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Appendix Figure S1: Colocalization analysis of LDHA/LDHB and CAIX/LDHA staining
(Extended data Figure 1)

A. Same images as in Figure 1 were used in the colocalization analysis, by extracting pixel values
along the dashed lines. Scale bar: 50 pm. The graphs (middle panels) represent intensity values of
LDHB (red) and LDHA (green) staining in P3 tumor in the 3 different areas (corpus callosum, core,
and periphery), using Fiji software. In the right panels, a Log,FoldChance = 0 means that LDHA and
LDHB are similarly expressed, and when different from 0, the expression is stronger for one of the
two proteins.

B. Immunostaining of CAIX (red) and LDHA (green) were performed from P3 tumor and images
were taken from the core, the periphery and invasive (corpus callosum) area. DAPI was used for
nuclear staining (blue). Scale bar: 50 um. The graphs represent intensity values of CA9 (red) and
LDHA (green) staining in P3 tumor in the 3 different areas (corpus callosum, core, and periphery),
using Fiji software. In the right panels, a Log;FoldChance = 0 means that LDHA and CA9 are

similarly expressed, and when different from 0, the expression is stronger for one of the two proteins.
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Appendix Figure S2: Expression of LDHA and LDHB in publicly available databases (Extended
data Figure 1)

A. Correlation between gene expression of LDHA and LDHB and cell localization based on single
cell RNA sequencing data extracted from Darmanis et al.(Darmanis et al., 2017) (1010 tumor cells and
62 periphery cells).

B. LDHA and LDHB gene expression relative to HIF1A gene expression according to their anatomical
origin (data extracted from Ivy Glioblastoma Atlas Project). LE, Leading Edge; IT, Infiltrating Tumor;
CT, Cellular Tumor; CTpan, Cellular Tumor pseudopalisading cells around necrosis; CTmvp, Cellular
Tumor microvascular proliferation.

C, D. Survival analysis based on LDHA (left) or LDHB (right) gene expression level in glioblastoma

(C) and on low grade gliomas (D). Data were extracted from TCGA.
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Appendix Figure S3: Metabolic tracing using [“C;|lactate with malate-aspartate shuttle
inhibitor cycloserine (Extended data Figure 2I)

P3 cells, pretreated during 24 h with 50 uM of cycloserine, were infused during 0, 1, 2, 4, 6 and 24 h
with [*Cs]lactate at a concentration of 5 mM. Metabolites from cell extracts (endometabolome) or cell
medium (exometabolome, red lines) measured by liquid chromatography-mass spectrometry (n = 3
independent cell dishes for each condition). Metabolite abundance of some intermediates of metabolic
pathway of interest, data are represented as mean + s.d. Quantification of the [*Cs]lactate carbon
incorporation into intermediates of the carbon metabolism (isotopologue contribution), data are
represented as mean. m+0 stands for the fraction of metabolite without *Carbon and m+n (n > 0)

stands for fraction of metabolite with n *Carbon. The sum of (m+0, m+1,..., m+10,.. .) equals to 1.
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Appendix Figure S4: Detailed metabolograms (Extended data Figure 4C)

Circular metabologram illustrating metabolic and transcriptomic differences in metabolite pathways
between LDH KO P3 cells. The metabologram is divided in two parts, the left corresponds to
metabolomic analysis and the right to the transcriptomic analysis. The outer circle corresponds to the
log, fold change for each metabolite (/eft) and transcripts (right). The central circle displays the
average fold change of all analytes. Metabolites and gene names were added into these

metabolograms.
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Appendix Figure S5: Bioinformatics analysis based on RNAseq data from P3 sgControl
adaptations to hypoxia or from basal differences between P3 sgControl and P3 sgLDHA/B cells
(Extented data Figure 4)

Left: Volcano plots for visualizing gene expression in described comparisons. Right: Enrichment

analysis using Gene Ontology with filtered terms “biological process” and “cellular component”.
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Appendix Figure S6: Nucleotide tracing using [*Cg]glucose (Extented data Figure 4)

P3 sgControl, sgLDHA, sgLDHB and sgLDHA/B were infused during 0, 24 and 48 h at 0.1% O2 with
[13C¢]glucose. Nucleotides from cell extracts were measured by gas chromatography-mass
spectrometry (n = 3 independent cell dishes for each condition). Abundance and isotopolog
contribution of all nucleotide isotopes from glucose metabolism are shown, data are represented as
mean = s.d. and as mean, respectively. m+0 stands for the fraction of metabolite without *Carbon and
m+n (n > 0) stands for fraction of metabolite with n '*Carbon. For example, m+5 correspond to a

metabolite with 5 labeled *Carbon. The sum of (m+0, m+1, ..., m+10) equals to 1.
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Appendix Figure S7: Viability assay of P3 cells using glycolysis and ETC2 inhibitor

A. P3 sgCont and sgLDHA/B spheroids were incubated at 21% or 0.1% O, and viability assay was
assessed after 3 days of incubation. Data were generated from spheroid viability assays
(calcein/ethidium homodimer to respectively detect live/dead cells) by normalizing values by their
own internal control. Values were then log-transformed and represented in heatmaps. No note, basal
cell death of double LDHA/B KO spheroid was considered to be higher as already shown in

Supplementary Figure 6E.

B. P3 sgCont and sgLDHA/B spheroids were treated by multiple concentration of 2-DG (glycolysis
inhibitor, from 5 to 20 mM) and Atpenin-A5 (AtpAS, ETC2 inhibitor, from 5 to 20 nM) and incubated
at 21% or 0.1% O,. Viability assay was assessed after 3 days of incubation by incubating with calcein

and ethidium homodimer.





