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Supplementary Fig. 1 Normalized relative abundance of each metagenome assembled genome (MAG) 
recovered from three different sites. (a) Normalized relative abundance of 2,994 MAGs recovered from 
Guaymas Basin samples. (b) Normalized relative abundance of 5,233 MAGs recovered from Bohai Sea 
samples. (c) Normalized relative abundance of 541 MAGs recovered from cold seep samples in South China 
Sea. Red lines are the normalized relative abundance of 30, 14, and 9 MAGs in this study. Dash line is the 
average relative abundance of all MAGs. Black dot represents the highest MAG abundance in the sampling 
site. Source data are provided as a Source Data file.  
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Supplementary Fig. 2 Average amino acid identity (AAI) of MAGs including these novel bacteria. 
Heatmap using pheatmap package in R based on AAI for each MAG pair. The neighboring phyla in the 
phylogenetic tree (as shown in Fig. 1) based on ribosomal protein marker genes were used as reference 
genomes in the heatmap to show the distinct AAI of five phyla compared to other genomes. Genome self-
comparisons are presented in blue. Source data are provided as a Source Data file. 
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Supplementary Fig. 3 Maximum likelihood phylogenetic tree of 16S rRNA genes in these novel bacteria. 
Sequences recovered from the MAGs in this study are shown in bold. The tree was generated using 
IQ_TREE v1.6.12. Source data are provided as a Source Data file.  
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Supplementary Fig. 4 Outline of in-house pipeline used to characterize novel protein families. The 
protein contents of 55 novel MAGs in this study were clustered based on similarity (30% as threshold).  
These proteins were then mapped against public databases to identify novel protein singletons/families. 
The identified novel protein singletons/families were mapped to the curated prokaryotic genomes to 
reconstruct genomic context and characterize the taxonomy.   
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Supplementary Fig. 5 Overview of the metabolic potential of the five newly described bacterial phyla. 
Within each color wheel, colored segments shown in grey and blank represent gene presence in over 50%, 
less than 50%, and gene absence, respectively, within a phylum. Red arrows indicate the enzymes/subunits 
that neighbor novel proteins (proteins without any homologues in current databases). The Rnf complex is 
highlighted in the red circle on the right side of the diagram to underscore the genomic co-localization of 
this complex with novel protein families. TCA: tricarboxylic acid. DMS: dimethyl sulfide. DMSO: dimethyl 
sulfoxide. OAS: O-acetyl-L-serine. 
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Supplementary Fig. 6 Characteristics of gene families and novel gene family clusters (marked in grey 
with a black outline) neighboring conserved known proteins. (a) Most of the clustered gene families are 
singleton in these five phyla. Novel families represent an important fraction of the gene clusters but show 
a limited number of genes. (b) Distribution of the number of genomes in which the novel gene families are 
detected shows most of the gene families are shared by less than 10 genomes, but could be up to 33 genomes. 
Singletons are not shown for data visualization. (c) Average number of copies of the novel gene families in 
the 61 bacterial genomes shows most of the gene families had less than three copies per genome, and the 
singletons are excluded for data visualization. (d) Among the collection of 169,642 genomes, most of the 
novel families are shared in less than 50 genomes, but could be over 4,000 genomes. Singletons are not 
shown for data visualization. (e) Average number of copies of the novel gene families in the 169,642 
bacterial genomes shows most of the gene families had less than three copies per genome, and the 
singletons are excluded for data visualization. (f) A novel gene family mainly detected in Arandabacterota 
and with conserved 16S rRNA methyltransferase (rsmH; K03438) and transcriptional regulator (mraZ; 
K03925) downstream, and a gene cluster related to peptidoglycan biosynthesis (ftsI; K03587, murE; K01928, 
murF; K01929, mraY; K01000, murD; K01925, ftsW; K03588, murG; K02563, murC; K01924, and murB; K00075) 
upstream. (g) A novel gene family mainly detected in AABM5 associated with F-type ATPase (atpI; K02116, 
atpB; K02108, atpE; K02110, atpF; K02109, atpH; K02113, atpA; K02111, atpG; K02115, atpD; K02112, and atpC; 
K02114). (h) A novel gene family only detected in Arandabacterota and associated with proteins related to 
sulfur assimilation (sat; K00958, alkP; COG3379, and cysC; K00860). (i) A novel gene cluster only detected 
in Blakebacterota, neighboring another novel gene, a NAD+ kinase (nadK; K00858), dxs (K01662), ispA 
(K13789), xseB (K03602), and xseA (K03601) downstream, and genes for fatty acid degradation (fadD; K01897) 
and pepP (K01262) upstream. Grey color denotes the protein without homologues in the current database. 
The phylogeny was constructed using FastTree2 and numbers on the top and bottom of the branch 
represent the bootstrap and branch length, respectively. Source data are provided as a Source Data file. 
  



C
E0

C
E1

C
E1

0
C

E1
1

C
E1

2
C

E1
4

C
E1

5
C

E2
C

E3
C

E4
C

E7

G
H

0
G

H
1

G
H

10
1

G
H

10
3

G
H

10
5

G
H

10
6

G
H

10
8

G
H

10
9

G
H

11
3

G
H

11
4

G
H

11
6

G
H

11
9

G
H

12
G

H
12

3
G

H
12

7
G

H
12

9
G

H
13

G
H

13
_1

0
G

H
13

_1
1

G
H

13
_1

3
G

H
13

_1
4

G
H

13
_1

6
G

H
13

_1
8

G
H

13
_2

0
G

H
13

_2
6

G
H

13
_3

G
H

13
_3

0
G

H
13

_3
6

G
H

13
_4

G
H

13
_9

G
H

13
0

G
H

13
3

G
H

14
0

G
H

14
2

G
H

14
3

G
H

14
4

G
H

14
9

G
H

15
G

H
15

6
G

H
15

8
G

H
16

G
H

16
3

G
H

16
5

G
H

17
G

H
18

G
H

19
G

H
2

G
H

20
G

H
23

G
H

26
G

H
27

G
H

28
G

H
29

G
H

3
G

H
31

G
H

32
G

H
33

G
H

36
G

H
37

G
H

38
G

H
39

G
H

4
G

H
43

G
H

43
_1

7
G

H
43

_1
8

G
H

43
_2

9
G

H
5

G
H

5_
26

G
H

5_
46

G
H

5_
48

G
H

5_
7

G
H

50
G

H
51

G
H

53
G

H
55

G
H

57
G

H
6

G
H

63
G

H
65

G
H

73
G

H
74

G
H

77
G

H
78

G
H

85
G

H
88

G
H

9
G

H
92

G
H

94
G

H
95

G
H

97
G

H
99

PL
1_

2
PL

11
PL

12
PL

12
_3

PL
15

PL
22 PL

9
PL

9_
2

< 25 25−50 50−75 > 75 2 4 6

Joyebacterota
(GB−CP14) (20)

AABM5 (12)

Arandabacterota
(GB−CP13) (11)

Blakebacterota
(GB−CP11) (11)

Orphanbacterota
(GB−CP12) (7)

Joyebacterota
(GB−CP14) (20)

AABM5 (12)

Arandabacterota
(GB−CP13) (11)

Orphanbacterota
(GB−CP12) (7)

Blakebacterota
(GB−CP11) (11)

b A C I M N P S T U

A0
8

A2
4A

A2
4B

A2
8B A3

1

C
01

A
C

01
B

C
10

C
11

A
C

25
C

26
C

40
C

44
C

56
C

69
C

82
A I0
4

I3
9

I5
1

I8
7

M
01

M
02

M
03

A
M

03
B

M
03

C
M

04
M

05
M

06
M

10
3

M
10

A
M

12
B

M
13

M
14

A
M

14
B

M
14

D
M

14
X

M
15

A
M

15
C

M
16

A
M

16
B

M
16

C
M

16
X

M
17

M
19

M
20

A
M

20
B

M
20

C
M

20
D

M
20

F
M

23
B

M
24

A
M

24
B

M
24

X
M

28
A

M
28

C
M

28
D

M
28

E
M

28
F

M
28

X
M

29
M

30
M

32
M

38
M

41
M

42
M

43
B

M
48

A
M

48
B

M
48

C
M

49
M

50
B

M
54

M
55

M
56

M
61

M
64

M
67

A
M

67
B

M
78

M
79

M
81

M
90

M
95

M
97

N
06 P0
1

S0
1A

S0
1B

S0
1C

S0
1D

S0
1E

S0
8A

S0
8B

S0
9A

S0
9B

S0
9C

S0
9D

S0
9X S1

0
S1

1
S1

2
S1

4
S1

5
S1

6
S2

4
S2

6A S3
3

S4
1A

S4
1B S4

5
S4

9A
S4

9B
S4

9C S5
1

S5
4

S5
5

S7
8

S8
5

T0
1B T0

2
T0

3

U
32

CE GH PLa

Agar Xylan Starch Mannan Cellulose Chitin Laminarin Pectin Percentage Copy Number:

Family

1 1

12

11 5

2

1 2 2 3

3

2 1 1 21 3 1

1

6

1 2

1

1

3

2

1

6

15

1

12

4

10

2

310

17

3

20

3

7

37

2

3

4

5

2



Supplementary Fig. 7 Carbohydrate-active enzymes (CAZyme) and peptidase encoded by MAGs in this 
study. (a) CAZymes, including carbohydrate esterase (CE), glycoside hydrolase (GH), and polysaccharide 
lyase (PL), identified in the five phyla. Substrates for each family are stacked on top. (b) Peptidases, 
classified as family aspartic (A), cysteine (C), unassigned inhibitors (I), metallo (M), asparagine (N), mixed 
(P), serine (S), threonine (T), and unknown (U) by the MEROPS database identified in five phyla. Colors 
filled in the circle denote the percentage of genomes within one phylum encode the gene. Sizes of the circle 
denote the average number of gene copies identified in the MAG within one phylum. Asterisk denotes the 
family identified with potential secretion signal, with a number on top of the circle representing the number 
of sequences identified with potential secretion signal using PSORTb v3.0. Numbers in brackets denote the 
total number of MAGs in each phylum. The cluster using pheatmap package in R is based on the 
normalized data considering the equal contribution by the percentage of MAG containing the enzyme and 
the average copy number per MAG in the phylum. Source data are provided as a Source Data file. 
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Supplementary Fig. 8 Maximum likelihood phylogenetic tree of genes associated with sulfur cycling. 
(a) A phylogenetic tree of the gene encoding for alpha subunit of dissimilatory sulfite reductase (DsrA). (b) 
A phylogenetic tree of the gene encoding for beta subunit of dissimilatory sulfite reductase (DsrB). (c) A 
phylogenetic tree of the gene encoding for sulfide-quinone reductase (SQR). One sequence recovered from 
genome M3-22_Bin_282 was annotated as sulfide-quinone reductase by Hidden Markov Model (HMM) 
profile-based annotation, but is phylogenetically close to flavocytochrome c sulfide dehydrogenase. 
Sequences recovered from the MAGs in this study are in bold. Source data are provided as a Source Data 
file.  
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Supplementary Fig. 9 Maximum likelihood phylogenetic tree of FeFe hydrogenases. FeFe hydrogenases 
identified in this study belong to types A3 and C1 as highlighted with a grey background. Bootstrap values 
≥ 80 are shown in circles. Source data are provided as a Source Data file. 
  



Supplementary Notes 
Phylogeny of five phyla and novel protein identification 
Based on the 37 concatenated marker genes, the 55 metagenome assembled genomes (MAGs) 
recovered in this study formed five groups. We included all the publicly available genomes, 
belonging to the phyla identified by GTDB-Tk, from NCBI by May, 2020. We further included the 
genomes which were reported previously. Our phylogenetic results indicate that the 55 newly 
reconstructed MAGs together with six MAGs from NCBI and IMG/M databases belong to four 
new phyla, which are designated Guaymas Basin Candidate Phylum (GB-CP) GB-CP11, GB-CP12, 
GB-CP13, and GB-CP14, and one poorly described phylum, Candidate division AABM5-125-24 
(AABM5 hereafter) (Fig. 1). We propose these four new phyla GB-CP11, GB-CP12, GB-CP13, and 
GB-CP14 be named “Blakebacterota”, “Orphanbacterota”, “Arandabacterota”, and 
“Joyebacterota”, respectively. The metabolic analyses were based on the 61 MAGs. When we 
analyzed the genomic context to search for novel proteins, we only used the 55 MAGs we 
recovered in this study. When we expanded the search against the collection of 169,642 bacterial 
and archaeal genomes, we further identified 19 genomes phylogenetically related to AABM5. 
Thus, the two novel protein families which are widely present in more than 70% of the AABM5 
genomes (31 curated AABM5 genomes) and rarely detected in the collection of 169,642 
prokaryotic genomes.  
 
Carbohydrate-active enzymes (CAZymes) 
All genomes within these five phyla have genes encoding for potential diverse CAZymes 
(Supplementary Fig. 7), enzymes related to breaking down different carbohydrates, which are 
further divided into five categories: Carbohydrate Esterases (CEs), Glycoside Hydrolases (GHs), 
Polysaccharide Lyases (PLs), Glycoside Transferases (GTs), and Carbohydrate-binding Modules 
(CBMs). These CAZymes are significant for the degradation of different types of carbohydrates, 
e.g., agar, xylan, starch, mannan, cellulose, chitin, laminarin, and pectin. Among ~5,400 genes 
classified as CAZymes in these five phyla, over 3,200 are classified as GT and CBM, 11, 91, and 8 
are identified as CE, GH, and PL families/subfamilies, respectively (Supplementary Data 11 and 
12). AABM5 has a wider range of diverse CAZymes with 59 families/subfamilies in CE, PL, and 
GH, while Joyebacterota has the least diversity of CAZymes with only 41 families/subfamilies. 
These five phyla share three and eight families of CE and GH, respectively. The types of 
CAZymes that are present in > 50% MAGs within a single phylum are similar across the five 
phyla, and mostly appear to be in more than one copy in the MAGs. All five phyla have phylum-
specific CAZyme families/subfamilies, compromising 49 out of 110. However, most of those 
phylum-specific families/subfamilies are only present in less than half of MAGs within that 
phylum, and with few copies. Specifically, for those types of CAZymes widely distributed only 
in the single group (> 50% MAGs), GH113 (β-mannanase) is only found in Orphanbacterota; 
GH127 (β-L-arabinofuranosidase) and GH142 (β-L-arabinofuranosidase) are only present in 



Blakebacterota; and PL1_2 (pectate and pectin lyase) is only found in Joyebacterota. Notably, 
Blakebacterota does not have genes encoding for PL. 

Based on the predicted localization of enzymes, 15 families/subfamily of CE, GH, and PL 
are predicted to be extracellular within the five phyla suggesting that complex substrates are 
degraded outside the cell and later taken up for consumption. The generated monosaccharide, 
e.g., glucose, could further support the metabolism of the cell through glycolysis and the 
tricarboxylic acid (TCA) cycle. These secreted CAZymes might contribute to the degradation of 
complex substrates, e.g., pectin, laminarin, agar, chitin, and xylan in the surrounding 
environments. The types of CAZymes with secretion signals in each group are different, even for 
the same substrate. Interestingly, none of the five phyla encodes the entire set of enzymes for the 
complete degradation of the complex substrate (Supplementary Data 10 and 11) suggesting 
handoffs of the degradation of complex substrates outside of the cell. However, only 36 sequences 
have the signal of extracellular potential among those identified ~2,200 CE, GH, and PL genes.  
 
Detrital proteins 
There are ~4,600 different peptidase-related sequences, including ~4,250 classified peptidase-like 
genes, ~250 peptidase inhibitor genes, and ~100 unclassified genes identified within these five 
phyla (Supplementary Data 13 and 14). Metallo and serine peptides are the most two diverse 
families in all the five phyla. Among the 117 classified families/subfamilies, 31 of them are found 
in all phyla, and many of them are present in more than 75% of MAGs in all the five phyla. 
Examples of conserved peptidases are: C26 (gamma-glutamyl hydrolase), that acts as an 
endopeptidase for substrates with gamma-linked glutamate bonds, such as folyl penta-gamma-
glutamate; C44 (amidophosphoribosyltransferase precursor), of which mature enzymes 
catalyzing the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) 
and glutamine; M23B (lysostaphin), an endopeptidase that lyse bacterial cell wall peptidoglycans; 
M38 (isoaspartyl dipeptidase); M41 (FtsH peptidase) and S16 (Lon-A peptidase), mostly are ATP-
dependent endopeptidases; I87, inhibiting FtsH and modulating the degradation of 
mistranslation products that disrupt membranes1, is encoded in more than four copies per MAG 
in all these five phyla (Supplementary Fig. 7). Orphanbacterota has 87 families of peptidases as 
the most diverse phylum, while Joyebacterota has 71 families which is the least diverse phylum. 
24 out of 122 classified families/subfamilies were exclusively found in a single phylum, and those 
unique families/subfamilies are mostly present in less than 50% MAGs in that phylum with fewer 
gene copy number than the rest of types of peptidases. In addition, none of genes in those unique 
families/subfamilies has the signal of secretion. 

A total of 185 genes, distributed in 14 families/subfamilies, appear to be potentially 
extracellular. The only extracellular family/subfamily consistently found in the five phyla is the 
serine endopeptidase subtilisin (S08A), widely distributed in eukaryotes and prokaryotes2,3. 
Blakebacterota, Orphanbacterota, and Arandabacterota have many potential genes identified as 



extracellular peptidases belonging to family M28 (subfamilies M28C, M28E, and M28F). These 
three subfamilies are mainly Streptomyces-type aminopeptidases and carboxypeptidases, 
releasing basic amino acids and C-terminal glutamates, respectively. Joyebacterota has different 
types of potential extracellular peptidase compared with other phyla. Joyebacterota has six 
sequences with signals of potential secretion belonging to family C01A (papain), a heat-resistant 
enzyme with an optimal temperature range of 60 to 70 °C4. This may highlight the significant role 
of Joyebacerota in the extracellular degradation of proteins in the hydrothermal vent area. 
 
Central metabolism 
Glycolysis: MAGs from Orphanbacterota, Arandabacterota, and Joyebacterota encode most of 
the key genes for glycolysis (Supplementary Fig. 5). Interestingly, the gene encoding for pyruvate 
kinase was not found in AABM5 and Blakebacterota, suggesting that these two phyla may not 
have the complete pathway of glycolysis for energy production. In addition, less than half of 
MAGs in Blakebacterota and Arandabacterota have genes encoding for triosephosphate 
isomerase, transforming dihydroxyacetone phosphate to glyceraldehyde 3-phosphate (GADP) 
for further glycolysis. None of the MAGs has genes encoding for glyceraldehyde-3-phosphate 
dehydrogenase, which suggests that the transformation of glyceraldehyde 3-phosphate to 3-
phosphoglycerate has to be a two-step process via 1,3-bisphosphoglycerate. Moreover, all phyla 
have the fructose-1,6-bisphosphatase and the phosphoenolpyruvate carboxykinase, a rate-
limiting enzyme in gluconeogenesis and catalyzing the oxydecarboxylation and phosphorylation 
of oxaloacetate5. (Supplementary Data 8 and 9). 
 
Pyruvate metabolism: Pyruvate could be converted to acetyl-CoA by different pathways 
(Supplementary Fig. 5). AABM5, Blakebacterota, and Orphanbacterota encode the pyruvate 
dehydrogenase complex. Except for Blakebacterota, the other four phyla have pyruvate 
ferredoxin oxidoreductase, catalyzing the oxidative decarboxylation of pyruvate to acetyl-CoA 
and CO26. In addition, all MAGs encode the gene for 2-oxoglutarate/2-oxoacid ferredoxin 
oxidoreductase, which exhibits a broad substrate specificity toward 2-oxoacids, and accepts 
multiple substrates, including 2-oxoglutarate, 2-oxobutanoate, and pyruvate to form acetyl-
CoA7,8, which could be further utilized for the oxidative TCA cycle. Joyebacterota MAGs encode 
genes for the cytochrome D-lactate dehydrogenase converting lactate to pyruvate. The direct 
formation of acetate from pyruvate through pyruvate dehydrogenase is missing in all the five 
phyla. Acetate still could be produced through acetyl-CoA or acetyl-phosphate. They have genes 
encoding alcohol dehydrogenase and acetaldehyde dehydrogenase (Supplementary Data 8 and 
9), suggesting they oxidize ethanol to acetaldehyde, and further convert acetaldehyde to acetyl-
CoA.  
 



Pentose phosphate pathway (PPP) and Galactose pathway: This pathway generates NADH, 
pentose, and ribose 5-phosphate for nucleotide and amino acid biosynthesis, and reduced 
molecules for anabolism (Supplementary Fig. 5). MAGs in Blakebacterota, and few MAGs in 
AABM5, Orphanbacterota, Arandabacterota, and Joyebacterota display both oxidative and non-
oxidative PPP, while the rest of MAGs only encodes the non-oxidative PPP. Few MAGs have the 
gene encoding for ribokinase, catalyzing the phosphorylation of ribose, while they are not those 
MAGs with the ribose ABC transporter. None of the MAGs has the entire pathway for galactose 
metabolism for galactose degradation, or ribulose monophosphate pathway for formaldehyde 
fixation and detoxification. 

 
Wood-Ljungdahl pathway (WLP): All five phyla have the partial WLP (Supplementary Fig. 5), 
one of the most ancient carbon fixation pathways9. Genes encoding formate dehydrogenase, 
transforming CO2 to formate, are not present in any of the five phyla MAGs. One MAG from each 
phylum (AABM5, Blakebacterota, Arandabacterota, and Joyebacterota) encodes formyl-
tetrahydrofolate (HCO-THF) synthase activating formate to formyl-H4F. All the five phyla are 
capable of further reducing formyl-THF to methyl-THF by the presence of folD and metF genes. 
Joyebacterota MAGs encode ccoF gene which is potentially involved in anaerobic CO 
oxidation10,11. AABM5 and Arandabacterota have most of the CO-dehydrogenase−acetyl-CoA-
synthase complex CODH/ACS, the key enzyme for the carbonyl branch for the WLP. However, 
all MAGs lack the enzyme CODH/ACS methyltransferase subunit, which is responsible for the 
transfer of the methyl moiety from methyl-THF to the corrinoid iron–sulfur protein (CFeSP) for 
acetyl-CoA synthesis.  
 The synthetic pathway for formate assimilation12, the reductive glycine pathway (rGlyP)12 
is found across MAGs from the five phyla. The glycine cleavage system (GCS), catalyzing the 
reversible conversion of CO2, methenyl-THF, and ammonia to glycine and tetrahydrofolate (THF), 
is annotated in all the five phyla. We explore the possibility of CO oxidation in these bacterial 
genomes, yet none of the MAG encode the three subunits of the coxLMS complex and only one 
MAG in Blakebacterota has the large subunit of aerobic CO dehydrogenase (coxL).  

 
TCA cycle: All the five phyla have the complete set of genes for the TCA cycle (Supplementary 
Fig. 5), though some MAGs lack few genes (Supplementary Data 8 and 9). Interestingly, none of 
the MAGs encode ATP-citrate lyase, and only very few genes encoding for fumarate reductase 
are annotated in the MAG suggesting that they could not fix carbon through the reductive TCA 
cycle. Previously described 2-oxoglutarate synthase, one of the three key enzymes for reductive 
direction of the TCA cycle13, in Helicobacteraceae14 participated in the oxidative TCA cycle. Thus 
the 2-oxoglutarate synthase in these five phyla may also participate in the oxidative TCA cycle as 
well.  

 



Electron transport chain (ETC): All the five phyla encode most of the components of the ETC 
(Supplementary Data 8 and 9). They all have the subunits for complex I and II. AABM5 and 
Orphanbacterota have F-type ATPase, while Arandabacterota and Joyebacterota have the V/A-
type ATPase. Notably, Blakebacterota only has some subunit for either F-type ATPase or V/A-
type ATPase. Arandabacterota and Joyebacterota appear to lack cytochrome oxidase suggesting 
an anaerobic lifestyle. Orphanbacterota, some Blakebacterota and AABM5 MAGs encode more 
than one type of cytochrome oxidase with different affinities for oxygen, e.g., cytochrome c 
oxidase, cytochrome cbb3 type oxidase and cytochrome bd ubiquinol oxidase, which indicates that 
they are aerobes and able to utilize oxygen at different concentrations efficiently. AABM5 and 
most MAGs in Blakebacterota only have the oxygen high-affinity ones, mainly cytochrome bd 
ubiquinol oxidase, suggesting that they may only use the oxygen as the electron acceptor 
efficiently when the oxygen concentration is low to scavenge oxygen as a way of protection rather 
than for energy production. 

Additionally, we identified the acetogenic type Rhodobacter nitrogen fixation (Rnf) 
electron transport complex in four among these five phyla (Blakebacterota, Orphanbacterota, 
Arandabacterota, and Joyebacterota) (Supplementary Fig. 5). This complex could serve as a 
respiratory enzyme that couples the reduction of NAD+ to oxidize reduced ferredoxin. The free 
energy of this exergonic reaction could be used to pump sodium ions or protons out of cells, 
thereby generating a potential gradient, which is further used for ATP synthesis. Those MAGs 
with Rnf complex genes only have partial WLP (see details in the WLP section), yet they all have 
the reductive glycine pathway (rGlyP) for formate assimilation.  

 
Lipids: Genes encoding for enzymes which are responsible for the transport, activation, and 
cleavage of fatty acids through beta oxidation15 are found in all phyla (e.g., genes encoding for 
acyl-CoA dehydrogenase and enoyl-CoA hydratase are commonly found in these five phyla). 
However, only two Orphanbacterota MAGs appear to have the complete pathway for beta 
oxidation (i.e., they encode for the 3-hydroxyacyl-CoA dehydrogenase and acetyl-CoA 
acyltransferase). This suggests a limited ability of fatty acid degradation in these five phyla. 
 
Amino acids: Different types of amino acids, including alanine, serine, asparagine, histidine, and 
lysine could be degraded via central metabolism (i.e., TCA cycle and pyruvate metabolism) which 
are also the key pathways for energy production in most phyla (Supplementary Fig. 5). In 
addition, genes encoding for glutamine synthetase, glutamate synthase, and glutamate 
dehydrogenase are commonly annotated in these five phyla suggesting active anabolic and 
catabolic metabolisms through glutamate, glutamine, and ammonium. However, all phyla lack 
the genes encoding key enzymes for the degradation of branched-chain amino acids and aromatic 
amino acids, e.g., valine, leucine, isoleucine, and tyrosine.  
 



Sulfur metabolism 
Marine sediments are active sites for sulfur and nitrogen cycling. Detailed genome-specific 
metabolic potential reveals that all these five phyla are capable of using different sulfur and 
nitrogen compounds as energy sources (Fig. 4). Most AABM5 MAGs and one Blakebacterota 
MAG encode sulfate adenylyltransferase (SAT), reversibly reducing sulfate to adenylyl sulfate 
(APS), and adenylylsulfate reductase (AprAB), reversibly reducing APS to sulfite. In addition, 
they also encode the quinone-modifying oxidoreductase gene (QmoABC) for the efficient electron 
delivery to adenylylsulfate reductase16. Most of the MAGs from Blakebacterota, Orphanbacterota, 
and Arandabacterota only have one copy of the sat gene, which reversibly reduces sulfate to APS. 
Most AABM5 MAGs, and some Blakebacterota, Orphanbacterota, and Arandabacterota MAGs 
encode dissimilatory sulfite reductase (DsrAB) (Supplementary Data 15). Based on their 
phylogenetic position, they are reductive type sulfite reductase (Supplementary Fig. 8). Based on 
their metabolic repertoire, only AABM5 MAGs encode the entire pathway for dissimilatory 
sulfate reduction to H2S. Most MAGs in Blakebacterota, and only few Orphanbacterota and 
Arandabacterota MAGs display a partial pathway for dissimilatory sulfate reduction. 
Interestingly, it seems that these bacteria from Guaymas Basin have more tendency to reduce 
sulfate than those from the Bohai Sea, e.g., MAGs in Blakebacterota and AABM5, though the 
sulfate concentration in the Bohai Sea sediment could be over 1,000 mg/kg17. There are frequent 
horizontal gene transfer events (HGT) for dsrAB genes18. The closely related DsrAB sequences to 
Blakebacterota and AABM5 belong to different taxonomic groups, suggesting they were 
transferred. Moreover, the acquisition of dsrAB genes in these five phyla is more fundamental in 
the hydrothermal sediment than the coastal sediment, despite that the sulfate-reducing bacteria, 
e.g., Desulfobulbus and Desulfotignum, were abundant in the coastal sediment17. MAGs encoding 
sulfate-reduction associated genes also encode hydrogenases, e.g., MvhADG complex in AABM5 
MAGs and HndD, the catalytic subunit of NADP-reducing hydrogenase, in few Blakebacterota 
MAGs, suggesting the coupling of hydrogen oxidation with sulfite reduction. 

Many genomes contain sulfate assimilation genes. For example, AABM5, 
Orphanbacterota, Arandabacterota, and Joyebacterota MAGs encode adenylylsulfate kinase 
(CysC), converting APS to 3'-phosphoadenylyl sulfate (PAPS). AABM5 and Orphanbacterota also 
have 3'(2'),5'-bisphosphate nucleotidase (SAL) to hydrolyse PAPS to APS. Two Orphanbacterota 
MAGs (BHB10-2_Bin_362 and LQ108M_Bin_12) encode phosphoadenosine 5'-phosphosulfate 
reductase (CysH) and sulfite reductase (ferredoxin) (SIR) which produces sulfite from PAPS 
using thioredoxin as an electron donor19 and reduces sulfite to H2S for assimilation20, respectively.  

Less than half of the MAGs in each phylum encode partial thiosulfate reductase (PhsABC), 
tetrathionate reductase (TtrABC), and anaerobic sulfite reductase (AsrABC), yet none of MAGs 
encode the complete known metabolic pathways (Supplementary Data 8 and 9). More than 50% 
AABM5, Orphanbacterota, and Arandabacterota MAGs, and close to 50% Joyebacterota MAGs 
have homologs to eukaryotic thiosulfate/3-mercaptopyruvate sulfurtransferase (TST)21, which 



could transfer thiosulfate and cyanide to sulfite and thiocyanate. One MAG from AABM5, 
Blakebacterota, and two Orphanbacterota MAGs display genes encoding for sulfhydrogenase I 
complex (HydADGB)22, along with NADPH-dependent hydrogen-evolving hydrogenase 
(HydAD) with sulfur reducing activity (HydGB). Most Arandabacterota and Joyebacterota 
MAGs only have the genes encoding for the two subunits with the activity of sulfur reductase 
(HydGB), reducing sulfur or polysulfide to H2S. 

Genes encoding for sulfide:quinone oxidoreductase (SQR), are observed in Blakebacterota, 
Orphanbacterota, Arandabacterota, and Joyebacterota. SQR is present in more than 50% 
Blakebacterota MAGs suggesting a chemolithoheterotrophic lifestyle by harvesting energy from 
sulfide oxidation. Four Joyebacterota MAGs have two sqr genes belonging to Type III and I 
(Supplementary Fig. 8), which are common for sulfur bacteria23. SQR in Arandabacterota and 
Blakebacterota MAGs belong to type III, and only one Orphanbacterota MAG encodes one Type 
I SQR. Most MAGs encoding SQR were from Guaymas Basin samples. Additionally, one 
annotated SQR from the Orphanbacterota MAG is proved to be flavocytochrome c sulfide 
dehydrogenase (FCSD), oxidizing H2S through cytochrome c, based on the phylogenetic tree 
(Supplementary Fig. 8). Blakebacterota is probably capable of oxidizing thiosulfate to 
tetrathionate since most of the MAGs encode thiosulfate dehydrogenase (DoxD). Only two 
Arandabacterota MAGs have soxB genes, yet lacking the rest of the components of the SOX 
pathway. Furthermore, all the groups lack the complete set of genes encoding for sulfite 
dehydrogenase (SoeABC/SorAB) and sulfite oxidase (SUOX). 
  Exploring the assimilation of organic sulfur compounds in these four groups, we found 
that all of them lack the full set of dmsABC genes reducing dimethyl sulfoxide (DMSO) to 
dimethyl sulfide (DMS). One MAG from Blakebacterota and Orphanbacterota could methylate 
L-methionine or methanethiol (MeSH) to yield DMS with methanethiol S-methyltransferase (via 
MddA) under oxic conditions. Interestingly, two Blakebacterota MAGs display ssuE gene 
encoding for FMN reductase, but the missing for ssuD, encoding for alkanesulfonate 
monooxygenase, and sulfonate transport system (SsuABC) indicating that they probably are not 
capable of reducing alkane sulfonate. Except for AABM5, most MAGs have genes encoding for 
peptide methionine sulfoxide reductases (MsrA/MsrB/MsrP). These enzymes play an essential 
role in preventing oxidative-stress damage caused by reactive oxygen species by reducing the 
oxidized form of methionine thereby reactivating damaged peptides24. Except for AABM5, most 
MAGs encode sulfatase, capable of cleaving sulfate ester bonds from a wide variety of substrates, 
as a source of sulfur and carbon via organic sulfate degradation25. These sulfatases are involved 
in the regulation of the sulfation states that provide different functions, e.g., osmoprotection26 and 
pathogenic processes27.  

Most AABM5 MAGs encode the sulfate permease, while it is observed in only a few 
Orphanbacterota, Arandabacterota MAGs. In addition, only one AABM5 MAG has most genes 



encoding for sulfate/thiosulfate transport system (CysAUWP), except that the subunit CysP is 
missing, which is required for sulfate/thiosulfate ABC transporter28. 
 
Nitrogen metabolism  
These five phyla encode both the oxidative and reductive pathways of the nitrogen cycle 
(Supplementary Fig. 5). Most of the MAGs in these five phyla encode genes for glutamine 
synthetase and glutamate dehydrogenase for ammonia assimilation. The gene encoding for 
glutaminase, converting glutamine to glutamate, is annotated in all five phyla. With exception of 
two Arandabacterota MAGs, all five phyla display hao genes encoding for hydroxylamine 
dehydrogenase oxidizing hydroxylamine to nitric oxide. However, the genes encoding for 
ammonia monooxygenase, oxidizing ammonia to hydroxylamine, are missing in all MAGs. 
Genes encoding for carbamate kinase (ArcC), which catalyze the reversible formation of ATP and 
cambamte with carbamoyl phosphate and ADP, are found in most MAGs. However, none of 
them display genes encoding for carbamoyl phosphate synthetase, catalyzing the ATP-
dependent synthesis of carbamoyl phosphate from glutamine or ammonia and bicarbonate. 

Only few genes encoding for nitrate/nitrite or ammonium transporter are observed in 
some MAGs from AABM5, Blakebacterota, and Orphanbacterota (Supplementary Data 8 and 9). 
The cytoplasmic assimilatory nitrate reductase genes are not observed in any MAG. Few MAGs 
in Blakebacterota and Orphanbacterota have genes encoding for the major components of 
membrane-bound nitrate reductase, which could contribute to the generation of ATP by proton 
motive force. In addition, more than half of the Orphanbacterota MAGs have genes for 
periplasmic nitrate reductase, which would not create a proton gradient. Over 50% 
Blakebacterota MAGs encode the nitrous oxide reductase complex (NosZDFYLR), including the 
catalytic subunit, accessory protein, and transporters. Blakebacterota may be capable of oxidizing 
nitrous oxide, a product of incomplete denitrification or nitrification in sediments to nitrogen gas 
(Supplementary Data 8 and 9). Few AABM5 and Arandabacterota MAGs have genes for 
periplasmic dissimilatory nitrite reduction (NrfAH). Half of Joyebacterota MAGs, and less than 
half in the other four phyla have genes encoding for the large subunit of the assimilatory nitrite 
reductase. MAGs in AABM5 and Blakebacterota have genes encoding for nitronate 
monooxygenase, oxidizing alkyl nitronate with oxygen to nitrite. 
 
Hydrogen metabolism 
Hydrogen production or consumption through hydrogenase is thought to be crucial in energy 
cycling in both coastal and hydrothermal environments29,30. All of these five phyla have different 
types of hydrogenases indicating the diverse hydrogen metabolism which could supply 
intracellular reducing equivalents to further couple different metabolic pathways in these 
bacteria31,32. Most of the hydrogenases are found from hydrothermal sediments and cold seep 
sediments, especially that [FeFe] hydrogenases are only found in the Guaymas Basin samples in 



this study. The phylogenetic position of each type of hydrogenase is consistent with the 
phylogeny of these five phyla (Fig. 3 and Supplementary Fig. 9). 

F420-non-reducing hydrogenase (MvhADG), belonging to type 3c [NiFe] hydrogenase, is 
distributed in all these five phyla, especially that in more than half MAGs in Arandabacterota 
and close to half MAGs in Joyebacterota. This F420-non-reducing hydrogenase provides reducing 
equivalents to the heterodisulfide reductase without reacting with F420, i.e., transporting electrons 
using H2 as electron donor33. The bidirectional and oxygen-tolerant NADPH-dependent 
hydrogen-evolving hydrogenase within sulfhydrogenase complex I (see Sulfur metabolism 
section), belongs to type 3b [NiFe] hydrogenase, and is distributed mainly in Orphanbacterota 
and one MAG in Blakebacterota and AABM5 (Supplementary Data 8 and 9). They could reduce 
polysulfide to hydrogen sulfide22, oxidize H2 using NADP+ as the electron acceptor34, and could 
also produce H2 with NADPH as the electron donor when the S0 is absent during carbohydrate 
fermentation35. The members of this hydrogenase in this study are phylogenetically distant with 
each other (Fig. 3) despite four of the six MAGs belonging to Orphanbacterota, indicating the 
horizontal gene transfer of this type 3b [NiFe] hydrogenase may be more frequent than the other 
types of hydrogenase. 

None of the type 4g [NiFe] hydrogenase have been biochemically characterized, but they 
are generally described as to membrane-bound hydrogenases coupling the formation of H2 from 
reduced ferredoxin or CO, and H+ or Na+ translocation that allow for energy-generation by 
establishing ion gradients over the membrane36–38. Three sub-types of catalytic subunit of 
hydrogenase are classified as type 4g [NiFe] hydrogenase based on the annotation within phyla 
AABM5, Arandabacterota, and Joyebacterota: (i) membrane-bound hydrogenase (MbhL) is 
present in over 50% Arandabacterota MAGs, close to 50% Joyebacterota MAGs, and one AABM5 
MAG. This hydrogenase is a redox driven ion pump that generates a proton motive force from 
H+ reduction coupled to electrons derived from ferredoxin oxidation39; (ii) the hydrogenase 
component (HycE) in membrane-bound formate hydrogenlyase complex is present in close to 50% 
Joyebacterota MAGs and one Orphanbacterota MAG. This hydrogenase uses electrons derived 
from formate oxidation during glucose fermentation to reduce protons and release CO2 and H240; 
(iii) the catalytic subunit of ech hydrogenase complex (EchE) is present in three Joyebacterota 
MAGs and one Arandabacterota MAG. This ech hydrogenase is the potential respiratory enzyme 
oxidizing ferredoxin or CO, during which H2 and a transmembrane electrochemical ion gradient 
are formed for energy conservation in methanogenesis and carbon fixation38,41. It may also 
reversely serve as the source of reduced ferredoxin using H2 as the electron donor42. Overall, these 
sequences of type 4g [NiFe] hydrogenase formed three monophyletic groups consistent with the 
phylogenetic position, and close to a hydrogenase from phylum Thermotogae. However, these 
three sub-types of type 4g [NiFe] hydrogenase could not be distinguished based on the 
phylogenetic position (Fig. 3). 



Type A3 [FeFe] hydrogenase (HndD), that reversibly bifurcates electrons from H2 to 
ferredoxin and NAD37, was found in AABM5 and Blakebacterota. Type C1 [FeFe] ferredoxin 
hydrogenase, which serves as H2-sensors, was found to be present in Joyebacterota.  

 
Mercury, selenium, and arsenic metabolism 
Submarine hydrothermal systems are important natural sources of mercury (Hg)43. Hg resisting 
microorganisms are widely distributed in deep sea hydrothermal vents and in terrestrial 
geothermal springs30,44. Longqi Hydrothermal vent, in the Southwest Indian Ridge, is commonly 
associated with massive sulfides and Hg45. Metabolic reconstructions suggest that a MAG in 
Orphanbacterota (LQ108M_Bin_12) is capable of transporting mercury into cytoplasm, and 
reducing extremely toxic Hg2+ to metallic Hg046 with mercuric transport protein (MerT), MerR 
family transcriptional regulator (MerR), and mercuric reductase (MerA), which indicate that 
Orphanbacterota is potentially involved in mercury detoxification47. 

Selenium could exist in both organic and inorganic with different oxidation states in 
marine sediments48, and selenocysteine is the 21st amino acid49. MAGs from both coastal 
sediments and hydrothermal vent sediments have genes for mobilization of organic selenium. 
Some AABM5, Blakebacterota, and Orphanbacterota MAGs have the gene encoding for the 
putative selenate reductase (YgfK)50, yet the entire complex (YgfKM and XdhD) was found to be 
incomplete in all the MAGs (Supplementary Data 8 and 9). All groups have the gene encoding 
for selenide water dikinase (SelD) catalyzing selenide with ATP to selenophosphate51, the 
selenium donor for the selenocysteinyl-tRNA (Sec) with L-seryl-tRNA (Ser) selenium transferase 
(SelA)52, which is further utilized for protein biosynthesis. The selenocysteine could be 
decomposed into selenide and alanine with cysteine desulfurase/selenocysteine lyase (SufS)53, 
and this pathway is mainly observed in Blakebacterota and Orphanbacterota. The cystathionine 
gamma-synthase (MetB), which is also important for sulfur cycling, could also use selenocysteine 
as the substrate to form selenocystathionine. The transaminase (CCBL), rarely annotated in 
Arandabacterota and Joyebacterota could transform the selenocystathionine into 
selenohomocysteine. Most MAGs in all five phyla have the gene encoding for 5-
methyltetrahydrofolate homocysteine methyltransferase (MetH), which also transfers a methyl 
to selenohomocysteine to form selenomethionine. The formed selenomethionine could be further 
transformed into methaneselenol with methionine-gamma lyase in AABM5, Blakebacterota, and 
Orphanbacterota MAGs. The selenomethionine could be further incorporated into 
selenomethionyl-tRNA (Met) with methionyl-tRNA synthetase (MetG)54, which is further utilized 
for protein biosynthesis. These MAGs seem to have the pathway to synthesize selenium protein 
from selenide through the selenocysteinyl-tRNA (Sec) or the selenomethionyl-tRNA (Met). 
Meanwhile, selenium could also be released into selenide from selenocysteine during the 
biosynthesis. 



Arsenate and arsenite are the two dominant formats of inorganic arsenic in marine 
environments55. They induce toxicity by blocking general cell metabolism56. All these five phyla 
have genes for the arsenic detoxification system. MAGs in all five phyla, though less than half 
MAGs in Arandabacterota, and Joyebacterota, are capable of reducing arsenate to arsenite via 
arsenate reductase (ArsC) through thioredoxin57. Even though arsenite is more toxic than arsenate, 
arsenite could be extruded from the cell by arsenite transporter (ArsAB) or transformed to methyl 
arsonate, less toxic than the inorganic format58 by arsenite methyltransferase (AS3MT). The ArsC 
could also be a potential pathway for energy production by using arsenate as the terminal 
electron acceptor with sulfide or lactate as the electron donor59,60, rather than merely a way of 
detoxification. 
  
Active interaction with environments 
All the five phyla have genes encoding for diverse transport systems including the importers for 
different substrates from small ions to large proteins for energy conservation. They also display 
exporters for detoxification or resistance of antibiotics, indicating an active exchange with the 
surrounding environments. A putative ATP-binding cassette (ABC) multiple sugar transport 
system is annotated in all five phyla (Supplementary Fig. 5), especially in most MAGs in 
Orphanbacterota, Arandabacterota, and Joyebacterota. Interestingly, the ABC transporter for 
specific oligosaccharide is rare, for example the specific transporter for the maltose, cellobiose, 
lactose, xylobiose, and etc., are missing in all phyla. The general nucleoside transport system 
(NupABC), transporting all common nucleosides across the membrane61, is annotated in most 
MAGs in Orphanbacterota, Arandabacterota, and Joyebacterota. In addition, the ribose 
transporter is found in a few MAGs in AABM5 and Blakebacterota. Interestingly, the transporter 
for the rest monosaccharide, e.g., glucose, arabinose, galactose, xylose, and fucose are missing in 
all MAGs within the five phyla. Furthermore, very few genes related to the phosphotransferase 
system are annotated. Thus, we suggest the uptake of carbohydrates from the environment in 
these phyla is through the putative ABC multiple sugar transport system. The peptide could also 
be transported into the cell through the peptide/nickel transport system as the additional source 
of organic carbon. 
 All the five phyla have the genes encoding for the lipopolysaccharide biosynthesis and 
phospholipid transport system (Supplementary Data 8 and 9), which preserves outer membrane 
lipid asymmetry by the reverse transport of phospholipids from the outer membrane to the inner 
membrane62, suggesting they are gram-negative bacteria. Transporters for the other important 
elements for life, including molybdate, tungstate, phosphate, iron, manganese, cobalt, sodium, 
and zinc are identified in MAGs. Besides those ABC transporters, several MAGs have genes 
encoding for the multidrug resistance protein, heavy metal efflux system, and several antibiotic 
resistance proteins, indicating these bacteria may have the ability to resist antibiotics or heavy 
metals in the environment. 



 
Description of novel taxa 
Candidatus Blakebacterota (Bla.ke. N.L. neut. bacteria; N.L. neut. n. Blakebacterota a bacteria 
named after Dr. Ruth Blake). Type species: Candidatus Blakebacterum guaymasense. 
Candidatus Blakebacterum guaymasense (gu.a.y.ma.sen’se N.L. neut. adj. pertaining to 
Guaymas Basin, Mexico). This uncultured lineage is represented by the genome 
“Meg22_46_Bin_213” consisting of 3.09 Mbps in 527 contigs with an estimated completeness of 
89.0%, an estimated contamination of 6.6%. The MAG was recovered from Guaymas Basin 
sediment from 4-6 cm at station Meg22. 
Candidatus Blakebacteraceae (Bla.ke.bac.te.ra.ce’ae. N.L. neut. n. Blakebacterum, Candidatus 
generic name; -aceae ending to denote the family; N.L. fem. pl. n. Blakebacteraceae, the 
Blakebacterum family). 
The family is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Blakebacterum. 
Candidatus Blakebacterales (Bla.ke.bac.te.ra’les. N.L. neut. n. Blakebacterum, Candidatus 
generic name; -ales ending to denote the order; N.L. fem. pl. n. Blakebacterales, the 
Blakebacterum order). 
The order is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Blakebacterum. 
Candidatus Blakebacteria (Bla.ke.bac.te’ri.a. N.L. neut. n. Blakebacterum, Candidatus generic 
name; -ia ending to denote the class; N.L. fem. pl. n. Blakebacteria, the Blakebacterum class). 
The class is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Blakebacterum. 
Candidatus Blakebcterota (Bla.ke.bac.te.ro’ta. N.L. neut. n. Blakebacterum, Candidatus generic 
name; -ota ending to denote the phylum; N.L. fem. pl. n. Blakebacterota, the Blakebacterum 
phylum). 
The phylum is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Blakebacterum. 
 
Candidatus Orphanbacterota (Or.phan. N.L. neut. bacteria; N.L. neut. n. Orphanbacterota a 
bacteria named after Dr. Victoria Orphan). Type species: Candidatus Orphanbacterum 
longqiense. 
Candidatus Orphanbacterum longqiense (lon.gqi.en’se N.L. neut. adj. pertaining to Longqi 
hydrothermal vent area in Southwest Indian Ocean). This uncultured lineage is represented by 
the genome “LQ108M_Bin_12” consisting of 4.88 Mbps in 49 contigs with an estimated 
completeness of 97.8%, an estimated contamination of 1.1%. The MAG was recovered from 
microbiome in Longqi hydrothermal vent area in Southwest Indian Ocean. 



Candidatus Orphanbacteraceae (Or.phan.bac.te.ra.ce’ae. N.L. neut. n. Orphanbacterum, 
Candidatus generic name; -aceae ending to denote the family; N.L. fem. pl. n. Orphanbacteraceae, 
the Orphanbacterum family). 
The family is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Orphanbacterum. 
Candidatus Orphanbacterales (Or.phan.bac.te.ra’les. N.L. neut. n. Orphanbacterum, Candidatus 
generic name; -ales ending to denote the order; N.L. fem. pl. n. Orphanbacterales, the 
Orphanbacterum order). 
The order is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Orphanbacterum. 
Candidatus Orphanbacteria (Or.phan.bac.te’ri.a. N.L. neut. n. Orphanbacterum, Candidatus 
generic name; -ia ending to denote the class; N.L. fem. pl. n. Orphanbacteria, the Orphanbacterum 
class). 
The class is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Orphanbacterum. 
Candidatus Orphanbcterota (Or.phan.bac.te.ro’ta. N.L. neut. n. Orphanbacterum, Candidatus 
generic name; -ota ending to denote the phylum; N.L. fem. pl. n. Orphanbacterota, the 
Orphanbacterum phylum). 
The phylum is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Orphanbacterum. 
 
Candidatus Arandabacterota (A.ran.da. N.L. neut. bacteria; N.L. neut. n. Arandabacterota a 
bacteria named after Dr. Raquel Negrete-Aranda). Type species: Candidatus Arandabacterum 
bohaiense. 
Candidatus Arandabacterum bohaiense (bo.ha.i.en’se N.L. neut. adj. pertaining to Bohai Sea, 
China). This uncultured lineage is represented by the genome “M3_30_Bin_374” consisting of 
3.32 Mbps in 198 contigs with an estimated completeness of 92.2%, an estimated contamination 
of 2.3%. The MAG was recovered from Bohai Sea sediment from 28-30 cm at station M3. 
Candidatus Arandabacteraceae (A.ran.da.bac.te.ra.ce’ae. N.L. neut. n. Arandabacterum, 
Candidatus generic name; -aceae ending to denote the family; N.L. fem. pl. n. Arandabacteraceae, 
the Arandabacterum family). 
The family is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Arandabacterum. 
Candidatus Arandabacterales (A.ran.da.bac.te.ra’les. N.L. neut. n. Arandabacterum, Candidatus 
generic name; -ales ending to denote the order; N.L. fem. pl. n. Arandabacterales, the 
Arandabacterum order). 
The order is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Arandabacterum. 



Candidatus Arandabacteria (A.ran.da.bac.te’ri.a. N.L. neut. n. Arandabacterum, Candidatus 
generic name; -ia ending to denote the class; N.L. fem. pl. n. Arandabacteria, the Arandabacterum 
class). 
The class is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Arandabacterum. 
Candidatus Arandabcterota (A.ran.da.bac.te.ro’ta. N.L. neut. n. Arandabacterum, Candidatus 
generic name; -ota ending to denote the phylum; N.L. fem. pl. n. Arandabacterota, the 
Arandabacterum phylum). 
The phylum is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Arandabacterum. 
 
Candidatus Joyebacterota (Jo.y.e. N.L. neut. bacteria; N.L. neut. n. Joyebacterota a bacteria 
named after Dr. Samantha Joye). Type species: Candidatus Joyebacterum haimaense. 
Candidatus Joyebacterum haimaense (ha.i.maen’se N.L. neut. adj. pertaining to Haima cold seep 
in South China Sea, China). This uncultured lineage is represented by the genome “SY70-5-
12_Bin_1” consisting of 2.91 Mbps in 231 contigs with an estimated completeness of 98.9%, an 
estimated contamination of 4.9%. The MAG was recovered from South China Sea sediment from 
22-24 cm at station SY70. 
Candidatus Joyebacteraceae (Jo.y.e.bac.te.ra.ce’ae. N.L. neut. n. Joyebacterum, Candidatus 
generic name; -aceae ending to denote the family; N.L. fem. pl. n. Joyebacteraceae, the 
Joyebacterum family). 
The family is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Joyebacterum. 
Candidatus Joyebacterales (Jo.y.e.bac.te.ra’les. N.L. neut. n. Joyebacterum, Candidatus generic 
name; -ales ending to denote the order; N.L. fem. pl. n. Joyebacterales, the Joyebacterum order). 
The order is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Joyebacterum. 
Candidatus Joyebacteria (Jo.y.e.bac.te’ri.a. N.L. neut. n. Joyebacterum, Candidatus generic name; 
-ia ending to denote the class; N.L. fem. pl. n. Joyebacteria, the Joyebacterum class). 
The class is described based on a 37 concatenated conserved marker gene phylogeny. Type genus 
is Candidatus Joyebacterum. 
Candidatus Joyebcterota (Jo.y.e.bac.te.ro’ta. N.L. neut. n. Joyebacterum, Candidatus generic 
name; -ota ending to denote the phylum; N.L. fem. pl. n. Joybacterota, the Joyebacterum phylum). 
The phylum is described based on a 37 concatenated conserved marker gene phylogeny. Type 
genus is Candidatus Joyebacterum. 
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