0±40.9 168.4±37.5 148.8±47.7 <0.001  173.6±36.8 162.8±38.3 147.6±48.0 <0.001  0.081 

LDL (gm/dl) 111.4±33.7 106.8±33.8 89.7±36.3 <0.001  116.4±33.2 103.2±28.0 95.9±38.2 <0.001  <0.001 

HDL (gm/dl) 38.7±9.0 39.2±9.4 41.2±14.4 <0.001  41.5±10.4 35.3±9.8 42.0±15.0 0.007  0.295 

TG (gm/dl) 153.4±148.7 137.0±73.4 118.0±127.8 <0.001  120.3±55.8 157.7±96.2 116.6±160.7 0.043  0.354 

# The hypothesis test between the development cohort and the validation cohort.   

ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; CAD: coronary artery disease; CK: creatine kinase; CKD: chronic kidney disease; 

COPD: chronic obstructive pulmonary disease; Cr: creatinine; cTnI: conventional cardiac troponin I; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; GLU: 

glucose; Hb: haemoglobin; HDL: high-density lipoprotein cholesterol; HF: heart failure; HTN: hypertension; K: potassium; LAD: left anterior descending artery; LCx: left 



circumflex artery; LDL: low-density lipoprotein cholesterol; LMCA: left main coronary artery; Na: sodium; PLT: platelet; RCA: right coronary artery; TC: total cholesterol; TG: 

triglyceride; WBC: white blood cell count  

 


